Data Compression by Hardware PEM
(Pattern Extraction Method)
Using Multi Processor Elements

Tomoyuki KAwaMURA*

Many methods for data compression aiming at high speed processing and realtime processing have been

developed.

Previously, we proposed a data compression method by automatic pattern extraction (PEM; Pattern Extrac-
tion Method), which improved compression ratio only. However, PEM wastes much CPU time for data com-

pression.

In this paper, HPEM (Hardware PEM) is developed for high speed parallel processing of data compression
from a modified PEM algorithm. A HPEM system consists of several thousands of processor elements (PE’s)
connected in cascade, and each PE contains about 1000 transistors. The HPEM system has a data compression
speed of about 600 times faster compared with a program of the PEM algorithm on a 1 MIPS computer.

The architecture of the HPEM hardware and the evaluation of the HPEM system by simulation are reported.

1. Introduction

Many data compression algorithms have been devel-
oped as Huffman code [1] and Incremental compression
code [2] for example. These algorithms aim at high
speed and realtime data processing. Previously, we pro-
posed a data compression algorithm PEM (Pattern Ex-
traction Method) [3] intended to improve the compres-
sion ratio only. However, PEM wastes huge processing
time in comparison with other algorithms.

In this paper, HPEM (Hardware PEM) is proposed
which consists of hardware circuits and a modified
PEM algorithm. The HPEM experiment in this paper,
was simulated by software.

2. Outline of the PEM algorithm

The PEM algorithm is shown below briefly. PEM
automatically determines a pattern from a text to be
replaced with a compression-code by making up a PEM
tree. This pattern is called S-pattern. The patterns then
are replaced with new compression-codes, and the pat-
tern is appended to the end of the text, and delimiter-
code (described by {128 or $ in this paper) is appended
to the text for separation of each S-pattern. The process
shown above is repeated until no S-pattern is found in a
PEM tree. Finally, a compressed text is obtained.

A small example is shown in Fig. 1. The first line
shows the original text, and the last line is the compress-
ed text. Arrows indicate replacements of the S-patterns
with compression-codes. In Fig. 2, the whole PEM tree

*Department of Information Electronics, Tokuyama Technical Col-
lege.

Journal of Information Processing, Vol. 9, No. 4, 1986

AAAAAAAABB C AAAAAAAABBD $

’_—Llr—/

<129> C <129>'D$ AAAA AAAABB $

original text

intermediate text

<129> C <129> D § <130> <130> BB$ AAAA$ final text

Fig. 1 Process of compression by PEM.

AAAAAAAABBCAAAAAAAABBD $

P23 eseTasnnnuNsKEIUNAnR Y

LENGTH

1 AbRLbhbhh ByY Cy Da
/ |
14 N N o~
2 AALLLASLS ABY BBY BCy BDa
/ A \
7 NV VN
3 AAA S E L AABL ABBY BBC, BBD»

N N
4 /AAAA i A\AAAB 3 AABBY ABBC, ABBD,

N N, o w
5 QAAAA,’“‘,.’.,', AAAABL) AAABB, AABBC: AABBD2
+
‘ ~ TN S T
6 AA/AAAA,‘,:.,', AAAAABS AAAABB! AAABBC, AAABBDy

[S~ SO OSL —
7 AAAAAAALL AAAAAAB, AAAAABBY AAAABBC. AAAABBD:

[4 T~ S~ S
8 AAA/AAAAA:, AAAAAAABY AAAAAABB) AAAWBCFAAAAABBD,,

3 ' [}
9 AAAA/AAAAB;, AAAAAAABBY AAAAAABBC. AAAAAABBD:

0anat —~
AAAA/AAAABB!? AAAAAAABBC, AAAAAAABBD,

[
11 AAAAAAAABBC, AAAAAAAABBD,
Fig. 2 Example of a PEM tree.

corresponding to the first line in Fig. 1 is shown.

In the actual program of PEM, PEM makes up a par-
tial PEM tree by cutting branches. Therefore, CPU
time becomes shorter to compute a S-pattern in com-

214

parison with making a whole PEM tree. The actual pro-
gram uses list structure to represent the PEM tree, and
executes a garbage collection to reuse list-cells which
become unused.

