Invited Paper

The SIGMA-1 Dataflow Supercomputer:
A Challenge for New Generation
Supercomputing Systems

KE1 HirAk1, KENJI NISHIDA, SATOSHI SEKIGUCHI, TOSHIO SHIMADA
and TOSHITSUGU YUBA

SIGMA-1 is an exciting practical computer prototype based on dataflow architecture designed to outperform
conventional von Neumann computers. This large-scale dataflow computer, for scientific and technological com-
putations, is in the final design and construction stage at the Electrotechnical Laboratory, Ministry of Interna-

tional Trade and Industry.

This paper! overviews the system architecture of the SIGMA-1, and discusses the performance measurements
made recently. The architectural issues in dataflow computing machines and the design decisions made in the
SIGMA-1 project in achieving 100 MFLOPS performance are presented. The history of the SIGMA-1 project is

also outlined.

1. Introduction

Supercomputers with the highest computation speeds
are used in various numerical simulation applications,
where experimental studies are unsafe and/ or difficult.
The computing power of supercomputers has increased
several orders of magnitude during the last decade. This
has been accomplished by pipelined vector architectures
and multiple pipeline architectures. Recently, the
multiprocessor architecture has been adopted to in-
crease the performance further. However, its perfor-
mance is limited severely by such large overheads as
load distribution, synchronization and data transmis-
sion. Conventional supercomputers, consequently,
only intend to utilize the coarse-grain parallelism, and
neglect the enormous fine-grain parallelism available in
numerical computations.

Dataflow computing promises computing speeds
limited only by data dependencies in the computations
being performed. Dataflow computing gives the
simplest and most powerful representation of computa-
tion. Dataflow exploits parallelism in parallel computa-
tions at the architectural level with small overhead. The
load distribution is dynamically achieved by an adap-
tive load scheduling mechanism built in the communica-
tion network. The synchronization of parallel activities
is realized by efficient operand matching and asyn-

Electrotechnical Laboratory, 1-1-4, Umesono, Tsukuba, Ibaraki
305, Japan.

Note: This paper is a revision of our previous work on the sub-
ject: *‘System architecture of a dataflow supercomputer,”” Proc. 1987
IEEE Region 10 Conference, Seoul, Korea and ‘“The SIGMA-1
dataflow computer,”” Proc. 1987 Fall Joint Computer Conference,
Dallas, USA.

Journal of Information Processing, Vol. 10, No. 4, 1987

chronous array access, while the data transmission be-
tween processing elements is done in pipeline manner.

The concepts of dataflow computers as they are now
widely understood originated in 1974. In that year, two
important papers on dataflow computer architecture
were published, Jack B. Dennis’s [3] and Raymond E.
Miller and John Cocke’s [9]. The former gave the
dataflow architecture concepts beginning with the data
dependency graph model of parallel computation.
Then, it is possible to say that the foundation was made
by the Dennis’ group at MIT. Miller and Cocke of IBM
proposed configurable computers as a new class of com-
puters in the latter paper. They insisted that the
machine structure should attain the natural structure of
the algorithm being performed [9]. After these, the con-
tributions to dataflow computer architecture were made
by Arvind’s group [1] at MIT and Gurd’s group [4] at
Manchester University to the present level of develop-
ment of dataflow computers. Significant contributions
have been made by many other researchers at many
other institutions in Japan [11]. Much research and
development went into implementing the dataflow com-
puting concept at the hardware level using conventional
microprocessors or constructing small scale experimen-
tal prototypes. However, none of these prototypes pro-
ve that dataflow computers can surpass conventional
vector-type supercomputers. Quantitative analysis is
needed to show the superiority of the dataflow architec-
ture in practical supercomputing applications.

The SIGMA-1 is the most significant dataflow
research project, undertaken by the computer architec-
ture section of Electrotechnical Laboratory (ETL) to
outperform conventional supercomputers. In addition
to building such a powerful, new generation computer

220

and verifying the feasibility of a dataflow computing
machine as a practical parallel computer, the ETL
group was motivated by the following.

