Invited Paper

A Data Flow Machine Architecture for
Highly Parallel Symbol Manipulations

MAKOTO AMAMIYA, RYuzo HASEGAWA, MASARU TAKESUE and HIROHIDE MIKAMI

The data flow architecture has good features as a basis for highly parallel symbol manipulation machine. We
have proposed an architecture of list-processing-oriented data flow machine, called DFM, and built a prototype
machine.

This paper reports the implementation and evaluation of the DFM architecture. First, the paper clarifies the
parallel and pipeline executions structure inherent in list processing written in a functional language. Then, the
paper offers the DFM architecture which exploits the parallelism inherent in the list processing. And last, evalua-
tion of DFM architecture is shown through the prototype machine implementation and register transfer level
simulation of the DFM.

It is pointed out that the data flow machine is very effective for implementing the parallel and pipeline execu-
tions in list processing. The data flow machine can fully exploit the parallelism inherent in list processing, due to
the ultra-multi-processing mechanism, packet communications-based parallel and pipeline executions

mechanism, and lenient cons mechanism for non-strict structure data manipulation.

1. Introduction

A new machine architecture which achieves high per-
formance in symbol manipulations is required in order
to realize advanced Al systems [1, 2]. This new architec-
ture must satisfy the following requirements: First,
parallelism inherent in problems, especially the
parallelism in symbol manipulations, must be exploited
to achieve high performance; second, functional
language, which is essential to improving software pro-
ductivity for complex systems such as Al systems,
should be executed efficiently; third, it should be rela-
tively easy to implement a distributed control
mechanism and thus make use of a large number of
VLSI devices.

Data flow architecture [3] is very attractive for
meeting these requirements, and researches are pursued
in the United States [4, 5], in Europe [6] and in Japan
[7-11]. Parallel list processing using the lenient cons
concept has been proposed along with the data flow
machine architecture needed to support such process-
ing, and several issues concerning the architecture have
already been discussed [11-15].

The list-processing-oriented data flow machine can ex-
ploit the parallelism inherent in list processing in the
following ways:

(1) The data driven control mechanism realizes
ultra-multi-processing facility, which allows thousands
of processes to be executed concurrently.

(2) The packet communications mechanism enables

NTT Software Laboratories 3-9-11 Midoricho, Musashino-shi,
Tokyo 180, Japan

Journal of Information Processing, Vol. 10, No. 4, 1987

parallel and pipeline executions among multiple pro-
Cessors.

(3) The lenient cons mechanism, which implements
the non-strict operation of structure data such as list
and array, enables the parallelism to be fully exploited.
The data flow machine also effectively exploits
parallelism in functional programs, which have a high
degree of recursion [14].

First, this paper discusses the parallel and pipeline
computation structures in functional programs and list
processing, by classifying the evaluation structures into
tree-structured evaluation and linear evaluation. Then,
the data flow machine architecture, which exploits the
parallelism inherent in these computation structure is
proposed. The data flow machine is called DFM. And
last, the evaluation of the DFM architecture is shown
through the prototype DFM machine implementation
and register transfer level simulation of the DFM ar-
chitecture. The DFM has attractive features from the
view point of high performance list processing: (1) It
offers a mechanism for exploiting both function-level
and instruction-level parallelism. This fine and medium
grain parallelism is essential to obtain highly parallel
and pipeline executions in symbol manipulation. (2)
The structure memory incorporates list processing
operations which employ lenient and lazy cons
mechanisms. These high level operations incorporated
within the structure memory enable the highly parallel
and pipelined operations between structure memories
and processing elements.

228

2. Parallelism in List Processing

Parallel computation structures in list processing writ-
ten in functional languages are discussed in this section.

2.1 Parallelism in Functional Programs

Parallelism can be achieved on the function activa-
tion level in two ways; parallel evaluation of function
arguments and eager evaluation of the function body.

(1) Parallel evaluation of function arguments

In the function application fle, e, .. .,es), all
arguments e, .. .e, are evaluated in parallel. The
parallel evaluation of arguments induces a high degree
of parallelism, because the functional program has a
deeply nested function application structure.