A compressed text by the PEM algorithm can be
decoded by a simple recursive procedure described in
the paper [3]. And this decoding procedure can be ex-
ecuted at extremely high speed compared with the
coding (=compression) procedure.

3. The algorithm of HPEM

3.1 Outline of the algorithm of HPEM

PEM is a program of list processing to make up PEM
trees, while HPEM does not perform list processing and
will be implemented by hardware.

(1) Outline of the hardware of HPEM.

The outline of the hardware of HPEM is illustrated
in Fig. 3. MEM is a memory system keeping the TEXT
to be compressed by HPEM. MP(main processer) is a
CPU controlling the whole HPEM system. One MP is
installed in each HPEM system. PE(processor element)
is a circuit corresponding to a character-code in the
TEXT compressed by HPEM. Character-code includes
compression-code in this paper. The number of PE’s in-
stalled in a HPEM system must be greater than the
number of character-codes in the TEXT in the MEM.

The symbol < in Fig. 3 represents 3 control signals
from the MP to the PE’s. The symbol < represent
data lines between the PE’s or between the PE and the
MP. The symbol € represents a external bus to access
the character-codes in the TEXT in the MEM.

(2) Determination of S-pattern

HPEM makes a PEM tree by breadth-first search as
PEM. HPEM forms all patterns (length »— 1) to get the
next patterns (length n), while PEM forms meaningful
patterns (length n— 1) to get next patterns (length n). In
other words, HPEM counts every pattern of length » in
the TEXT, and the pattern which appears most fre-
quently is the S-pattern for the length n. It means the
counts of almost all patterns (length n) are 1 at a large n
(for example n=10, 11, 12, . . .) except for S-pattern,
this algorithm needs much CPU time. The computation
time needed for the HPEM algorithm to determine a S-
pattern on a sequential execution computer, is propor-
tional to the square of the length of the TEXT.

HPEM realizes a high speed processing by counting
the number of appearances of patterns with parallel
operation of the PE’s. In HPEM, a PE corresponds to
a character-code. Parallel degree of a HPEM system is

: . [MEM
T S A LI o i

Fig. 3 Outline of HPEM.

T. KAWAMURA

equal to the number of character-codes in the TEXT.
As a result, the computation time of HPEM is propor-
tional to the length of the TEXT.

(3) Replacement of S-patterns

HPEM replaces the S-patterns with compression-
codes by sequential processing. PEM does it by the
same way.

(4) Decoding

The decoding algorithm of PEM (using a recursive
procedure) is useful for HPEM. HPEM does not in-
clude a decoding algorithm.

3.2 PE (processor element)

The outline of a PE circuit is shown in Fig. 4. A, B, C
are control signals from the MP to the PE’s, and these
signals operate to all the PE’s simultaneously.

A quadrangle in this figure indicates a register. A
register contains a character-code, a hash value or a
counter value. Each value in the registers shifts on the
PE’s by the signals.

A circle (represented by ‘(')’ hereafter) indicates a
operator. ‘“(R)”’ is a 8 bit left rotate operator. It is
easily implemented by crossing of 8 data lines over
other lines. ‘‘(+)’ is a exclusive-or operator. It
operates on each pair of bits from 2 inputs. The input
from above contains 10 bits, and the input from left
contains 25 bits. Therefore 15 significant bits from left
input pass this operator. The combination of ‘‘(R)”’
and ‘‘(+)”’ realizes a hashing operator. ‘“‘(=)"’ is com-
parator. The output to right is 1 when 2 inputs are
equal, otherwise it is 0. “‘(+1)’’ is an incrementer. The
output to right is the sum of the inputs from left and
above.

A triangle is a gate which is open when the control
signal is 1, otherwise it is closed.

The CH register contains a character-code. HASH
and P__HASH registers contain a hash value
represeting a pattern. The P__CNT register contains a
counter corresponding to a pattern represented by
P_HASH. The connected PE’s behave like a large
shift register, get data from the MP, and put data to the
MP.