1. The newest vector-type supercomputers have
maximum performance of more than 1 GFLOPS now.
However, their effective speed varies from 10 to 100
MFLOPS, depending on the application programs.
This motivated the development of a general-purpose
parallel computer to reduce the difference between peak
performance and effective performance.

2. Semiconductor technology innovations have not
been reflected fully in basic computer architecture
research. Therefore, advanced research and develop-
ment on new generation computer architectures must be
conducted by utilizing advanced semiconductor
technology. This motivated the development of a highly
parallel computer to make full use of gate-array LSI
technology.

The goals of the SIGMA-1 project include construc-
ting a large-scale parallel computer with instruction
level dataflow processing elements using advanced, com-
mercially available, semi-customized (gate-array) LSI
technology to execute practical application programs at
an average speed of 100 MFLOPS and to build program-
ming environments to support large-scale parallel com-
putations.

To achieve these goals, a number of important design
choices have been made in the SIGMA-1 [§, 6, 7, 10].
Two-stage pipeline processing is employed to improve
the efficiency of executing sequential code segments. A
new chained hashing hardware method is used to imple-
ment the operand matching mechanism. A hierarchical
network is used for packet communication, where a
new dynamic load distribution mechanism is im-
plemented. A maintenance architecture for testing and
debugging purposes and structure elements to support
array structures with asynchronous access are intro-
duced.

As mentioned above, the higher computing speeds ex-
pected in parallel computers with the increasing number
of processing elements are limited by the parallel pro-
cessing overhead. Dataflow computers are no exception
to this phenomenon. Overheads include packet com-
munication (data transmission), load distribution,
packet waiting and matching (synchronization). To
overcome these overheads, a quantitative evaluation on
a practical dataflow computer is essential.

There is another potential overhead in dataflow com-
puters. That is, a large number of extra instructions
must be executed to preserve the safety of dataflow com-
putations [4]. Additional instructions are necessary to
maintain functional units such as the matching memory
and structure memory in a dataflow computer. All this
increases the complexity of the dataflow overhead pro-
blem in dataflow computing. The design of an efficient
instruction set for a dataflow computer is an important
research topic. To design an optimized instruction set,
practical programs must be executed on a working

K. HiraKk1, K. NISHIDA, S. SEKIGUCHI, T. SHIMADA and T. YuBa

dataflow computer. In order to solve these dataflow
overhead problems, at least partially, it is essential to
construct a practical dataflow computer and analyze its
performance characteristics.

2. Hardware Architecture

2.1 Organization

The global organization of the SIGMA-1 is shown in
Figure 1. The SIGMA-1 consists of 128 processing
elements, 128 structure elements, 32 local networks, a
global network, 16 maintenance microprocessors, a ser-

—
B ol el e
Local . Net
SE[[SE| |SE]| |SE
PE| |PE] [PE] |PE
-
Maintenance S
Processor Local et E
G
=
SE| |SE| |SE} |SE|
Service O s ta °
Processor 0 ba o 8
O —_—
o b IC)
PE] [PE] |PE] [P
Maintenance
Processor Local Net
SE] [SE| |SE] |S

Fig. 1 Global organization of the SIGMA-1.

Local Network

—————ee—e | || e
Firing Stage _1

e l
[cink Regiser]| | !

Instruction
Jdress
Memory [{Trgns

|
i
|
|

Hash Mmchihq
Controll Memory

Next Instruction Address
Generator

Fig. 2 Data path of the processing element.

The SIGMA-1 Dataflow Supercomputer: A Challenge for New Generation Supercomputing Systems 221

Local Network

[nput/Qut put

Channe!