(2) Eager evaluation of function body

The execution of a function is initiated when one of
the arguments of the function is evaluated, and the
evaluation of the caller function resumes its execution
when one of the return values is obtained during the ex-
ecution of the applied function. This eager evaluation
scheme, in combination with the parallel evaluation of
arguments, enables concurrent computation between
caller and callee functions, thus inducing a greater
degree of parallelism.

2.2 Recursive Computation and Parallelism

Parallelism is closely related to the recursive computa-
tion structure of functional programs. These recursive
structures can be classified into either tree structure or
linear structure, and parallel computation can be ex-
ploited for both computation structures.

(1) Tree-structured evaluation and parallel computa-
tion
A typical example of tree-structured evaluation is the
divide-and-conquer algorithm. In divide-and-conquer
computation, multiple function activations are carried
out for evenly divided sub-problems. The following is
an example of a divide-and-conquer algorithm.

function solve (problem)
=construct (r,, ry, . . .)
where {(prob,, prob,, . . . , prob,)
=divide (problem),
ri=solve (prob,),
r,=solve (prob,),

r.=solve (prob,)}

In this scheme, the function divide generates n equal-
sized sub-problems prob,, ..., prob,, and the func-
tion construct creates a final result from the partial
results ri, 7, . . ., r.. A high degree of parallelism ex-

M. AMaMIYA, R. HASEGAWA, M. TAKESUE and H. MIKAMI

problem

probl12 prob21

Fig. 1 Tree-structured Computation Scheme.

ists in this scheme since multiple instances of the solve
function are activated at each recursion level. This com-
putation structure is shown in Fig. 1.

Merge-sort, quick-sort, and various recursive doubl-
ing computations using the divide-and-conquer method
have this computation structure. OR-parallel evalua-
tion of logic programming languages also falls into this
category [16].

(2) Linear evaluation and pipeline computation
Linear evaluation occurs in linear recursion. The
following is an example of linear evaluation.

function solve (problem)
=construct (res, res)
where {(firstprob, restprob)=split (problem),
res;=solve 1 (firstprob),

res;=solve (restprob)}

In this scheme, the function split divides the problem
into the first sub-problem (firstprob) and the rest of the
sub-problems (restprob). Firstprob is solved directly by
the function so/ve 1, while the evaluation of restprob is
carried on recursively with the function solve.

Multiple instances of solve 1 are activated succes-
sively and executed in parallel for the split sub-pro-
blems. If the construct operation is non-strict, a greater
degree of parallelism will be possible due to the highly
concurrent computation, i.e., a stream-oriented com-
putation scheme, in which partial results are created
and returned before result res, is obtained from solve
(restprob). This computation structure is shown in Fig.

A Data flow Machine Architecture for Highly Parallel Symbl Manipulations 229

2.
It should be noted that the following tail-recursive
scheme is a practical version of linear evaluation.

function solve (problem, pares)
=solve (restprob, res)
where {(firstprob, restprob)=divide 1 (problem),
reso=solve 1 (firstprob),
re;=attach (pares, resy)}

The bubble-sort program and various set manipula-
tion programs have this computation structure. AND-
stream evaluation of logic programming languages also
falls into this category [16].

2.3 Data Structures and Parallel Computation

In list processing, the evaluation structure is closely
related to the list’s data structure. Since the list’s data
structure is defined recursively, and the function is ap-
plied to this data structure, the function can be
evaluated recursively thus reflecting the data structure.
This scheme is described as follows,

SUhED)=1/)f(B)

where [/,./;] represents a cons list, i.e.,
head ([1112])=1| and tail ([1].[2])-_—12.

probles

restprobl

restprob2

firstprob2 J/

solvel
firstprobd

solvel @

firstprobl
\

restprobd

Fig. 2 Linear Computation Scheme.

In this example, the results of function applications
f(l)) and f(I;) are constructed to a final value [f(/)).f()].
If /, and /, are equal sized lists and the recursive func-
tion is applied to each list element, the resulting evalua-
tion will be a tree-structured evaluation. If /, is an atom
and /, is a list, i.e., [/,./2] is a linear list, then the func-
tion applied to each list element (e.g., apply-all or map-
car) can be described as a linear recursive structure,

Sflay @, . . . a)=f(ar.[axl. . .[a..[T]]D
= [fil@).f(a..[. . .la..[11D)]
= [N(a).[f(@) f(as.[. . .[an.[1IDI]

=[fila), fi@2), . . . filan)],
where f'is defined as f([a./])=[fi(@).f(/)] and f([D=[].