(1) Control signal A4

The signal A makes each CH; in PE, have the value of
CH;+, in PE;;,. And, CH in the PE connected to the

A
B HASH A(CLEAR) %i
c8{ P_HASH C%—’ -
BCLEAR) Jt‘

e\

by

o
B
—
B

0

Fig. 4 Outline of a PE.

Data Compression by Hardware PEM (Pattern Extraction Method) Using Multi Processor Elements 215

MP have the character-codes in the MEM. Also, the
signal A clears each HASH register. The MP sends the
signal 4 to as many PE’s as the number of character-
codes in the TEXT.

(2) Control signal B

The signal B makes each HASH; & P__HASH, have
the hash value calculated by CH; and HASH;-,. Also,
the signal B clears each P__CNT register. The 7 issues
of the signal B makes up a hash value to represent a pat-
tern corresponding to character-codes from CH;—,+\ to
CH,, and HASH; & P_HASH; have this hash value.
Hereafter, this hash value is regarded as the corre-
sponding pattern. The conflict of the hash values is
argued in chapter 5.

(3) Control signal C

The signal C makes each P__CNT;+, have the value
of P__CNT;+1 if P_HASH,=HASH,, otherwise the
value of P__CNT,. Also, the signal C makes each
P__HASH,., have the value of P__HASH,.

A pair of P_HASH; and P_CNT; is called a
PACKET,. After many issues of the signal C, a
PACKET; reachs the MP whose P_CNT,; indicates
how many HASH’s between PE; and the MP have the
same hash values as P__HASH..

3.3 Reception of PACKET’s by the MP

The MP is a general CPU that has an additional facili-
ty to handle the PE’s. The MP has circuits, shown in
Fig. 5, to process PACKET’s from the PE connected to
the MP by the signal C, and the MP uses P__CNT only
in the PACKET. This circuit works to get the number
and the position of patterns which appear most fre-
quently in the TEXT at a certain pattern-length of a
PEM tree. The position of patterns is represented by the
right most position of the patterns in the TEXT.

Register M_CNT keeps the maximum value of
P__CNT; from the beginning of the signal C. Register
M__POS keeps the position of the pattern (P__HASH))
corresponding to the M__CNT in the TEXT. Register
POS indicates positions of P__HASH, in PACKET;
received from the PE. Initially, the POS has the number
of character-codes in the TEXT. “()=)" is a com-
parator. It outputs 1 if the left input >= the right input,
otherwise 0. “‘(—1)” is a decrementer by 1.

3.4 Determination of S-pattern

The procedure to determine the S-pattern by the hard-
ware described above is shown in Fig. 6. This procedure
is executed on the MP and named TREE, because it is
corresponding to the procedure making up a PEM tree
in PEM. SIGNAL (X) means a issue of control signal
X. This procedure assumes that each CH; has each
character-code of the TEXT before this procedure is ex-
ecuted.

TXTLENGTH indicates the length of the TEXT, and
is equal to the number of CH’s which have meaningful
values. LENGTH indicates a length of patterns on pro-
cessing. MEASURE(X, Y) is a function which

c+ POS
P_CNT _18
M_CNT |-B(CLEAR) M_PQOS |-B(CLEAR
=
1
9
Fig. 5 Circuit for M_CNT & M__POS.
procedure TREE:
begin
BEST:=0:
BESTPOS: =8
BESTLENGTH: =8
SIGNAL(B)
LENGTH:=1;
loop
POS: =TXTLENGTH;
SIGNAL(B):
LENGTH: =LENGTH+1
for 1:=LENGTH to TXTLENGTH do SIGNAL(C):
LIM: =MEASURE (M_CNT ,MAXLENGTH) :
CUR:=MEASURE (M_CNT,LENGTH) ;
if LIM <= BEST then return: (%)
if CUR >= BEST then
begin
BEST: =CUR;:

BESTPOS:=M_POS;
BESTLENGTH: =LENGTH:
end;
if LENGTH = MAXLENGTH then return:
loopend:
end:

Fig. 6 Procedure TREE to make up a PEM tree.

calculates the profit obtained to replace patterns with
compression-codes when the number of the patterns is
X and the length of the patterns is Y. Higher value of
this function indicates better profit. The value of this
function less than or equal to 0 means no profit by the
replacement. When X=1, MEASURE(X, Y) must
have a value less than 0. An example is shown below.