Maintenance
Processor

Register File

E Structure
=

K]

>

]

Memory o>

g
Structure
Controller

|11 ' |
Lt =

Fig. 3 Data path of the structure element.

vice processor and a host computer. The processing
elements and structure elements are divided into 32
groups, each of which consists of four processing
elements, four structure elements and a local network.
All groups are connected via the global network. The
global network consists of a two-stage omega network
with a new adaptive load distribution mechanism. Its
transfer rate is 2G bytes per second. A local network is
a ten-by-ten crossbar packet switching network, eight
ports of which are used for communication between
processing elements and structure elements within a
group and two to interface the global network. The
transfer rate of a local network is 600M bytes per sec-
ond. Input and output channels in all the structure
elements, maintenance processors and a service pro-
cessor form the maintenance architecture. This architec-
ture is used for input and output operations, system
monitoring, maintenance operations and performance
measurements. The whole system is synchronous and
operates under a single clock.

Figure 2 and Figure 3 illustrate a processing element
and a structure element. A processing element consists
of an input buffer, a matching memory with a waiting-
matching function, an instruction memory and a link
register file. A processing element executes all the
SIGMA-1 instructions except structure handling instruc-
tions such as read, white, allocate, and deallocate used
to access the structure memory in a structure element. A
processing element works as a two-stage pipeline; the
firing stage and the execution stage. In the firing stage,
operand matching and instruction fetching are per-
formed simultaneously. Input packets, stored in the in-
put buffer, are sent to the matching memory. The mat-
ching memory enables the execution of instructions
with two input operands. Successfully matched packets
are sent to the execution stage with the instructions

fetched from the instruction memory. If the match
fails, the packet is stored in the matching memory and
the instruction fetched is discarded. Chained hashing
hardware is used to speed up the operand matching
operation, where a first-in-first-out queue is attached to
each key to enable multiple entries with the same key.
The link register is used to identify a parallel activity in
a program and hold a base address of a procedure.

In the execution stage, instructions are executed in
parallel with packet identifier generation, where a
packet identifier keeps the destination address (next in-
struction address) as well as a parallel activity identifier
(a procedure identifier and an iteration counter). These
operations are similar to those in a conventional com-
puter. After combining the result value of the execution
unit with the packet identifier, an output packet is pro-
duced and sent to the input buffer of the same or
another processing element via the local network.

If an array is treated as a set of scalar values, the mat-
ching memory provides automatic synchronization and
space management. However, heavy packet traffic
causes a serious bottleneck at the matching memory,
since each element of the array must be handled
separately. This is the reason additional structure
elements are introduced in the SIGMA-1. A structure
element consists of an input buffer, a structure memory,
two flag logic functions and a structure controller with a
register file. The flag logic function is capable of test-
and-setting all flags in an area arbitrarily specified in a
single clock. The structure controller is responsible for
waiting queue control and memory management. A
structure element handles arrays, which are the most im-
portant data structure involved in numerical computa-
tions. Each structure cell is composed of a 40-bit data
word and two flag bits used for read and write syn-
chronization. Multiple read before write operations are
realized by a waiting queue attached to each cell. The
buddy system implemented in microprogramming is
used to increase the speed of allocating and deallocating
structures.

The architectural features of the SIGMA-1 are de-
signed to achieve high speed by decreasing the parallel
processing overheads in dataflow computers. For exam-
ple, the short pipeline architecture enables quick
response to small sized programs with low parallelism
[5]. It was anticipated that the matching memory and
the communication network would play a significant
role in the system design from the viewpoint of syn-
chronization and data transmission overhead. Besides
the newly proposed mechanisms, high-speed and com-
pact gate-array LSI elements have been developed for
this purpose.

Testing, debugging and maintenance are performed
by a special purpose parallel architecture [6]. This
maintenance architecture uses a set of conventional von
Neumann microprocessors, since maintenance opera-
tions generally need history sensitivity utilizing side
effects.

