Software Prototyping with Reusable Components

SHiNICHI HONIDEN,* NaomicHI SUEDA,* AkIRA HosH,*
NaosHl UcHiHIRA¥*, and KAzuo MIKAME*

Recently, a prototyping method has attracted attention as a software specification method. Though many
methods have been proposed, no standard method has been established. This paper proposes a prototyping
method with reusable components based on knowledge engineering. This method provides support to even non-
expert personnel in selecting and combining individual software components to satisfy their requirements rap-
idly. The proposed method is realized by an expert system, which consists of a component inference part, a
parameter inference part, and an execution part. The component inference part selects the appropriate com-
ponents to satisfy a user’s requirement, and to determine the purpose of combining components. The parameter
inference part combines parameters based on logical attribute and physical attribute. The execution part ac-
tivates and carries out the roles indicated in the combined components. As an application example, an image

processing expert system is described.

1. Introduction

Prototyping, as a software specification method, has
recently come to be highly regarded. Various prototyp-
ing methods have been proposed, such as the existing
programming language method [1], a program
generator method wherein the field of application is
limited [2], software reuse method [3], and the ex-
ecutable requirement specification language method [4].
Among them, the executable requirement specification
language method is more applicable to various areas
than other methods. However, suitable executable re-
quirement specification languages have not yet been
fully developed, and prototyping systems based upon
them are not available. In other words, in order to
develop general purpose prototyping systems, such as
the executable requirement specification language,
many problems remain to be resolved. Therefore, the
practical approach involves developing an application-
oriented prototyping system.

Using a software library is one known method for ap-
plication-oriented prototyping system, because a user
can construct a prototype rapidly with only knowledge
about the library. However, it is hard for a user who
doesn’t have that knowledge (such a person is called a
non-expert in this paper) to use the library. To
recognize this method as a prototyping method exactly,
the method must include functions which allow even a
non-expert to use the library easily.

This paper describes an expert system which provides
support to non-experts in selecting and combining in-
dividual software components stored in the software
library.

*Systems & Software Engineering Division, Toshiba Corporation,
1-1-1, Shibaura, Minato-ku, Tokyo 105, Japan.

Journal of Information Processing, Vol. 9, No. 3, 1986

As an application example, an image processing ex-
pert system is described. When the technology used for
image processing is reviewed from the standpoint of
pre-processing in two-dimensional image processing,
established methods have been readily available in
various areas. Many software packages for that pur-
pose have been developed and used. Among them is
SPIDER (Subroutine Package for Image Data Enhance-
ment and Recognition) [6]. SPIDER consists of approx-
imately 350 subroutine packages, which cover various
processing areas, such as orthogonal transformation,
emphasis and smoothing of image-data. They are de-
scribed in FORTRAN.

Engineers engaged in image processing must choose
appropriate software components among the group of
subroutines (components) and develop programs to
combine such components. To obviate such
troublesome jobs, facilities have been requested which
automatically combine, execute, and verify necessary
components without programming and which generate
and register the resultant combination as a new compo-
nent.

In short, the requirements are:
xEach component should be used without programm-
ing.

*xA combination of components should be automatical-
ly generated.

To satisfy these requirements, the image processing ex-
pert system was studied and developed.

2. Software Reuse Based on Knowledge Engineering

The proposed method involves software prototyping
with reusable components. The software reusability
rate has been increasing in various applications, and
software reuse contributes to higher software produc-

124

tivity. If software can be treated as components, the
components can be reused, easily modified, and easily
understood with better reliability and maintainability.
Many problems, however, must be solved to realize the
idea. In order to stock and reuse software components,
internal and external specifications for each component
must be clearly defined. Also, environments where the
components can be easily utilized must be provided.
The authors defined the environment, in which each
component can be easily used, as the one which satisfies
the following criteria:

(1) Each needed component should be searched
easily.

(2) Components searched for and found should be
easily combined.

(3) The resultant combination should be immedi-
ately executable.

This environment provides ways to construct a pro-
totype rapidly.

There are two software reuse methods,

(1) Customize general component to satisfy the
user’s requirement, that is, modify the internal struc-
ture in the component (called a white-box approach in
this paper).

(2) Use components without modifying the internal
structure (called a black-box approach in this paper).
The white-box approach is applicable to various areas
and has high flexibility. However, the user must have
knowledge about internal structure, and computeriza-
tion is very difficult. The black-box approach is applied
to only a limited domain, but automatic selection and
combination is possible with knowledge about only ex-
ternal structure such as function and interface.

