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There are many successful methods of representing free-form surfaces. Most of these methods require setting
many control points or boundary conditions in order to generate the surface which the designer wishes. A signifi-
cant advantage of our proposed algorithm is the designer-oriented surface definition that is achieved, also it is
only necessary to refer to the shapes of the boundary curves, usually represented in sketches or drawings, in
order to construct the shape of the objects. Therefore, merely by using the information provided in engineering
drawings, the designer can make composite free-form surfaces.

Our method is basically an extension of the Coons algorithm. Rotation and scaling operations are added to
the Coons algorithm in order to obtain the surface shapes specified by the designer. The algorithm makes it
possible to generate sculptured surfaces and highly-curved surfaces like tori, spheres, cones and so forth under
several conditions which allow the designer to control the interior of the surfaces. The algorithm has been im-
plemented for a CAD/CAM system for plastic molding dies. This system can be successfully applied in making

practical products, e.g., consumer electrical appliances.

1. Introduction

Surface representation techniques have been in-
vestigated by a number of researchers mainly for
developing CAD/CAM systems. Among these are
Coons [2], Ferguson [8], Bezier [1], Riesenfeld [5] etc.
For these techniques, it is assumed that a mesh of con-
trol points or curves has to be digitized from clay
models of the objects which are made by skilled hands,
and that interactive computer graphics systems should
be used to form smooth shapes. These processes,
however, involve a considerable amount of time and re-
quire considerable skill on the part of the designer, as
the final shape must be formed by controlling or mov-
ing points in three-dimensional space. As a result, it is
difficult for the designer to utilize these systems easily
and effectively. In conventional designs, design and
manufacturing information are provided on engineer-
ing drawings and the shapes of the objects are defined
by the boundary curves without using three-dimen-
sional points on the surfaces. In order to reduce the in-
formation on boundary conditions or control points,
some systems [3] offer cross-sectional designs of the ob-
jects by specifying their profiles. These methods,
however, have relatively limited capacity to express
free-form objects.

In this paper, we present an algorithm of a designer-
oriented specification for surface interpolation, which
is mainly based on the information of the boundary
curves. This algorithm can be used by the designer for
his early design stage because it generates surfaces with
large areas. The algorithm is a generalization of the sur-
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face interpolation techniques of Coons, to which it ap-
plies additional operations for rotating and scaling the
boundary curves. The interpolation techniques propos-
ed here were originally developed for and used in anima-
tion [6], [7].

This algorithm has been incorporated into a large
scale computer for the computer aided design and
manufacturing system for plastic molding dies [4].

2. Representation of Coons Surface

Sculptured surfaces in engineering have traditionally
been used in the field of aircraft, ship and automobile
design. They have also been extensively used in the
design of consumer products. Usually in these fields,
the shapes of the objects are determined through the use
of clay or wooden models of the objects. Points on the
models’ surfaces are digitized to construct mesh net-
works by which sculptured surfaces are represented.

One of the earliest and best known methods of sur-
face description for sculptured surface design was in-
troduced by Coons. The Coons patch is expressed in the
following matrix form.

S(u, v)=[bo(u) bu(u)][ 5(0, v) }
S(1, v)
+[S(u,0) S(u, l)l[ bo(v) ]
bl(l))

~[bo(u) bx(u)]l: 5(0,0) 50, 1) ] l: bo(v) J

(1,0 S(1, 1) || 51() @D

where bo(u), bi(u), bo(v) and b, (v) are the blending func-
tions and
bO (0) = 1 )
b,(0)=0,

be(1)=0

=1 2.2)




An Algorithm for Interpolation of Free-Form Surfaces

bo(ll)+b1(u)= 1, bo(0)+ b,(v)= 1.

As shown in Fig. 2.1, it is assumed here that parameters
u and v vary from O to 1 along the relevant boundaries,
and S(u, v), 0<u, v<1, represents the interior of the
surface patch. S(u, 0), S(1, v), S(u, 1) and S(0, v) repre-
sent the four known boundary curves. In order to ob-
tain this expression, Forrest [9] outlined a treatment in
which the sum of the ruled surface was obtained from
linear interpolation between pairs of boundaries.