If a non-strict cons operation is introduced, fi(a)), . . .
fi(a,) can be carried out as a stream, and highly concur-
rent execution is obtained between the producer and
consumer functions. Such producer and consumer con-
currency is depicted in the following,

g(f(a, @, . . . a]))=g(f([as.[a2[. . .[a,.[1]I))
= [gi(fi@).g(f([az.[. . .[a..[11D
=[&i(fi(@)).[&:1(fi(@).e(flas.1. - -[a..[11INI]
=[a1(/i@)), &(fil@)), . . . &i(filan)]

=lei, e . . . 61l
where f and g are defined as

Sa.D=1f@f()] and F([D=I],
g((b.1D=[g:1(d)-g(D) and g([D=T].

In this example, list A(=|[ay, . . . a,)) is transformed
to list C(=[cy, . . . c4]) by functions f and g. The func-
tion f generates an intermediate result f(4)(=[fi(a)),
fi(ar), . . . fi(@,)]), and the function g consumes the
result to generate the final result C. In this computa-
tion, partial results from the producer f are passed to
the consumer g, and f and g are executed concurrently.

2.4 Data Flow Computation and Lenient Cons Con-
cept

All parallel computation structures discussed above
are maximally exploited by data flow computation and
lenient cons mechanisms. In addition to parallelism on
the primitive operation level, data flow computation
can extract parallelism on the function application
level, since it enables parallel evaluation of function
arguments and eager evaluation of the function body.

The lenient cons mechanism, by which a non-strict
cons operation is implemented in the data flow computa-
tion framework, extracts the maximal parallelism in list
processing. Configurations of the parallel and pipeline
computations on list data structures are depicted in Fig.
3. For more detailed discussions, see [11, 12, 13, 17].

230

2.5 Examples

Typical examples for parallel and pipeline executions
are depicted in the following. The programs are written
in Valid [15, 18].

(1) Tree-structured evaluation
A typical example is the well known Quick-sort pro-
gram.

function sort(x) yield (/ist)
=if null(x) then []
else append(sort(y1), append(y2, sort(y3)))
where {y=head(x),
(1, y2, y3)=partition(tail(x),y)}.
function partition(x, y) yield(/ist, list, list)
=if null(x) then ([], [¥], [D
else case
{x1=y - (wl, [x1.w2], w3),
x1 <y = ([x1.wl1], w2, w3),
x1 >y = (w1, w2, [x1.w3])}
where {(w\, w2, w3)=partition(y1, y),
(x1, yl)=(head(x), tai(x))}
function append(x, y) yield(list)
=if null(x) then y

Consumer

g(f(1))
N

Consumers

(a) Tree - structured Evaluation
(Parallel Computation)

M. AMAMIYA, R. HASEGAWA, M. TAKESUE and H. MIKAMI

else [head(x).append(tail(x), y)].

In this program, the function partition in sort body
divides a list into three lists, y1, y2, y3, each of which
contains elements less than, equal to, and greater than
the first element. As the sort and append are activated
immediately after each of y1, 2, y3 is generated, it is ex-
pected that the maximal parallelism among functions is
obtained. However, parallelism by partial execution of
function body does not work well for reducing the ex-
ecution time in the order, since the time spent to sort the
list of length n is proportional to the square of n in the
worst case. The reason is that since each of the values
»y1, y2, and y3 is not returned until the append opera-
tion is completed in the partition body, the execution of
the sort function, which uses those values, must wait un-
til they are returned, the waiting time is proportional to
the length of the list data made by the append function.

If the former parts of the list, which are partially
generated, are returned in advance during the period
when the latter parts are appended, the execution which
uses the former parts of the list can proceed. Thus the
producer and consumer operations overlap each other.
As the append is the repeated application of cons, as the
prorgam shows, this problem can be solved by the le-
nient cons mechanism.