This paper describes a black-box approach. A typical
example of the black-box approach is using a software
library. That is, components stored in the library are
used without modifying the internal structure. Many
software libraries have been presented. However, it is
hard for the library user to select and combine reusable
components. It takes non-experts, who don’t have
knowledge about the library, much time to select and
combine the components. To solve this problem, the
authors developed an expert system for the education
and assistance of non-expert users.

The presented expert system consists of:

(1) Component inference part

(2) Parameter inference part

(3) Execution part
The component inference part selects the appropriate
components to satisfy a user’s requirement, and deter-
mines the purpose of combining components. The
parameter inference part combines parameters based on
physical attribute, logical attribute and the purpose of
combining components. The execution part activates
and carries out the roles indicated in the combined com-
ponents.

« Requirements
. lmage Attributes “| Section Section

S. HoNIDEN, N. SUEDA, A. HosHi, N. UcHIHIRA and K. MIKAME
3. Image Processing Expert System

The image processing expert system consists of a com-
ponent inference part, a parameter inference part, and
an image processing execution part, as shown in Fig. 1.

3.1 Component Inference Part

This section explains component inference for user’s
requirements and dealing with the purpose of combin-
ing components. Its general idea is that, when a user re-
quests processings, the system should automatically
select appropriate software components.

The component inference part is realized by an expert
system. An expert system consists of knowledge-base
and inference engine. Knowledge representation and in-
ference mechanism are described in the following.

3.1.1 Knowledge Representation

There are two knowledge categories, knowledge
about components and knowledge about state.

The knowledge structure about the components is
divided into the following categories:

(a) Meta inference (ex. for process A-process is a set
of components-, processes al, a2, a3, or a4, a5, a6 are
performed).

(b) Effects on the state (ex. when process al is per-
formed, state changes).

(c) Relationship between before and after process-
ing (ex. process al should be performed prior to process
a2).

The knowledge structure can be described using the

Parameter
Inference

Component

Inference Image Processing

Execution Section Hesult

<>
Algorithms
Knowledge
and
Software

Modules

Processing
Procedure
Knowledge

Knowledge Acquisition

Fig. 1 Image processing expert system.

Relationship between
before-and
after-processing

Level n @

Fig. 2 Knowledge structure.

Software Prototyping with Reusable Components

hierarchical structure shown in Fig. 2. The examples are
as follow;

A: Segmentation, B: Binarization, bl: Histogram, b2:
Threshold selection, b3: Binarization, b31: Single
thresholding, b32: Double thresholding

This knowledge is not systematic, it is stored in
fragments, and may correspond with, be inferred from,
or be related to the state when the knowledge is used.

Rule No.: rule 21
Process request part:
Condition part: IF

(state a and

state b or

state ¢) or

(state d and

state e and

state)
Execution part: THEN

(component E and

component F and

component G)
Effect part: (state h and

state i and

state j and

state k)
Parameter combination part:

(e2 in E=f1in F)

(f2 in F=gl in G)

Fig. 3 An example of knowledge about component.

Noise frame
Features
Shape : Circle, point, line and band
Color : Monochrome
Size : Minute and smalt
Uniformity : Yes or No
Range
Shape : Optional
Color : Optional
Size : Optional
Effects
Visibility : Hard to see
Supplement: If the density is high, this density will affect optional

processing.

Fig. 4 Representation example of image attribute.

125

Knowledge about a component is the rule which con-
sists of rule number, process request part, condition
part, execution part, effect part, and process result
state. An example is shown in Fig. 3.

Knowledge about the state is closely related to the ap-
plication. Here, ‘‘state’’ means ‘‘image attribute’’ in im-
age processing. The structure and representation for the
image attribute are given in Fig. 4. The specialist, to
whom the image to be processed is given, should unders-
tand:

(i) Overall image

(il) Target conditions

(iii) Relationship with the background

(iv) Noise, Strain, Diffusion
Examples of such knowledge about image attribute are
as follow.

«Background is in an area other than the target area.
«Background is often a large area with the same
features.

xBackground is often composed of two or more tex-
tures.