222

The architectural features of the SIGMA-1 are sum-
marized as follows:

1. A short (two-stage) pipeline in a processing ele-
ment, reducing the gap between the maximum and
average performance.

2. Chained hashing hardware for the matching
memory, giving efficient and high-speed synchroniza-
tion.

3. An array-oriented structure element, minimizing
structure handling overhead.

4. A hierarchical network with a dynamic load
distribution function, reducing performance degrada-
tion caused by load imbalance.

5. A maintenance architecture for testing and
debugging, providing high-speed input and output
operations and performing precise performance meas-
urements.

2.2 Packet and Instruction Architecture

The SIGMA-1 adopts a packet communication ar-
chitecture. Processing elements and structure elements
communicate using fixed length packets. Input and out-
put to the host computer and maintenance system are
also in packet form. Therefore, hardware initialization
and hardware maintenance are carried out in packet
form.

As shown in Figure 4, a packet contains a destination
processing element number, a packet identifier and
tagged data, and miscellaneous control information.
The 89-bit packet is divided into two 40-bit segments, a
processing element number field (8 bits) and a cancel
bit. A packet is transferred in two consecutive
segments; the first segment contains a processing ele-
ment or structure element number, a destination ad-
dress in the processing element or structure element (32

8 8 10 8 10 4|1 8 32

| PE II‘TAG| 1 l LN D ln.cc TAG DATA I

L L Data type
Cancel bit

Matching condition flag
Instruction displacement
Packet identifier

Dm.a value

Link register number (Procedure identifier)
Iteration counter
Packet type
Destination PE/SE number

Fig. 4 Packet format.

40 18 2 20 20 20

Immediate Value OPCODE{| DFo F1 DF2 |

Destination field 2 (Optional)
Destination field 1 (Optional)

Destination PE/SE number (6)
Desti field 0 ~E

Matching con: $rim flag (4)
NDEST (Number of destination fields)
Operation code
Immediate data (Optional)

Fig. 5 Instruction format.

K. Hirakl, K. NISHIDA, S. SEKIGUCHI, T. SHIMADA and T. YuBa

bits), and packet type (8 bits). The second segment con-
sists of data (32 bits), data type (8 bits) and one cancel
bit. The cancel bit is used for canceling the preceding
segment when a malfunction occurs. When the cancel
bit is on, the whole packet becomes invalid.

A destination address consists of a procedure iden-
tifier (8 bits) for specifying a parallel activity, a relative
instruction address (10 bits) within the activity, an itera-
tion counter (10 bits) and some control information
determining the firing rule in the matching memory (4
bits). The iteration counter is utilized to implement the
loop construct efficiently. As in the ordinary model of
dynamic dataflow [1, 4], the concatenation of the pro-
cedure identifier and iteration counter is used to
distinguish parallel activities in a program. The types of
packets used are: result of instruction, procedure call
and return, interrupt handling and system manage-
ment, structure operation, and system initiation and
maintenance for system resources.

The minimum length of an instruction is 40 bits (one
word) as illustrated in Figure 5. The first 20 bits indicate
the operation to be performed (18 bits) and the number
of destination address fields (2 bits). The next 20 bits in-
dicate the destination address of the result, which does
not contain dynamically assigned information such as a
procedure identifier and iteration counter. An im-
mediate data operand can be located at the header part
of each instruction. The maximum number of destina-
tion address fields is three, using two words. When an
instruction contains an immediate data (constant)
operand, another word is required.

The objective of the SIGMA-1 instruction set design
is to execute efficiently application programs that can-
not be efficiently executed on a vector-type supercom-
puter or a parallel von Neumann computer. Low
efficiency in these program executions is caused by fre-
quent procedure calls and returns, large amount of
scalar arithmetic operations, and wide fluctuations of
parallelism. Fine-grain parallelism has the advantage
over coarse-grain parallelism to overcome this inefficien-
cy. As aresult, 200 instructions on a processing element
and 97 instructions on a structure element have been im-
plemented.