In order to prepare for our representation, we treat
the Coons algorithm as follows:

Si(u, ©)=[S(u, 0)—5(0, 0)] +5(0, v)
Sa(u, v)=[S(u, 0)—5(1, 0)] +5(1, v)
Ss(u, ©)=[S(u, 1)~ S(0, )] +S(0, v) (2.3)
So(u, v)=[S(u, =51, DI+, v)

Each of these equations expresses the surface which is
interpolated by moving a boundary curve along one of
its adjacent boundary curves. In the first step, S; and S,
are averaged by using the blending functions by(«) and
bi(u), and S; and S, are blended along the u-direction
with bo(v) and b, (). In the second step, the above two
results are blended along the v-direction. The result can
be expressed in the form

S(u, v)="bo(V)[bo(u)S\(u, v)+ b\ (4)S:(u, v)]
+ b1 (@) [bo(u)Ss(u, v)+ b1 (1) Sa(u, v)].  (2.4)

(2.1) can be derived by rearranging each term of (2.4).
Note here that this formulation has symmetry between
u and v, since the blending procedure can be exchanged
between u and v.

3. Representation of highly-curved surfaces

The Coons patch is constructed solely in terms of in-
formation given on its boundary and certain auxiliary
scalar functions of ¥ and ». When a highly-curved sur-
face with a large area is generated, if a curve-network
on the surface is given, the Coons algorithm can con-
struct the surface as an aggregation of the patches, that
is, the shape of the objects has to be composed by a net-
work of topologically rectangular patches.

The designer, however, wishes to deal with the shape

u=0

v=1 1
o=
S(O,v)/ v=1
)
s(1,v)

S(u,())\‘ii

v=0

Fig. 2.1 The Coons surface.
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of the objects by using characteristic curves on engineer-
ing drawings, rather than an aggregation of control
points. A surface representation is therefore introduc-
ed. This representation is suitable for the conventional
design method in which the designer makes no models
to digitize points on the surfaces, and generates large
patches without using information on interior points or
curves of the surfaces.

4. Rotation and scaling operations

4.1 Type 1 Rotation Operation

Surfaces such as tori, cylinder or spheres can be easily
produced by rotating a curve about an axis, but when
the profile is not a circular arc, the above techniques do
not work well. Revolutional surfaces use the informa-
tion on the axis, the central angle and the distance from
the center to the points on the surfaces.

When constructing shapes such as the torus shown in
Fig. 4.1, in which the characteristic curves are drawn by
thick lines, the algorithm is required to generate a
highly-curved shape. If the Coons algorithm is applied
to these curves, it produces an unwanted shape, such as
the one shown in Fig. 4.2. This is because the Coons
algorithm uses linear interpolation.

In order to obtain the shape illustrated in Fig. 4.1, it
is necessary to add movement of rotation along a
characteristic curve (called the guiding curve) to the
Coons algorithm.

If we suppose that S(u, 0) is rotated along S(0, v), and
that aS(u, v)/du and 3S(u, v)/dv are tangent vectors in

rboundary curve

S(u,0) 7
7 7
' : .
i ‘ side view
Loy
=T 1 —
1/s0,vy o )
guiding curve Ll 8uiding curve

top view

S(u,0) boundary curve

Fig. 4.1 Rotating factor.
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Fig. 4.2 Surface resulting from linear interpolation.
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the u- and v-direction respectively, a surface is obtained
by the operation where the boundary curve S(u, 0) is
rotated around an axis N(») (cross product between
35(0, 0)/dv and 3S(0, v)/dv) at a temporary origin S(0,
0) and is displaced to S(0, v). This is expressed as

ni+co-(1—n}) ni-na(l—cg)—nj-se

A. Yanma, H. JonisHl and J. Tsuba

S(u, v)="T,(®)[S(u, 0)— S(0, 0)] +S(0, v) @.1
where
T,(v) is a 3 by 3 matrix and it is obtained as follows
by calculating cos # and sin 8 between the two tangent
vectors.

ni (1 "‘Ce)+ll2'.§'a

meny(1=co)+ny-ss nj+ce(1—n3) ny-ns-(1—co)—n-ss

ny-n(1—ce)—n2-Se
and,
ni(v)
N@)=| n:(v)
ns(v)

ﬂz‘ng'(1—09)+n1'59

m+ce-(1—nd)

=95(0, 0)/dv x 3S(0, v)/dv/ |3S(0, 0)/dv % 3S(0, v)/dv|

co=cos 6(v)=4aS(0, 0)/dv-3S(0, v)/dv/ |3S(0, 0)/3v|135(0, v)/dv|
se=sin 8(v)=aS(0, 0)/dv x 35(0, v)/dv/ |3S(0, 0)/3v||dS(0, v)/dv|