3.1.2 Inference Mechanism

The inference mechanism to select the software com-
ponent makes non-deterministic inferences. It adopts a
forward inference method, in which the inference is
made under an assumption that ‘‘if the given states are
a, b, c,..., perform processes A, B and C.”’ This
mechanism is shown in Fig. 5. Levels 2, 3 and »n in Fig. §
correspond to the processing component knowledge
levels 2, 3 and n given in Fig. 2, respectively. The
mechanism unifies the fact list with the condition rule.
After unifications, the fact list is updated by the chang-
ed state.

3.1.3 Rule for User’s Intention Regarding Parameter
Combination

As mentioned in 3.1.1, in order to select the com-

ponents, the rule shown in Fig. 3 is used. For example,

components E, F, G are selected in Fig. 3. Knowledge

Level 2 B c

FACT LIST

Rule 21
Rule 22|Rule 23

*Rule 21:
Rule selection attribute
— +Rule 22: | &———>
Level 3 5 «Rule 23: | Unificatio ny:
bl 2 nz:
T n3:
Rule 31 (Process b condition rule) N
Rule 32| Rule 33 '§Ui= g% :
Rule selection *Rule : .
Level n —— .Rule 33: Unificatio g
—|(b b b
11 12 13,
Image
procesqing

component rule condition

(Process B condition rule)

Image

Addition/modification

Fig. 5 Inference Process.

126

about the combination of parameters is also described
in this rule. This rule shows that parameter e2 in compo-
nent E is related to parameter f1 in component F.

3.2 Parameter Inference Part

This section explains parameter inference
mechanism. Parameter inference means parameter mat-
ching among selected components in the component in-
ference part.

It would be ideal for users if combination among com-
ponents could be performed without any user
assistance. To determine the relationship between com-
ponents, the information shown in Fig. 6 is generally
used.

Each parameter has three attributes, physical at-
tribute, logical attribute and the purpose of combining
components. An example of physical attribute is shown
in Fig. 7. The logical attribute means the attribute
heuristically determined, i.e., some intention, such as
‘‘Let’s assign such and such a role to this parameter’’ is
kept in mind. The authors consider that the probability
of making right choices by automatic combination
could be improved by introduction of the logical at-
tribute. When the logical attribute concept is introduc-
ed, and as long as one to one correspondence between
one logical attribute specified by a parameter and the
other logical attribute by another parameter is retained,
the character matching method is satisfactory.
However, meanings of parameters do not correspond
on a one to one basis. The example shown in Fig. 8 in-
dicates this situation. In this example, the logical at-
tribute for parameter ‘“‘RHST’’ of the component
“HIST1” is defined as ‘‘Histogram data’’ and that for
parameter ‘‘DATA”’ of “THDS”’ is defined as ‘‘per-
cent data”’. If a simple character matching is applied to
this particular example, these attributes to not match
and cannot be combined. To solve this problem, the in-
ference mechanism based on the defined attribute is re-
quired.

The information regarding ‘‘purpose of combining

Physical attribute
Parameter attribute ——.[:
[: Logical attribute

Purpose of combining components

Fig. 6 Relationship between components.

* Input/output made: Input, output, input/output, . . .
* Dimension
* Element size of dimension: Constant, depending on other
parameters, . . .
* Input type: Keyboard input, constant, operation
between other parameters, . . .
* Input value range

Fig. 7 An example of physical attribute.

S. HONIDEN, N. SUEDA, A. HosHi, N. UCHIHIRA and K. MIKAME

CALL HISTI(IP, ISX, ISY, RHST, NGR)

Histogram data

CALL THDS(DATA, NG, PTITLE, JTHD)

Percent data

Mismatch

Fig. 8 An example of parameter mismatch.

components’’ is also indispensable for automatic com-
bination. This can be shown in the following example.
CALL STAS (A, MEAN, MAX, MIN, STDEV)
CALL DIVCIR (B C)

The average value (MEAN), maximum value (MAX),
minimum value (MIN), and standard deviation
(STDEV) for distribution A are obtained by ‘“‘CALL
STAS” first. Then, value B is divided by a constant
value C by ““CALL DIVCIR.”’ At this time, the value
of B can be related to the value of MEAN, MAX, MIN,
or STDEV. Only the user knows the right selection.
Therefore, knowledge about the purpose of combining
components is required to combine such components
automatically. This knowledge is involved in compo-
nent knowledge described in 3.1.