2.3 Hardware Implementation

The preliminary version of the processing element
and structure element was built to confirm the architec-
tural design of the SIGMA-1. The hardware technology
used for the processing element was advanced Schottky
TTL logic and MOS memories. The total number of
ICs in the implementation is about 1,900. The
AMD2900 series is also used for the structure element.
The processing element consists of six printed circuit
boards, and the structure element consists of a printed
circuit board and a wire wrapping board. Each four
layer printed circuit board is 40 cm X 60 cm (Fig. 6).
The basic cycle is 80 ns for the processing element and
155 ns for the structure element. This prototype is con-

The SIGMA-1 Dataflow Supercomputer: A Challenge for New Generation Supercomputing Systems 223

Fig. 6 Preliminary prototype of the processing element.

nected to a host computer, VAX-11/750, via a parallel
interface.

LSI implementation using gate-array technology is
generally used in commercial computers, but has not
been used for developing experimental working pro-
totype systems because of designing and manufacturing
costs. In highly parallel computer development,
customized and/or semi-customized LSI technology
have a great advantage in physical size, power consump-
tion and reliability.

The hardware technology chosen for the final im-
plementation is widely used in the construction of com-
mercial CMOS computers. The available gate-array LSI
technology requires fewer printed circuit boards than
currently used. The final version of both the processing
element and structure element is constructed on a single
printed circuit board, which consists of CMOS gate-ar-
ray LSIs, CMOS memories, and SSIs for drivers and
receivers. Each six layer printed circuit board is 45
cm X 45 cm. The size of the processing element is re-
duced approximately five times by using gate-array LSI
technology.

High-speed arithmetic logic is effective in achieving
high speeds in numerical computations. The
AMD29325 was adopted for floating point arithmetic in
each processing element, after fabricating a prototype
using discrete ICs. The processing element has eight
types of gate-array LSIs and a standard cell LSI, and
contains 29 LSIs. The structure element contains eight
LSIs. The numbers of logic gates in the processing ele-
ment and structure element are approximately 81,000
and 37,000. The memory capacities of the processing
element and structure element are about 1 M bytes and
1.5 M bytes. The total number of logic gates in the
SIGMA-1 is about 19x10° and the total amount of
memory is more than 300 M bytes. The basic cycle is
100 ns (10 MHz clock).

The ten-by-ten crossbar switch is built using four bit-
slice ten-by-ten router chips, fabricated by using gate-
array LSI technology at the 10,000 gate level. The
router chips are adopted both in the local network and
global network. The router LSIs for the local network

Fig. 8 Outside view of the SIGMA-1.

are directly installed in the backboard with a
maintenance processor (Intel 8086), since there are
several thousand wires between a local network and pro-
cessing elements. Fig. 7 shows one group of the
SIGMA-1 and the backboard, and Fig. 8 illustrates the
external appearance of the whole system. The global net-
work is placed in the center of the SIGMA-1 and con-
nected to each local network by fine-pitch ribbon
cables. The hardware specification is summarized in
Table 1.

3. Software System

The SIGMA-1 system works as a back-end processor
of a host computer. Therefore, it does not need a com-
plicated operating system as in a stand-alone computing
system. The SIGMA-1 has system programs for clean-
ing the input buffer, the matching memory, the struc-
ture memory and the instruction memory, as well as an
initialization program for loading a program to be ex-
ecuted from the host computer into the instruction
memory of each processing element. Output from the
SIGMA-1 to the host computer is carried out in packet
form by specifying the host computer as a processing

224

K. HiraKk1, K. NIsHIDA, S. SEKIGUCHI, T. SHIMADA and T. YuBA

Table 1 Hardware specification of the SIGMA-1.