Thus, the matrix T;(v) represents rotation along S(0,
v). We can obtain a total of eight rotation matrices M;
(i=1, 8) by this procedure for every combination of u
and v (see Fig. 4.3). If we write the above matrix M, by
representing 7,(S(0, 0), S(0, v)), we can express the
matrices M; as

M;(v)=T (51, 0), $(1, v)),
M;(0)=T,(S(0, 1), SO, v)),
M,(v)=T(5(1, 1), 81, v)),
M;s(v)=T(S(0, 0), S(u, 0)), 4.2)
Me(v)=T,(S(0, 1), S(u, 1)),
M;(v)=T\(S(1, 0), S(u, 0)),
and

M;(v)=T1(5(1, 1), S(u, 1)).

4.2 Type 2 rotation operation

If the guiding curve is a three-dimensional curve, the
axis of revolution is changed as the parameter « or v pro-
ceeds. It is difficult to visualize the direction of the axis.
If a plane, on which moved curves are fixed, is con-
sidered, we suppose that it is easy to catch the move-
ment of the axis, because two dimensional information
is presented.

Let us provide another type of rotation. Suppose that

§(0,1) S(u,1)

> w6 ()
M8 (u) €—

s(1,1)

M4 (V)
eS(u,v)

s(1,v)

M2(v)

5(0,0) 2 M7 (u) T
-~

s(1,0)

Fig. 4.3 Rotation Matrices.

S(u, 0) is a characteristic curve and S(0, v) and S(1, v)
are the guiding curves. Let us consider a chord vector
Ki(v) (i=1, 2) connecting two points at y=vi on each of
the guiding curves, that is, Ki(v)=S(1, vi)—S(0, vi). A
plane PL;(v) (i=1, 2) is determined by K; and 3S(0, vi)/
dv. The rotation matrix T>(v) is obtained by rotating
K, (v) to K>(v) and then by putting PL,(v) upon PL;(v)
as shown in Fig. 4.4. This is described by

L@)=T,(v) T.(v), 4.3)

where T,(v) is a rotation matrix determined by turn-
ing K,(v) to K,(v) around the cross products K, (v) and
K,(v). T»(v) is a rotation matrix determined by turning
T.-PL, to PL, around K.

If K,=S(1, 0)—S(0, 0) and K>=S(1, v) — S(0, v), T>(v)
is a matrix which rotates S(u, 0) along the guiding curve
S(0, v). Matrix T; can be applied to the same eight com-
binations as 7, denoted by (4.2).

4.3 Scaling operation

Another type of operation is considered here. Sup-
pose that the distance between a pair of the guiding
curves S(0, v) and S(1, v) changes along the v-direction
as depicted in Fig. 4.5. Assuming the boundary curve
S(u, 0) is an arc, we can obtain the same shape as S(u, 0)
at v=wv, on S(0, v) or S(1, v), if the Coons interpolation

st,v) 7

S(u,0) 25(0,v2) /ov

95(0,v1) /v
s(0,v)—7

Fig. 4.4 Rotation Matrix T,(v).
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algorithm is applied to this situation. Using a part of
the Coons algorithm (2.4), S(u, 0)—S(0, 0)+S(0, v)
and S(u, 0)—S(1, 0)+S(1, v,) are blended along the u-
direction. The result is a relatively flat surface com-
pared with the shape of S(u, 0), if the designer intends
to make a part of a cone.

In order to obtain such shapes, the boundary curves
should be enlarged or reduced with the ratio between
the initial chord length |S(0, 0)—S(1, 0)| and the chord
length |80, v1)—S(1, )| at the parameter v=uv,.

If we suppose that the boundary curve S(u, 0) is
displaced along the v-direction as shown in Fig. 4.5, the
scaling ratio r, is determined as

r@=18(0, 0)— 501, v)|/15(0, 0)—S(1, 0)|, (4.4

and this ratio is multiplied to transform the shape of the
curve as follows.

S(u, v)=nr@I[Su, 0)—S(0, 0)] +S(0, v). 4.5)
Similarly we can obtain r»(v) to ri(v) as
ri(v)= 1500, v)—S(1, »)|/ 150, 1)—S(1, 1)|
ry(v)= 1S, 0)—S(x, D|/15(0, 0)—5(0, 1|
ro@)=18(u, 0)— S, 1)1/15(1, 0)=S(1, DI
As shown above, the boundary curves are rotated
and scaled by matrices and ratios. These matrices and

ratios are combined into the following matries for con-
venience of formulation.