As the result, the quick-sort program can sort a list in
linear time, if sufficient processing elements are pro-

Consumer

Producer

Producer

gr

(b) Linear Evaluation |
(Pipeline Computation)

Fig. 3 Parallel and Pipeline Executions on List Data.

-t

A Data flow Machine Architecture for Highly Parallel Symbl Manipulations

vided.

(2) Linear evaluation

Typical examples are set manipulations such as
union, intersection, deletion and complement, and list
compactions in which the duplicated list elements are
filtered out. It should be noted that the set is
represented as linear list.

function union(u, v) yield(ser)
=if null(u) then v
else if member(y,v) then x else {y-x]
where {x=union(tail(u), v),
y=head(u)}.
function member(e, v) yield(Boolean)
=if null(v) then false
elsif e=head(v) then true

else member(e, tail(v)).

The computation structure of the union program is
depicted in Fig. 4. The union function checks whether
the head of u, which is denoted by y, is a member of the
set v. At the same time, the union function is applied
recursively to the rest of u. Since the invocation of the
union function is carried on in concurrent with the ex-
ecution of the member function, executions of union
and member overlap each other. By using the lenient
cons mechanism, partially calculated union set is re-
turned immediately after the execution of member func-
tion is terminated in the deepest recursion phase of
member function. Thus, due to the lenient cons
mechanism and concurrent execution between union
and member functions, union of two sets, which would
consume square time unless the lenient cons is used, can
be obtained in linear time.

Another example is the list compaction, in which the
effect of the lenient cons and stream processing scheme
is more intuitive. The list compaction program is de-
scribed in the following.

function compaction(u) yield(set)
=if null(u) then []

Fig. 4 Parallel Computation Structure of Union Program.

231

else [head(u).compaction(y)]
where { y=remove(head(u), tail(u))}.
function remove(e, v) yield(/ist)
=case {null(v) =[],
e=head(v) — remove(e, tail(v)),
others — [head(v).remove(e, tail(v))]}.

The computation structure of the compaction pro-
gram is depicted in Fig. 5. The well known prime
number sequence calculation by Eratosthenes’s sieve
method has essentially the same computation structure
[12].

3. Machine Architecture and its Implementation

3.1 Issues in Parallel List Processing

Several problems remain to be solved in the develop-
ment of parallel list processing machines. These in-
clude:

(1) Ultra-multi-processing: Processors must have
an ultra-multi-processing facility, in which thousands
of processes can be executed simultaneously. In parallel
list processing, the medium and fine grain process con-
currencies should be implemented effciently within a
processor, since a large number of function instances
are created dynamically. These instances are treated as
concurrent processes.

(2) Load balancing: In multi-processor systems
which support ultra-multi-processing, the dynamically
created processes should be allocated evenly to each pro-
cessor, to obtain load balance among processors.
Dynamic process allocation control is essential in order
to achieve load balance during execution.

(3) Inter-processor communications: Another pro-
blem is how to reduce the interprocessor communica-
tions overhead, because communications among
processes (function instances) assigned to different
processors is essential in function linkage. One way to
eliminate this overhead is to make process-processor
assignments in such a way as to reduce inter-processor
communications. Another is to make the inter-pro-
cessor data transfer overlap the intra-processor execu-
tion.

Fig. 5 Parallel Computation Structure of Compaction Program.

232

(4) Memory access latency: Multi-processor
systems must have a common memory if they handle
dynamic data structures. Such multi-processor systems
with shared memory have a memory access latency
caused by memory access contention. This latency is
much more serious in systems with high level memory
operations such as in list processing, since the latency
adversely effects the performance of linear list travers-
ing.

3.2 Design Philosophy and Basic Architecture

Packet-communications-based pipeline systems can
be used to solve the problems of ultra-multi-processing
(e.g., process switching overhead), memory access laten-
¢y, and interprocessor communications overhead. The
data driven control mechanism makes it easier to design
such packet-communication-based pipeline systems,
i.e., a single pipeline within a processor and multiple
pipelines between processors and memories.

There are, however, problems which remain unsolved
in designing data flow machines. These are: (1)how to
implement history-sensitive operations such as [/O and
memory read-write operations, (2)how to handle struc-
ture data effectively, and (3)how to reduce the hardware
implementation costs, especially in operand matching
memory implementation.