MEASURE(X, Y)=X+Y—(X+Y+1)

MAXLENGTH is the maximum length of patterns
which is able to appear more than twice in the TEXT.
This value is 100 for the present. LIM is the profit when
LENGTH of the M__CNT patterns become MAX-
LENGTH. This is the best profit that may be obtained
from the M__CNT patterns. CUR is the profit when the
M__CNT patterns whose length is LENGTH are replac-
ed with the compression-code. BEST indicates the best
value of CUR from the starting of the procedure
TREE. BESTPOS and BESTLENGTH keep the posi-
tion and the length of the pattern corresponding to
BEST. BESTPOS and BESTLENGTH indicate the S-
pattern when the procedure TREE has finished.
Figure 7 shows the flows of information by the pro-
cedure TREE for a text ‘‘xyzwyz’’. = indicate the
flows of HASH’s by the signal B. The symbol — in-
dicate the flow of PACKET’s by the signal C.
Alphabetic characters on = and — indicate the pat-
terns in HASH and P__HASH respectively. Numeric
characters on — indicate the value of P__CNT. = and
— without characters indicate the flow of meaningless

216
information.

3.5 Replacement of S-patterns

After the procedure TREE finishes, HPEM replaces
the S-pattern in the TEXT in the MEM with the com-
pression-codes. At the same time, the new TEXT is sent
from the MP to the PE’s by the signal 4 for the next
TREE process. The MP has the circuit in Fig. 8 to ex-
ecute the processing above at high speed.

The MP makes PATTERN in Fig. 8 have the string
of

TEXT[BESTPOS —BESTLENGTH + 1..BESTPOS]

that is the S-pattern. ‘“‘(COMPARATOR WITH
MASK)”’ compares BESTLENGTH character-codes in-
put from above and below, and outputs 1 when they
match, otherwise 0. CC is the compression-code.

z z

T. KAWAMURA

TXTLEN is the length of the TEXT before the replace-
ment, 0 after the replacement. TXTLENT1 is 0 before
the replacement, the length of the new TEXT after the
replacement. .

The circuit in Fig. 8 is the circuit when MAX-
LENGTH is 5. Character-codes in the MEM are sent to
Cs sequentially. When BESTLENGTH<MAX-
LENGTH, the character-codes are sent to C,, C; or C,
by DECODER in Fig. 8.

The signal A in Fig. 8 is the same as the signal A4 in
Fig. 6. This circuit works by the signals 4 and D, and
terminates when TXTLEN reaches 0. The signal D
works only to move the character-codes from the MEM
to C.. The MEM sends delimiter-code{128) if the MP re-
quires character-codes over the length of the TEXT in
the MEM. The processed character-codes are sent to the
PE’s and sent-back to the MEM sequentially by the

o LENGTH
SIGNAL.(B) = =L-—> = & é —_ = } 1
sl — — £ 2 M, B,)
SIGALE) ———y ——y Bl el ozl wl oyl
SIGALO) —y ey ——y Ml ol el owl -
SIEO —— — —— —— by el ml,
SILIC) —y — — —) ——y M1, 2,

sl —y 5 — —— —— —— 2Ly,
slwE — — oy o B, M, h
SIBWE) —y —y ———y BEl, el Dwl, owzl,
SILO sy —y —— —y BEL, el el o3
SIGWIO) .y 3y .y 5 5 w&ly ogpel,
SIGLO — 5 5 — —— —y ——y ¥l
SIGAL(B) —— —/H —— % 20, % —_—
SIBALE) ey ——y .y Rl el gl .
SIBLC) ——y ey oy y 3y MRl Wl
SILED) —— s —y —— —— —— ML

Fig. 7 Flow of information on HPEM.

AD-ITMI

Fig. 8 Circuit for replacement.

Data Compression by Hardware PEM (Pattern Extraction Method) Using Multi Processor Elements 217

signal 4.

The procedure COMPACTION to replace the S-pat-
terns is shown in Fig. 9. This procedure is executed on
the MP.