3.2.1 Component Attribute Knowledge

The attribute structure for each component is organiz-
ed as shown in Fig. 9. An individual component and its
parameters make up an individual frame. Each logical
attribute definition also takes the form of the frame.
Each frame inherits necessary information from upper-
level frames.

3.2.2 Rules of Combination

The component combination inference is the
backward inference method and it is a non-deter-
ministic method. The rules used for combination con-
sists of rules for selection, rules for evaluation, and
rules for determination.

(1) Rules for Selection

The selection based on the logical attribute is inferred
by interpreting the meaning of each parameter using the
upper-level concepts. However, if a structure of
knowledge to define the logical attribute includes ex-
tremely abstract upper-level concepts, matching of
some components at some level does not have any prac-
tical sense. For example, it is easily understood that a
structure such as (histogram data) (percent data) . . .
(numerical values) does not have any practical sense,
even if components are related to each other, based on
the numerical values concept. To avoid such a case,
care has been taken to determine a way to furnish
knowledge regarding the definition of logical attributes.
Also, the concept of logical distance (the number of in-
heritance links) has been incorporated to quantify the
discussion. Thus, the difference in logical distance can
be checked, after the logical attribute between

Software Prototyping with Reusable Components

Upper-level
Concept

| T
(Definition)
()

(Definition)
> ()

127

Attribute
)

(Definition)
«)

Equal

(Knoviedge of component A attribute)

(knowledge for definition of logical attribute)

(knovledge of component B attribute)

Fig. 9 Attribute structure.

parameters is matched.
(2) Rule for Evaluation and Determination
Candidates selected using the rules for selection are fi-
nally determined. For the parameters to be related, the
physical distance is calculated based on the positional
relationship (order of candidates in the coded program)
of the candidates to be related. The index wherein
parameter ‘‘@’’> will be related to parameter ‘b’ is
calculated, as shown below.
f(a, b)=alx(logical distance between ‘‘a’’ and “‘b’’)+
a2+(physical distance between ‘‘@’’ and “‘b”’)
al and o2 are weighting coefficients.
The f(a, x) having the smallest value is selected, using
the determination rules:
Determination (a, x):- comparison (f(a, x)< f(a, »)).
For the parameter inference part, Fig. 10 shows an ex-
ample of a Prolog fact statement which is component at-
tribute knowledge, while Figs. 11 and 12 show examples
of Prolog statements, for selection rules and evaluation

class(histl).

parameter(histl, ip, isx, isy, rhst, ngr).
class(ip).

ako(ip, histl).

mode(ip, input).

dimension(ip, 2, para, isx, para, isy).
class(isx).

ako(isx, isx. d).

class(isy).

ako(isy, isy. d).

class(rhst).

ako(rhst, histl).

ako(rhst, histogram-data).
mode(rhst, output).

Fig. 10 An example of knowledge expressions.

rules, respectively. Figure 13 shows the system flow for
the image processing expert system, which selects com-
ponents needed by the user, relates to parameters for
each component, generates a new component, and then
registers them the library and the component attribute
data.

s__rulel(*x):-mode(*x, input).
s__rule1(*x):-mode(*x, input-output).
s__rule2(*x, *y):-front(*x, *y).
s__rule3(*x):-dimension(*x, *a),
dimension(*y, *b),
equal(*a, *b).
s__rule25(*x, *y):-semantics(*x, *a),
semantics(*y, *b),
equal(*a, *b).
relation(*a, *b):-s__rulel(*a),
s__rule2(*a, *b),
s__rule3(*b),
s__rule25(*a, *b).

IF
Input/Output mode of *a is input or input-output
AND
*b is set before *a
AND
Dimension of *a is equal to dimension of *b
AND
Logical attribute of *a is equal to logical attribute of
*b
THEN
*a is related to *b

Fig. 11 An example of a rule expression (selection rule).

128

function(*a, *b, *f):-logical__length(*a, *b, *11),
physical__length(*a, *b, *pl),
multiply(*1l, alphl, *x),
multiply(*pl, alph2, *y),
add(*x, *y, *f).

determination(*a, *x):-function(*a, *x, *xf),

function(*a, *y, *yf),
less(*xf, *yf).

Fig. 12 An example of rules expression(evaluation and
determination).