The list-processing-oriented data flow machine,
called DFM was designed as a solution to the problem
of parallel list processing and data flow machine im-
plementation. The DFM design philosophy is as
follows:

(1) The DFM exploits parallelism on both the func-
tion application level and instruction level. Function
level parallelism is extracted through parallel execution
among multiple processors, while instruction level
parallelism is extracted through pipeline execution
among hardware modules in a processor and memory.

(2) The cost of implementing an operand matching
memory is reduced by extracting a computational local-
ity. In the DFM architecture, each instance of a func-
tion is treated as a local context for evaluation, and the
operand matching memory is designed on the basis of
the semi-content-addressable memory concept which
makes use of the local context. The operand matching
memory is constructed with a number of content ad-
dressable memory (CAM) blocks. The name of the ac-
tivated function (instance name) is used as the address
of its CAM block, and the instruction identifier (ad-
dress) in a function body is used as an access key for
operand matching in the CAM block. The CAM block
consits of only 32 words, and thus the CAM block is
built in low cost using off-the-shelf devices.

(3) List operations (e.g., Lisp’s primitive functions)
are treated as structure memory (SM) access operations,
and they are executed within SM. The SM is one of the
hardware modules in a function unit, and is designed to
execute instructions issued from processor (PE).
Pipelining between the PE and SM would solve the

M. AMAMIYA, R. HASEGAWA, M. TAKESUE and H. Mikami

memory access latency problem. The SM is also divided
into multiple banks which can be accessed from any
PE, thus reducing memory access contention by
distributing the access demand.

(4) Work load information of a processor is given
as a combination of the number of activated functions
and the number of packets circulating in the processor
pipeline. These work load factors can easily be
measured by counting the number of activated in-
stances and the number of token packets circulating in
the pipeline.

The architecture of the DFM is shown in Fig. 6. PEs
(Processing Elements) are data flow processors each of
which is implemented as a circular pipeline consisting of
a single IM (Instruction Memory Unit), OM (Operand
Matching Memory Unit) and FU (Function Unit). SMs
(Structure Memories) store list data and execute list
operations. PEs and SMs are connected through a
multi-stage packet switching network.

The highly parallel and pipeline execution described
in Section 2 is thus implemented effectively by the DFM
architecture, in which the parallel and pipeline execu-
tions are carried on among numerous circular pipeline
processors and structure memories.

The prototype DFM machine was designed and built
for the purpose of detailing and evaluating the DFM ar-
chitecture. The machine configuration is shown in Fig.
7. In the practical implementation, common buses are
used instead of a multistage packet switching network.
A CCU (Cluster Control Unit) is also introduced which
provides dynamic process allocation and functions as a
host machine interface. For more precise information
of prototype DFM hardware implementation, see [17].

4. Evaluation of DFM Architecture

The prototype DFM hardware and its RTL (Register
Transfer Level) simulator are used for complementary
evaluation of the DFM architecture. The former offers
absolute performance data, while the latter simulates
the multiple PE-SM system on the register transfer
level.

4.1 Benchmark Programs

Performance of the DFM architecture was evaluated
using several list processing benchmark programs. The
times needed to execute the programs were measured
and compared with that of conventional machines. Ben-
chmark programs were written in Valid. Those Valid
programs are compiled into the DFM machine code by
Valid compiler [18]. Same programs were also written
in Lisp, and their compiled codes were executed on con-
ventional machines (e.g., VAX-11/750 and DEC-2060).

The benchmark programs used for evaluation are:
(a) tree-evaluation type: sigma, merge-sort,

quick-sort.
(b) linear-evaluation type: bubble-sort, sieve, union,
list-compaction.

A Data flow Machine Architecture for Highly Parallel Symbl Manipulations

233

Inter-PE Communication Network

PE:Data Driven
Processing Element

Vo4t

IM : Instruction Memory
OM : Operand Memory

I

/ \ FU: Function Unit
PE1 PE 2 -l PEm L — — o SM:Structure Memory
\\ // I fiList Opersator
l T LT ~ \l _t_ - : cells:data cells
Result Networlk l i
I S 1
Instruction Networlk I IM > OM
2] ¥ T
- oo o -0 -
LcellsJ l cells] cells - yy
SM1 SM2 SMn Y

Fig. 6 DFM Architecture.