3.6 Main program of HPEM

The main program of HPEM is shown in Fig. 10.
This program is executed on the MP. The termination
condition (*1) means that no S-pattern brings profit.
This condition is a good condition expected for HPEM.
The termination condition (*2) means that the S-pat-
tern contains the delimiter-code. This condition is a bad
condition for HPEM, because the pattern including the
delimiter-code can not be replaced with a compression-
code. The termination condition (»3) detects a infinite
loop when 2 different patterns which have same hash
values are selected as the S-pattern, and this state does
not change after the procedure COMPACTION.

4. Improvements of HPEM

4.1 Improvement of termination conditions

The termination condition (»2) in Fig. 10 is improved
by a simple procedure below.
IMPROVEMENT 1

When the S-pattern determined by the procedure
TREE includes the delimiter-code, the main program
substitutes the longest substring not including the
delimiter-code in the S-pattern for the original S-pat-
tern. For example, ‘“AB”’ is substituted for ‘“AB{128)
C”’. If the length of the new S-pattern is 1, then HPEM
terminates.

4.2 Partial exclusion of delimiter-code
Even if the IMPROVEMENT 1 is executed, the S-pat-

procedure COMPACTION;
begin
set PATTERN and MASK in Fig.8;
for [:=1 to BESTLENGTH do SIGNAL(D);
TXTLEN: =TXTLENGTH;
TXTLEN1:=0;
CC:=CC+1:
repeat
SIGNAL(A);
until TXTLEN = 03
send PATTERN and <128> to MEM;
TXTLENGTH: =TXTLEN1+BESTLENGTH+1;
end;

{ including SIGNAL(D) }

Fig. 9 Procedure COMPACTION for replacement.

program HPEM:
begin
set TXTLENGTH:
BESTLENGTH: =13

COMPACTION; ¢ setting a initial text to the PEs }

OLD_REPLACE_CNT:=-13}

CC:=128:

loop
TREE;
i1f BEST <= @ then exit; (1)
if ¢ the replacing pattern includes <128>) then exit; (%2)
COMPACTION:
if (REPLACE_CNT = 1) and (OLD_REPLACE_CNT = 1) then exit: (%3)
OLD_REPLACE_CNT: =REPLACE_CNT:

loopend;

end.

Fig. 10 Main program for HPEM.

tern *‘_ (128> or ‘“C128>_ . is selected by the pro-
cedure TREE to terminate HPEM unexpectedly, after
many repetitions of the procedure COMPACTION.
This problem is improved by the procedure below.
IMPROVEMENT 2

When the MP receives a P__HASH whose pattern-
length is 2 and the P_HASH includes the delimiter-
code explicitly (for example, ¢, (128>, ““A<128)’ or
““(128)>B”*), the circuit in Fig. 5 does not update the
M__CNT or the M__POS. For this improvement, a
small circuit must be added to the circuit in Fig. 5.
P__HASH whose pattern-length is 2 can indicate the in-
clusion of the delimiter-code, if the following condi-
tions are satisfied.

1: width of rotate (8) >log, delimiter-code (7)

2: width of rotate *2 (16) =width of HASH (25)

4.3 Complete exclusion of the delimiter-code (IM-
PROVEMENT 3)

Even if IMPROVEMENT 1 and IMPROVEMENT 2
are excecuted, the compression ratio of HPEM is slight-
ly worse than PEM. Because, HPEM includes the
delimiter-codes in S-patterns whose length are greater
than 2, while PEM completely excludes the delimiter-
codes on making PEM trees.

In IMPROVEMENT 3, the patterns including the
delimiter-codes are completely excluded. This improve-
ment is achieved by the circuit in Fig. 11 to be added to
Fig. 4. In this figure, DPB; is a one bit register in-
dicating that the pattern corresponding to HASH, in-
cludes the delimiter-code, and P_DPB; is a one bit
register indicating that the pattern corresponding to
P__HASH; includes the delimiter-code. P__DPB; is a
part of PACKET,.

On sending CH from the MP to the PE by the signal
A, if CH is the delimiter-code then DPB is 1, otherwise
0. And, DPB,., is shifted to DPB; by the signal A.