Requiresent Group of ¢
s

binarizing
Censb;talzmnhl Select co-poJents

« Histogram analysls:--

» Threshold value creat --CALL THDS (DATA.NG.PTITLE. JTHD)

« binarize- -+CALL SLTH1 (IPP.JP.1X.1Y.THD. ISK)
Entry
Relate paraseters
VvV Y v
CALL HISTL (1P.1SX.ISY.RHST.NGR)
Comaponent
Attribute | Knowledge)| CALL THDS (DJATA.N§, PRITLE. JTHD)

Data
CALL SLTHL (IPP.JP.IX.1Y.THD. 1S¥)

Generate new component

Entry

SUBROUTINE NAME = AUTSLT ~(NEN NAME)

SUBROUTINE AUTSLT(1P. JP.1SX. ISY.NGR. PTITLE. ISW)
DIMENSION RHST(NGR)

CALL HIST1 (1P.ISX.ISY.RHST.NGR)
CALL THDS (RHST.NGR.PTITLE.)JTHD}
CALL SLTHL (IP.JP.1SX. ISY.JTHD. IS¥)

Input paramenters

Fig. 13 Outline of component combination.

3.3 Execution Part

The execution part generates the executable format
from combined components and activates and carries
out the rules indicated in the components. The user’s
load for preparing execution environment is decreased,
that is, additional codings for execution, such as
parameter input routine and declaration, are generated
automatically. The execution part processes the image
data after obtaining necessary information through a
conversation with the user.

3.4 Effects
The system has been verified with approximately 300

S. HONIDEN, N. SUEDA, A. HosHi, N. UCHIHIRA and K. MIKAME

rules and approximately 70 software components.
When processing is performed by a non-expert in image
processing, about one hour is required to perform the
steps from the introductory explanation to processing.
System capability depends on the completeness of the
knowledge base. Especially the rules for user’s inten-
tion regarding parameter combination contributes to
the system capability. These rules have two categories,
the one beween components to be appeared in each
knowledge about component and the one between com-
ponents not to be appeared. Current knowledge bases
do not have the latter rule. Therefore, when the com-
bination fails, knowledge about the library is required.
On the other hand, achievement of a target image
depends on the component execution. Component func-
tions are the subject of image processing technology,
which should be further improved. As described
previously, at present, the operator’s load in the deriva-
tion of image processing procedures is markedly
decreased.

5. Conclusion

A new method for use in software prototyping with
reusable components is proposed. This method pro-
vides support to even non-experts, to enable them to
select and combine the reusable components stored in a
library rapidly. This method is realized by an expert
system. As an application example, the image process-
ing expert system is described. Currently, al and &2 in
determination rules are set as 0.35 and 0.65, respec-
tively, in the image processing expert system. However,
to obtain better determination, «1 and o2 must be im-
proved by practical use.

A problem to be studied in the future concerns the
fact that the time required for inference will increase in
proportion to the complexity of the inference pro-
cedure, when the number of components is increased
and the associated quantity of the knowledge is increas-
ed.

This method can be applied to various applications.
In this method, for the component inference part, there
are two knowledge categories, knowledge about com-
ponents and knowledge about state. The former
knowledge is independent on applications, but the lat-
ter knowledge depends on the particular application.
On the other hand, the knowledge used in the
parameter inference part is independent from the ap-
plication.

Acknowledgement

The authors would like to thank Akira Ito and
Masahiko Arai, Systems & Software Engineering Divi-
sion of Toshiba Corporation, for their valuable com-
ments.

Software Prototyping with Reusable Components

References

1. DuncaNn, A. G. Prototyping in ADA: Case Study, ACM Sigsoft
Eng. Notes, 7, 5 (1982), 54-60.

2. Barstow, D. Automatic Programming System to Support
Experimental Science, Proc. 6th ICSE (1982), 360-366.

3. Jones, T. G. Reusability in Programming: A Survey of the state
of the art, JEEE Trans. Software Eng. 10, 5 (1984), 488-493.

4. BALZER, R. M. et al. Operational Specification as Basis for Rapid
Prototyping, ACM Sigsoft Software Eng. Notes, 7, 5 (1982), 3-16.

129

5. TAMURA, H., Sakaue, K. Three kinds of knowledge for building
Digital-Image-Analysis expert system, Paper of Technical group
AL83-49, IECE Japan (1983), 27-40.

6. TaMmura, H. et al. SPIDER USER’S MANUAL.

7. MIKAME, K. et al. Knowledge Engineering Application in Image
Processing, Proc. Graphics Interface 85 (1985), 435-441.

(Received September 9, 1985; revised September 2, 1986)