CCU : Cluster Control

SM17

l

- G¢

l ccu l Cluster
¢
I I I Bus1
/ = = Ay
o ha
PEO || PE1 \| PET |}
\ /
l +~ l . \‘t:h‘/
Bus2
Bus3

Bus

Unit
I PE:Data Driven
Pr ing Element

P Host IM : [nstruction Memory
r 1 |wvax
{ Cluster ! ¢ OM: Operand Memory

sep T 11750 | FU: Function Unit

| App— Y

SM : Structure Memory

............ -
i PE
IM P> OM
Jil v
l FU
X +
Busl ‘L
Bus2 =
Bus3 =

Fig. 7 DFM Prototype Machine.

(c) mixture of (a) and (b): parse.

The sigma program, which calculates summation of
integers from 1 to n by the divide-and-conquer method,
is adopted as a typical example of the well known recur-
sive doubling computation structure. It should also be
noted that set manipulation programs such as intersec-
tion, deletion, and complement have the same linear-
evaluation structure as the union program. The compac-
tion program eliminates duplicated list elements. The
sieve program calculates prime numbers using
Eratosthen’s sieve method. The parse program is a syn-
tax analyzer for simple arithmetic expressions.

All programs are composed of relatively small recur-
sive function bodies, and 40-50% of the instructions in
their compiled codes are related to function linkage.
List operation instructions amount to about 10%. The
program code size of the lenient cons version is 10-20%
larger than that of the conventional cons version.

Almost all the remaining instructions are switch and
gate operations.

4.2 Performance of Single PE-SM System

The performance of a single PE-SM system was
measured on the prototype DFM machine and the result
was compared with that of conventional machines.
Some of the result data are shown in Table 1.

Compared with the performance of list processing by
conventional machines, the single PE-SM system is 5 to
7 times faster than the VAX11/750 and half as fast as
the DEC-2060. These results demonstrate that the cir-
cular pipeline mechanism of the data flow processor is
effective in achieving ultra-multi-processing and low
memory access latency.

4.3 Performance of Multi-PE and Multi-SM System
The most important factor in the performance of

234

Table 1 Performance of Single PE-SM System

M. AMAMIYA, R. HASEGAWA, M. TAKESUE and H. MikaMi

DFM V/DEM M/DFM

program v M T T T

(usec) (psec) Clusec) L(usec) v/C v/iL M/C M/L
bsort (60) 776,860 88,200 121,188 79,147 6.41 8.00 0.73 0.91
msort (60) 196,833 11,233 21,671 29,932 7.11 6.58 0.41 0.38
‘}‘;‘S’t" (60) 214,800 12,500 26,435 29,678 8.13 7.24 0.47 0.42
union

) 1 4 48

(40, 40) 509,223 21,923 45,667 45,948 1.2 1 0.48 0
compact .08 4.26 0.18 0.25
GO A 25,823 1,530 8,376 6,064 3
fgo")“l’;“ 415,133 54,710 118,717 87,820 3.50 4.73 0.46 0.62
arith 29,193 2,118 4,469 4,820 6.53 6.06 0.47 0.44

V: VAXLISP(on VAX 11/750)
M: MACLISP(on DEC 2060)
C: Conventional cons

L: Lenient cons

multiple PEs multiple SMs systems is the linear speed-
up ratio which is related to the number of PEs and SMs.
This is given by the coefficient « in p = a*m, where m
is the number of PEs or SMs, and p is the performance
normalized with m = 1. The same programs examined
on the single PE-SM system are also examined on the
RTL simulator to evaluate the linear speed-up in multi-
PE-SM systems.

(1) Linear speed-up in tree-structured evaluation

The effect of divide-and-conquer computation on
linear speed-up is shown in Fig. 8. The divide-and-con-
quer program sigma(n) yields a linear speed-up of « = 0.87
for m < 32 in the case of n = 1024. This data shows
good linearity, since the theoretical upper limit on « is
0.92 for n = 1024 and m = 32.