On calculating hash values by the signal B, DPB,; is
shifted to DPB;.;. Once DPB; becomes 1, OR operator
in Fig. 11 keeps DPB; 1 until a signal A.

P__DPB reaches the MP by the signal C as a part of
PACKET. Some circuits must be added to Fig. 5 so
that no update is executed in Fig. S when the P_DPB is
1.

The circuit in Fig. 11 seems complex compared with

BAM DPB
B B
1
B B
af c.e1 P_DPB
1

Fig. 11 Circuit to detect the delimiter-code.

218

Fig. 4. However, the width of the registers and the data
lines are all 1. Therefore the circuit size is small.

The termination condition («2) in Fig. 10 can be
deleted, because the S-pattern determined by the pro-
cedure TREE does not include the delimiter-code at all
by the IMPROVEMENT 3.

5. Conflict of hash values

HPEM substitutes hash values for patterns to com-
pare the patterns themselves. Different patterns may
have the same hash values creating a conflict of
hashing. However, the TEXT in the MEM always is
kept valid as an intermediate text of HPEM, because all
the replacements of S-patterns in the TEXT are done by
the circuit in Fig. 8.

6. Evaluation

6.1 Function MEASURE

4 functions to calculate the profit are described in the
paper [3]. In this experiment, the following function is
used.

MEASURE(PN, PL)=(PN+PL)— (PN+CL+PL+DL)
PN: the number of S-patterns (1)
PL: the length of S-patterns (=2)
CL: the length of compression-code (1 or 2)
DL: the length of the delimiter-code (always 1)
CL.: the length of compression-code (1 or 2)
DL: the length of the delimiter-code (always 1)

6.2 Correction of the number and the length of pat-
terns

M__CNT in the function MEASURE in Fig. 6 does
not indicate the number of pure appearances of pat-
terns. That is, the M—CNT indicates the number of pat-
terns including overlaps. For example, a text ‘“‘AAAA”’
includes 3 patterns ‘“AA’’, and the number of pure ap-
pearances ‘‘AA’’ in ‘““‘AAAA’”’ is 2. HPEM uses the
M__CNT instead of the number of pure appearances,
because HPEM can not calculate it until the procedure

Table 1 Comparison of HPEM with other methods.

PRG1 (1510 bytes) PRG2 (4712 bytes)

method ratio E;’e"ce) #ccC/| ratio E;’;’c‘; #cc
Huffman code 0.612 0.149 — | 0.607 0.205 —
Incremental 0.630 0203 — |0.509 0511 —
code

PEM 0.429 39 50 | 0.294 234 123
HPEM 0.437 0.075 40 | 0.337 0.480 64

Improvement 1 0.437 0.075 40 | 0.337 0.480 64
Improvement 2 0.430 0.081 50 10.2961 0.566 123
Improvement 3 0.430 0.081 50 [0.2958 0.565 123

MAXLENGTH =100
Bit width of hash values=31

T. KAWAMURA

COMPACTION finishes.

LENGTH in the function MEASURE had better be
corrected as described in the paper [3]. That is,
LENGTH may have a slightly greater value than the
value in Fig. 6, because the S-pattern may include 2 byte
character-codes. 2 byte character-codes are created
when the compression-code (CC) becomes greater than
255. Some calculation is needed per loop in Fig. 6 to cor-
rect the LENGTH. In this experiment, this correction is
not implemented.

6.3 Effect of the IMPROVEMENT 1, 2, 3

The results of the IMPROVEMENT 1, 2, 3 are
shown in Table 1 compared with Huffman code, In-
cremental code, PEM and HPEM for 2 sample texts
(PRG1 1510 bytes and PRG2 4712 bytes). “‘ratio’’ in
Table 1 is the final compression ratio of the length of
the final text to the length of the original text. The
length of the final text is corrected to increase slightly, if
the text includes 2 byte character-codes. ‘‘time’’ for
Huffman code, Incremental code and PEM is CPU time
on a MC68000 (8 MHz) micro processor. ‘‘time’’ for
HPEM is calculated by the expression below.

CN = 100 nano sec+ AN = 400 nano sec

CN=the number of issues of the signal C+
100 = the number of execution of loop
in Fig. 6.

