Short Note

Parallel Address Setting Schemes for
Complete-binary-tree-connected Machines

HirosH1 UMEO*

The concept of processor address in parallel computer architectures sometimes plays an important role in the
design of SIMD-type parallel algorithms. In this paper we consider an address setting problem on complete-
binary-tree-connected cellular computers, consisting of many identical processors each with its own address.
The problem is to design a parallel algorithm which can assign pre-specified binary address to each processor.
Several time-efficient bit-wise address setting schemes with O(log, n) time complexities are developed for the
complete-binary-tree-connected machines having O(n) processors.

1. Introduction

Much attention has been paid to the study of tree-
structured parallel processors[3}, [5], [6], [9]. In this
paper we consider an address setting problem on com-
plete-binary-tree-structured cellular computers, con-
sisting of many identical processors each with its own
address. The problem is to design a parallel algorithm
which can assign pre-specified binary address to each
processor[8]. The concept of processor address in the
parallel computer architectures sometimes plays an im-
portant role in the design of SIMD-type parallel
algorithms. The processor address may be used as an at-
tached tag for the complicated data routing and com-
munications between processors. The problem was
originally proposed in the study of conversion of
parallel algorithms from the SIMD-type to the MISD[1]
and several time-optimum parallel binary address set-
ting schemes were established for linear and two-dimen-
sional uniformly-interconnected array processors{8].
This problem will be important for the future general-
purpose VLSI-based reconfigurable[9], [2], [4] and/or
programmable cellular computers [7] with fault-
tolerance in addition to being interesting in its own
right from a theoretical point of view.

The organization of this paper is as follows. Section 2
defines the address setting problem for tree machines
and in section 3 we develop several time-efficient bit-
wise address setting schemes for the complete-binary-
tree-connected machines. The conclusion is presented
in the last section.

*Dept. of Applied Electronic Engineering, Faculty of Engineering,
Osaka Electro-Communication Univ. Hatsu-cho, 18-8, Neyagawa-
shi, Osaka, 572, Japan

Journal of Information Processing, Vol. 9, No. 4, 1986

2. Address Setting Problem on Tree Machines

Consider a complete-binary-tree-connected machine
M, shown in Fig. 1, which consists of identical (n/2—1)
node processors and n/2 leaf processor, where n=2"
for some positive integer m. For convenience we refer
to it as depth [log, n] tree, where [x] denotes the ceiling
of x. We assume that the level of leaf processors is zero.
In one step each node processor can communicate with
its father-processor and two son-processors, that is, one
right and one left descendant. The root processor has
the additional responsibility of being the input/output
port of M. The leaf processor can communicate only
with its father-processor. Each processor is composed
of a finite number of finite registers and an address
register Ra.

At time =0 the host computer supplies the root pro-
cessor with an activating signal. This signal propagates

Host
Computer

Root Processor Level 3

N
ode Level 2

Processors

Level 1

Level 0

Leaf Processors

Fig. 1 A complete-binary-tree-connected machine.



238

down to the binary-tree-structured network at a unit
speed, that is, 1-level/1-step. Each processor is in a
quiescent state until the activating signal reaches the pro-
cessor. A local transition function, which is common to
all processors, determines the next state of every pro-
cessor from its local informations.

The address setting problem on M is to design the
local transition function of M so that the address
register Ra in every processor contains a unique address
represented in a binary form according to the pre-
specified node-ordering system given below. We con-
sider the following tree traversal ordering systems [10]:

(1) Breadth-first order, (2) Preorder, (3) Postorder,
and (4) Inorder. See Fig. 2(a), (b), (c), and (d).

Let M be any complete-binary-tree-machine of depth
[log, n] and u be any node processor with a right son ¢
and a left son s. We assume that the level of node u of
M is j, where 1=j<[log, n]. For each ordering, the ad-
dress of s, ¢ and the root of M are determined by the
following equations, where A(v) denotes the address of
node v. They are easily obtained from the definitions.

A(root)=1,

A(9)=2A(), (1)
A)=2Aw)+1.
A(root)=1,

A(s)=AW)+1, -+(2)
A)=A@w)+2.

A(root)=n—1,

A(s)=Aw)—2, --(3)
A@)=A@w)—1.

Breadth-first-order:

Preorder:

Postorder:

H. UMEO
A(root)=n/2,

A=A =27, @)
A@)=A@W)+2",

Inorder:

3. Time-Efficient Address Setting Schemes for Tree
Machines

First we will develop a breadth-first address setting
scheme.

[Theorem 1] There exists a time-optimum breadth-
first address setting scheme which sets up all addresses
of depth [log: n] complete-binary-tree-connected pro-
cessors in exactly 2[log; n] —1 steps.

(Proof) The addresses are set from the highest digit in
order on each node. In Fig. 3 we give a description of
the processor and its operation performed by each pro-
cessor at every cycle. Each processor has three data
paths, @i, low, and 7.y, €ach of which is 3-bits wide. We
assume that the root processor has also ai,. Initially, at
time t=0, a;, of the root processor has 1* and other a;,’s
are ¢.

A processor operates as follows: The data path a;, has
a value of either ¢, s, or s*, where s € {0, 1}. While a;, is
¢, the processor does nothing. While a,, is s, the pro-
cessor repeats the Part 4 in Fig. 3 in each cycle. When
ai,=s*, after performing the Part 4 and B once, respec-
tively, the processor will complete the address setting
operation. Note that * mark is deleted in Part 4. The
validity of our setting scheme is obtained by the follow-
ing two observations.