The linear speed-up in list processing is not explicit
for tree-structured evaluation (Fig. 9(a)). The reason is
that there was not enough data volume to determine the

PERFORHMANCE

104 (TP./TR)
TP;: Throughput of 1+ PEs System ok

SIGMA (Network)

O n=128
X n=256
A n=512
O n=1024
+ estimated perfocmance .-

(n=1024) -8

20

1 i 8 16 24 32 PEs

Fig. 8 Performance of Multi-PE-SM system (Sigma Program).

system performance, because of the capacity of the
simulator. When n = 60, which is the upper limit of the
simulation’s capacity, there is too little data in the
simulation for the multi-PE-SM system to take advan-
tage of the pipeline effect for quick-sort and merge-sort
programs. If a larger size of data is fed into the system,
the linear speed-up will be more explicit.

(2) Linear speed-up in linear evaluation

Linear speed-up is typically achieved in linear evalua-
tions as shown in Fig. 9(b). This demonstrates that
ultra-multi-processing and memory access latency pro-
blems in multiprocessor systems can be solved by the
DFM architecture. In the union program, which has
less data dependency, linear speed-up can be achieved
both for conventional and lenient cons due to the con-
current computation among processes. On the other
hand, for bubble-sort and compaction programs which
have data dependency, the effect of lenient cons on
linear speed-up is remarkable. In list-compaction pro-
grams, parallelism is determined by the nature of the in-
put data. Case(A), in which all 60 list elements are
different, has a parallelism of degree 60, while case(B),
in which only four different elements are duplicated,
has a parallelism of degree four.

A linear speed-up of a=0.7 ~ 0.9 was achieved for all
of the benchmark programs.

(3) Linear speed-up for mixed evaluation

The lenient cons effect is also remarkable for mixed
evaluation. The parse program achieved a linear speed-
up of a~0.6 in the lenient cons case. If a larger size of
data is put into the system, o will also increase, as in the
case of tree-structured evaluation.

§. Conclusions

Highly parallel and pipeline computation structures

A Data flow Machine Architecture for Highly Parallel Symbl Manipulations 235

PERFORMANCE

80 1 (TPn/TPD)
TPi: Throughput of i PEs and i SMs System

O BSORT(60)
X MSORT(60)
[0 QSORT(60)

4.0 H+

—— Lenientcons
----- Conventional cons

T T T T T T T T

1 2 4 8 PEs

Fig. 9(a) Performance of Multi-PE-SM System.

were discussed for the structured data such as the list.
The computation structures were classified into tree-
structured evaluation and linear evaluation. Then, it
was shown that parallel and pipeline executions could
be fully exploited by using data flow computing scheme
with lenient cons concept i.e., divide-conquer execution
for tree-structured evaluation and stream-oriented com-
putation for linear evaluation.

The data flow architecture, which exploits the parallel
and pipeline computation structures inherent in func-
tional programs applied for list processing, was also pro-
posed and issues for its practical implementation was de-
scribed.

The data flow prototype machine, called DFM, has
been implemented, and DFM performance was
evaluated in a simulation of the register transfer level us-
ing several benchmark programs [17]. The DFM single
processor system was shown to be several times faster
than conventional sequential machines which use the
same device technology, and a multi-processor DFM
system was shown to achieve a linear speed-up ratio of
0.6~0.9.

The Valid compiler has been developed, and Valid
source programs are compiled into DFM machine code
and executed on the DFM prototype machine
automatically. Currently, various benchmark programs
are written and tested on the DFM machine.

Next step of the research is:

(1) to build a DFM prototype II system, which will
be constructed with hundreds of PEs and SMs, using
VLSI chips, and

(2) to develop a coordinated computation system, a
parallel-based object-oriented programming paradigm,
on the basis of the Valid language system and the DFM
machine architecture. The parallel-based object-
oriented programming is a solution to the history sen-
sitivity problem in functional programming.

PERFORMANCE

80 9 (rPa/TPD
TPi: Throughputof i PEsand i SMs System

O UNION(40,40)
X COMPACT(60) CASE A
O PARSE

4.0
20
10 OO X-
—— Lenientcons
----- Conventional cons
1 2 4 8 PEs
Fig. 9(b) Performance of Multi-PE-SM System
Acknowledgement

The authors wish to thank Mr. T. Naruse and Mr. M.
Yoshida, for their efforts in implementing the DFM pro-
totype machine.