AN=the number of issues of the signal A.

100 nano sec=the interval of signal C.

400 nano sec=the interval of signal 4.

The other parts of Fig. 6, 9 and 10 are ignored,
because the execution time for these is small enough to
be omitted. ‘“#CC”’ is the number of compression-
codes created by the procedure COMPACTION in Fig.
9.

6.4 Effect for variety of MAXLENGTH

A larger MAXLENGTH is better for the final com-
pression ratio in the HPEM algorithm. While, smaller
MAXLENGTH causes the return condition(+#) in Fig.
6 becomes true sooner, and shortens the execution time
of HPEM. The results of the experiments for various
MAXLENGTHSs are shown in Table 2. ‘““max PL” is
the maximum length of the S-patterns. ‘““mean PL’’ is
the mean length of the S-patterns.

6.5 Bit width of hash values

Setting the bit width of hash values smaller causes the
final compression ratio to get worse, because the
number of the conflicts of hash values is increasing. The
relation between the bit width of hash values and the
final compression ratios are shown in Table 3. “‘width’’
is the bit width of hash values. ‘“‘conflict”’ is the number
of conflicts of hash values. 25 bit width is enough to ex-
ecute HPEM for about 5K byte text, compared with
PEM.

Data Compression by Hardware PEM (Pattern Extraction Method) Using Multi Processor Elements 219
Table 2 Relation between MAXLENGTH and final compression ratio.
PRG1 (1510 bytes) PRG2 (4712 bytes)
MAXLENGTH| ratio time(sec) #CC max PL mean PL ratio time(sec) #CC max PL mean PL
100 0.430 0.081 50 61 1.5 0.296 0.565 123 42 6.4
50 0.431 0.077 51 50 7.1 0.296 0.481 123 42 6.4
30 0.436 0.073 52 30 6.9 0.298 0.425 123 30 6.0
20 0.434 0.064 53 20 6.3 0.296 0.357 123 20 5.8
10 0.438 0.052 53 10 5.4 0.300 0.269 123 10 5.1

Bit width of hash values=31

Table 3 Relation between bit width of hash values and final compres-

sion ratio.
PRGI (1510 bytes) PRG?2 (4712 bytes)
width | ratio :;lence) #CC conflict| ratio (; e c§ #CC conflict
31 |0.434 0.064 53 0 0.296 0.357 123 0
25 |0.434 0.064 53 0 0.296 0.357 123 0
23 | 0.434 0.064 53 0 0.299 0.360 123 4
21 |0.572 0.032 15 3 0.373 0.246 53 6
19 [0.574 0.033 15 3 0.394 0.217 46 7

MAXLENGTH=20

6.6 Implementation of the PE by VLSI

A PE in Fig. 4 can be composed of about 1000 tran-
sistors, and about 500 PE’s can be installed on one chip
by current VLSI technique [4]. A large scale HPEM
system, composed of several thousands PE’s, can be
made by cascading connections of several PE VLSI
chips.

By the way, the number of transistors for the circuits

in Fig. 5 and 8 is no problem for the HPEM system,
because only one set of these circuits is installed on the
MP.

7. Conclusion

The simulation of HPEM shows that HPEM achieves
similar compression ratio to PEM, and about 600 times
higher speed execution in comparison with PEM ex-
ecuted on a 1 MIPS computer. And the number of tran-
sistors of a PE is considerably smaller so that the
HPEM hardware can be made with current VLSI techni-
que.

References

1. MiyAaGawa, H. and SHIMABARA, H. and IMal, H. The theory of
information and code, p. 266, Iwanami shoten, Tokyo, Japan (1982).
2. Japan UNIVAC, Compress of 1100, p. 32, Japan UNIVAC,
Tokyo, Japan (1983).

3. KawaMura, T. New Data Compression Method by Automatic
Pattern Extraction, Trans. IPS Japan 25, 6 (1984), 1089-1094.

4. Meap, C. and CoNway, L. INTRODUCTION TO VLSI
SYSTEMS, Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts, U.S.A. (1980).

(Received May 7, 1985; revised October 7, 1986)