R\ (v)=r()M,(v),
Ri(0)=r:(v)M;(v),
Rs(w)=rs(u)M;(u),
R:(w)=r;(u)M:(u),

R:(v)=r@M:(v)

R (0)=ri()Ms(v) (4.6)
Re(u)=rs(u)Mes(u)
Rs(u)=rs(u)Ms(u).

The effects of these matrices are selected by the user
to control the shape of the surfaces. For example, if the
designer does not need to perform any scaling or rota-
tion operations, all of the matrices should be set at a
unit matrix I.

Five types of matrices are provided as follows. In
Type 1 R; is a unit matrix. This becomes equivalent to

S(u,O)-S(O,D)+S(0,v}) $(u,0)-5(1,0)+5(1,v1)

| /

| m/
v=vl

| \/|s(o,v1>-su,1)j
| 7
pe
|
1

v=vl

s(0,v) T

qs(o,o)-su,ml

Fig. 4.5 Scaling Factor.
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the Coons algorithm. Type 2 has a matrix with M;=1,
and then R; is a unit matrix with diagonal values r;.
Type 3 is obtained by substituting r,=1. Type 4 is that
where both are effective and M, is a matrix T,. Type 5
has the same effects as Type 4 except that M; is a matrix
T.

5. Direction of the Interpolation

If the designer, however, wishes to obtain surfaces
which are expressed by moving the boundary curves
along one of the u- or v-directions, the direction of inter-
polation should be restricted in the formulation of the
interpolation.

In order to represent the restriction of the rotation
and scaling factor specified by the designer, we can
change the values of the matrices for this purpose. As
mentioned in section 2, the Coons equation implies step-
wise averaging. Therefore, our algorithm allows the
designer to define stepwise blending in each u- or v-direc-
tion by taking some parts of the surface equation terms.
Four methods to select the direction are provided as
shown in Fig. 5.1.

The combinations for the direction of interpolation
(mode) and the type of interpolation (type) are shown
in Table 1. The reason some combinations are pro-

s(0,0)
5(0,0)

s(0,v)

5(1,v)

5(0,0)

§(u,0)

5(1,0)
Mode 3 Mode 4

Fig. 5.1 Direction of Interpolation.

Table 1 Combinations of Type and Mode.

MODE
1 2 3 4
1 linear Yes Yes Yes Yes
2 ratio No Yes Yes Yes
TYPE 3 rot 1l Yes Yes Yes Yes
4 ratio No Yes Yes Yes
+ rot 1
5 ratio No Yes Yes Yes
+ rot 2
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hibited in Table 1 is that the ratios and the 7; type rota- amples of the combination for the type and the mode
tion matrix require a pair of guiding curves. Some ex- are shown in Fig. 5.2.
G.C.
5(0,v)
B.C

S(u,0)

Fig. 5.2a Example: Mode 1 Type 3. G.C.: Guiding Curve, B.C.:
Boundary Curve.

B
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\,lﬁ G.C.
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0,005

: B.C Zidstaggurrresnpag
S(u,0) S(u,0) %ﬁg?ﬁin’lm
. i .vx!xm‘ SR
s(1,v)

Fig. 5.2b Example: Mode 3 Type 2.

6. The algorithm of the interpolation

The effects of the rotation and scaling operations are
expressed by matrix multiplication to (2.3). Since the in-
terpolation is performed for the four boundary curves
along the two guiding curves which connect both end
points of each boundary curve, the following eight sur-
face equations are considered.

Si(u, )=R\(9)[S(u, 0)— S(0, 0)]+S(0, v),

Sa(u, 9) =R, (@)[Su, 0)—S(, 0)] + S(1, o), Fig. 5.2¢ Example: Mode 2 Type 4.

Si(u, ©)=R;3(v)[S(u, 1)—5(0, 1)]+5(0, v),

S, =R, D=5, DI+S01,v),  (6.1) Ss(a, )=RewISU, 9) =51, DI+Sw, 1),

Ss(u, v)=Rs(w)[S(0, v)— S(0, 0)] + S(u, 0), and these eight surfaces are blended along the - or v-

_ direction. Two different surfaces are obtained along
Se(u, ©)=Ro()[S(0, v) = 5(0, D] +S(u, 1), each direction and these two surfaces are averaged as
S7(u, v)=R,(W)[S(1, v)—S(1, 0)] + S(u, 0), follows.