Fig. 2 (1) Breadth-first order, (b) Preorder, (c) Postorder, and 3)
Inoreder.



Parallel Address Setting Schemes for Complete-binary-tree-connected Machines 239

Right or left

parent
/* a, has either ¢, s, or s*, where sis 0 or 1*/
2, while (ai.# ¢) do {
® The processor sets the next highest digit to s.
®row=S, Icul=5 Part A
P N c00c00000 *if (a,=5*) break
R
a i
.IDIJ[=0*? rOllI=1* }Part B
/ \ /* The address setting operations are completed */
Qout Tout

Left Right
subtree subtree,

Fig. 3 Processor description for breadth-first addressing.

10 10 10 10 11 11 11 11

100 100 10 101 110 110 111 111

1000 1001 1010 1011 1100 1101 1110 1111

Fig. 4 A snapshot of the breadth-first-addressing scheme from
time =0 to 7 (in the case where n=16).



240

(I) Let u be any node which has a left and right
descendant s and ¢, respectively. Then, in the breadth-
first addressing, s and ¢ have a binary address «-0 and
-1, based on the eq. (1) given above, respectively,
where « is the binary representation of the address of
node u# and ¢‘-”’ denotes a symbol concatenation.

(I1) All the nodes of level [log, n]—j have j-digit
binary addresses, where 0= j<[log, n}.

It is shown that the node processors of level [log, n]
—k complete the address setting operations at time
t=2k—1 where 1=k=[log: n]. At time r=2[log, n]—1
all addresses will be set. Fig. 4 shows a snapshot of the
scheme from time =0 to 7 where n=16. W

[Theorem 2] There exists a preorder, postorder and in-
order address setting scheme each of which can set up
all addresses of depth [log; n] complete-binary-tree-
con-

nected processors in 4[log, n]+O(1)™ steps, respec-
tively.

(Proof sketch) We give a scheme for the preorder
addressing. A similar technique can be employed for
other addressings, so we will omit them. See eq. (2). We
refer the terms +1, and +2/ as an offset address for s
and ¢, respectively. From the observation below it is
easily seen that, within 2flog, n] + O(1) steps, every node
can set up its offset address, shown in Fig. S in the case
where n=16.

(I) Each node knows whether it is a right or left
descendant.

(I) Each node can calculate its height(level) by
counting the steps that the down-going wave, generated
at the root at time #=0, requires to bounce off at the
leaf.

We see that any complete-binary-tree of depth
[log: n] consists of n/2 linear arrays beginning at the
root and ending at the leaf. Within the next 2[log, n]
+ O(1) steps, each node can set up its complete address
by applying our previous one-way pipeline addressing
scheme developed for linear arrays[8]. The scheme|8]
says that it requires (n—1+[log; n]) steps to assign
binary addresses to all # cells. But in our case the length
of the array is flog; n], so additional 2[log; n] +O(1)
steps are sufficient for the complete addressing. Incor-
poration of the offset address into the final address is
easily accomplished by modifying the scheme[8]. The
details of them are omitted. W

*To give more generality we add a term O(1).

H. UMEO

1 10

1 10 10 1 10

Fig. 5 Offset address for the preorder addressing.

4. Conclusion

We have developed several time-efficient bit-wise
parallel address setting schemes for complete-binary-
tree-connected machines. Our schemes can be applied
to the incomplete-binary-tree machines, but its assigned
addresses are not successive integers. An O(log; n)-step
parallel algorithm for assigning successive address to all
nodes in incomplete-binary-tree is left open at present.

Acknowlegement

The author would like to thank the referee who in-
dicated some mistakes in the first version. A part of this
work was supported by the grant (No. 61750346) of
Ministry of Education, Culture and Science of Japan.

References

1. UMEO, H. A class of SIMD algorithms implemented on systolic
VLSI arrays, IEEE Proc. of the 1984 International Conference on
Parallel Proc. (1984), 374-376.

2. ROSeNFeLD, A. and Wu, A. Y. Reconfigurable cellular com-
puters, Inf. and Contr., 50, (1981), 64-84.

3. ULwman, J. D. Computational aspects of VLSI, Computer
Science Press, Maryland (1984).

4. SNYDER, L. Overview of the CHiP computer, in VLSI 81, (1981),
237-246.

5. BHATT, S. N. How to assemble tree machines, ACM Proc. of the
Foundations of the Computer Science, (1982), 77-84.

6. TAKAHASI, Y., WAKABAYASHI, N. and NoBuTtoMoO, Y. A binary
tree multiprocessor: CORAL, Journal of Information Processing, 3,
4, (1981), 230-237.

7. FISHER, A. L., KUuNG, H. T., MONIER, L. M., and DoHl, Y. The
architecture of a programmable systolic chip, J. of VLSI and Com-
puter Systems, 1, 2, (1984) 153-169.

8. Umeo, H. Time-optimum parallel binary address setting
algorithms for cellular computers, Trans. IPS, 25, 1, (1984) 109-115.
9. SNYDER, N. Introduction to the configurable highly parallel com-
puter, IEEE Computer, 1, 1, Jan., (1982) 47-56.

10. AHO, A. V., HopcrorT J. E. and ULLMAN, J. D. The design and
analysis of computer algorithms, Addison-Wesley, Reading,
Massachusetts, (1974).

(Received September 10, 1986; revised November 25, 1986)