References

1. T.Morto-0KA ed., Fifth Generation Computer Systems: Proc. In-
ternational Conference on Fifth Generation Computer Systems,
North-Holland (1981).

2. B. W. Wah, ed, New Computer Architectures for Artificial In-
telligence Processing, JEEE Computer, 20, 1 (1987).

3. J. B. DENNIS. A Preliminary Architecture for a Basic Data Flow
Processor, The Second Annual Symposium on Computer Architec-
ture, IEEE, pp. 126-132 (1975).

4. ArviND, K. P, GosTELow and W. PLOUFFE. An Asynchronous
Programming Language and Computing Machine Report TR 114a,
Department of Information and Computer Science, University of
California, Irvine, California, December, (1978).

5. R.M.KELLER, G. Lindstrom and S. PATIL, An Architecture for a
Loosely-Coupled Parallel Processor, UUCS-78-105, University of
Utah, Salt Lake City, Utah, 1978.

6. 1. WaTsoN and J. GURD, A Prototype Data Flow Computer with
Token Labeling, Proc. of NCC, AFIPS (1979) 623-628.

7. N. TakAHASH! and M. AMAMiYA. A Data Flow Processor Array
System: Design and Analysis, Proc. 10th Ann. Int. Symp. Computer
Architecture, IEEE 1983, 243-250.

8. T. SHIMADA, K. HiraKI and K. NISHIDA. An Architecture of a
Data Flow Machine and Its Evaluation, Proc. COMPCON 84
(Spring) IEEE (1984), 486-490.

9. Y. YAMAGUCHI, K. Topa and T. YuBA. A Performance Evalua-
tion of a Lisp-based Data-driven Machine (EM-3), Proc. 10th Ann.
Int. Symp. Computer Architecture, IEEE (1983), 363-369.

10. N. IToH, Y. Masupa and H. SHiMizu. Parallel Prolog machine
based on Data Flow Model, ICOT Tech. Rep. RT-035, ICOT (1983).
11. M. AMAMIYA, R. HASEGAWA, O. NAKAMURA and H. Mikami, A
List-processing-oriented Data Flow Machine Architecture, Proc.
NCC, 51, AFIPS (1982) 143-152.

12. M. AMAMiYa, R. HASEGAwWA and H. MikaMmi. List Processing
with a Data Flow Machine, Lecture Notes in Computer Science, Spr-
inger-Verlag (1983), 165-190.

13. M. Amamiva and R. HAsegawa, Data Flow Computing and
Eager and Lazy Evaluation, New Generation Computing, 2, 8, (1984),
105-129.

14. R. Hasecawa, H. MikaMmi and M. AMamivAa, A List-proc-
essing-oriented Data Flow Machine Architecture and Its Evaluation,
Trans. IECE Japan, 67-D, 9, (1984), 957-964.

236

15. M. AMaMiYA, R. HASEGAwA and S. ONo. VALID: A High-
Level Functional Language for Data Flow Machine, Rev. Electrical
Communications Laboratories, 32, 5, (1984), NTT 793-802.

16. R. HASEGAWA and M. AMAMIYA. Parallel Execution of Logic
Programs Based on Data Flow Concept, Proc. Int. Conf. Fifth Gen.
Computer Systems, ICOT (1984), 507-516.

17. M. AMAMIYA, M. TAKESUE, R. HASEGAWA and H. Mikami, Im-
plementation and Evaluation of A List-Processing-Oriented Data

M. AMamiva, R. HASEGAWA, M. TAKESUE and H. MIKAMI

Flow Machine, Proc. 13th Ann. Int. Symp. Computer Architecture,
IEEE (1986), 10-19.

18. R. HASEGAWA and M. AMAMIYA. Design and Implementation of
A High Level Functional Language Valid for Data Flow machine,
Proc. 1986 Riken Symposium on Functional Programming, FP86-01,
Japan Society for Software Science and Technology (1986).

(Received October 27, 1987)