S(u, v)=1/2[bo(v)[bo(u)S) (1, v) + b1 ()S2(u, V)] + b1 (V) [o()Ss(u, v)+ by (w)Ss(u, V)]] (6.2)
+1/2[bo(w)[bo(v)Ss(u, v)+ by (v)Ss(u, )] + b1 (1) [bo(2)S7 (u, v) + by (v)Ss(u, V)]
This expression is conveniently written by the matrix form

S(u, v)=[bo(u) b,(u][ Ai(v) As(v) :] [ S,0) 0 :l [ bo(v)
Ay(v) Aqy(v) 0 S, 1) [ b

+ [bo(u) bl(“)][ §0,v) 0 ] I:As(u) Ae(u) ] [ bo(v) ]

0 SU,0) || Arw) As(w) || bio) (6.3)




An Algorithm for Interpolation of Free-Form Surfaces

79

— [bo(w) bu(u)][ Ci(u, v)5(0, 0) G5(u, v)S(0, 1) J [ bo(v) :l

Cy(u, 1)8(1, 0) Ca(u, 9)S(1, 1)

where

Aiw)=[I+R,®)]/2
Ai()=[I+R;w)]/2

bi(v)

(1=1,2,3,4)
(i=5,6,7,8)

Ci(u, )=[R,(»)+Rsw)]/2
Co(u, v)=[R,(»)+ R:(u)}/2
Cs(u, v)=[R;3(v)+ Re()]/2
Ci(u, v)=[R4(v) + Re(w)]/2.

By substituting A;=1 and C;=1 into (6.3), the Coons
algorithm (2.1) can be obtained. The mode is deter-
mined as follows. Mode 1 is S;(&, v) in (6.1). Mode 2 is
the first term with S; and S; in (6.2). The first line in
(6.2) is taken for Mode 3. In the case of Mode 3, the
equation is expressed by substituting

A;(v)=R.(v) (i=1,2,3,4),
Aw)y=1 (i=5,6,7,8),
and
Ci(u,v)=R;(v) (i=1,2,3,4)
into (6.3).

7. Implementation

The algorithm has been incorporated into a CAD/
CAM system for plastic molding dies on a HITAC M-
680H large scale computer running a VOS3 operating
system. The display system is a Ramtek 9400 and a
Tektronix 4114 graphics display.

The system as implemented allows the boundary
curves and surfaces to be described by a special purpose
language which is similar to APT, and also allows
perspective views to be displayed on the screen while
calculating cutter paths for numerical control (NC)
machines.

Fig. 7.1 shows a perspective view of the characteristic
curves of an actual consumer product. The surfaces are

Fig. 7.1 Characteristic Curves.

generated as shown in Fig. 7.2. There are 46 surfaces in
the Figure and the two large surfaces on the side are in-
terpolated by Type 2 rotation and scaling operation.
Fig. 7.3 shows generated cutter paths which are
calculated in 200 sec. on the HITAC M-680H com-
puter.

The parameter assignment is based on chord-length
parametrization. The algorithm allows the shape of the
boundary curves to be composed of several curve
elements, e.g. like line segments, circular arcs or spline
curves. To preserve the knots between the elements of
the two curves, which are the characteristic points on
the curves, the chord-length parametrization is carried
out for each side of a surface before the parameters of

1\ 1k

Fig. 7.2 Generated Surfaces.

.
.

= JL’.‘?I

i fr. I
”l ».',',“"J’{'A‘]'j‘m) i f!/""l,"il' j 1

Fig. 7.3 Generated Cutter Path.
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both sides are averaged at the corresponding
characteristic points on the curves. The choice of
parametrization is left to the designer, who can chose to
assign either uniform or non-uniform parameter values
to the characteristic points in the u, v direction.

It is necessary to generate tangent vectors on surfaces
when calculating cutter paths or color shaded pictures.
It is difficult to obtain analytic derivatives easily from
the surface equations. The gradients are calculated
numerically using the points on the surface.

8. Conclusion

A designer-oriented surface representation method
has been developed and implemented. This method is
achieved by a generalization of the Coons interpolation
technique and the representation of the effects for
rotating and scaling boundary curves in the algorithm.
Several different surface shapes can be generated in ac-
cordance with the designer’s specifications, since the
choice of the rotating and scaling operations and the in-
terpolation direction is left to the designer. This techni-
que allows relatively complex surfaces to be generated
by using characteristic curves on sketches or drawings
which are usually specified by the designer. This method
has been successfully applied in the production of prac-
tical consumer electrical appliances.
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