Preliminary Version
(Prototype)

Gate-Array Version
(Final Configuration)

Technology: Advanced STTL, CMOS SRAM CMOS Gate-Array, SRAM, DRAM
Basic Clock: 155 ns 100 ns
No. of Gates: 81, 235/PE+37, 547/SE=118, 782
No. of ICs: 1570(PE) + 320(SE) = 1890 354/PE+353/SE=707
No. of PCBs: 6(PE)+2(SE)=8 1/PE+1/SE=2
No. of PE/SE: 1PE, ISE 128PE, 128Se
Input Buffer: 2K W(80 bits/ W) 8KW(80 bits/ W)
Matching Memory: 16KW(80 bits/ W) 64K W (80 bits/ W)
Instruction Memory: 16KW(40 bits/ W) 64KW (40 bits/ W)
Structure Memory: 64K W (40 bits/ W) 256K W(40 bits/ W)

No. of Gate-Array Types:
No. of Gate-Arrays Used:

Total Amount of Memory:
Total No. of Gates:

Total No. of ICs:

Total No. of PCBs:

9/PE, 3/SE, 2/LNET, 1/GNET
28/PE, 8/SE, 13/LNET, 117/GNET

326MByte

19, 013, 447

91, 029

128(PE) + 128(SE) + 16(LNET) + 9(GNET) =281

element number of a packet. Data input during pro-
gram execution is given also in packet form by the host
computer at the SIGMA-1’s request.

Another important part of the software system is the
SIGMA-1 register transfer level software simulator.
The simulator, written in LISP, has been used to verify
each function of the SIGMA-1 and is still utilized to
debug assembly language test programs.

The Data Flow C (DFC) compiler is implemented us-
ing the language development tools of the UNIX
operating system. The emphasis was not on efficiency
but on ease of implementation. Efficiency and compact-
ness are still to be considered. Basically, DFC is a subset
of the C language with a single assignment rule.
Therefore, assignment to a variable is generally allowed
only once in each procedure. However, the loop con-
struct, realized by the for statement, is an exception. A
non-single assignment expression can be written as the
third argument of the for statement as shown in the
following summation program. The argument n of the
main program is given by a trigger packet invoking the
program.

#define N 10
main(n)
int n;
{int /; float a[N], retval, sigma();
for (i=0; i<5; i=i+1)ali]=i;
retval=sigma(n, a); print(retval);}
float sigma(n, a)
int n; float af];
{int i; float s;
for (i=0,5s=0; i<n; s=s+ali], i=i+1);
return(s);}

DFC may have multiple return values as an extension
to the the C language. DFC programs without multiple

return values can be compiled by a C compiler. The ad-
vantage is that DFC programs can be verified by a C
compiler on a host computer. The DFC compiler com-
prises approximately 7,000 steps in C. A nested struc-
ture of for or if statements is not implemented and is in-
hibited by the current version of the DFC compiler.

The DFC compiler generates a macro-assembly
language program. This corresponds to a dataflow
graph with no restriction on the number of arcs. Each
node is presented by a lable, an operation code, con-
stant, and a destination list, where the constant part
might be absent. An element of a destination list con-
sists of a processing element number, a statement label,
and a matching condition flag. When a processing ele-
ment number is not specified, it is dynamically
allocated. Currently, it is our policy that a processing
element number must be statically assigned at compile
time, since dynamic allocation causes execution
overhead. The matching condition flag contains
characteristic information concerning the next instruc-
tion.

From now on, we will focus our software develop-
ment efforts on the following:

1. Development of an efficient and robust DFC com-
piler for constructing large-scale practical programs,

2. Construction of reliable maintenance and pro-
gramming environments,

3. Development of practical scientific application
programs for evaluation.

4. System Performance

The whole system operates synchronously at a 10
MHz clock beat. The execution time of an instruction is
determined by the maximum execution time of the two
pipeline stages. Single operand instructions are ex-

-i

"

The SIGMA-1 Dataflow Supercomputer: A Challenge for New Generation Supercomputing Systems 225

ecuted every two cycles and two operand instructions
every three cycles. The firing stage normally takes three
cycles. Since non-division arithmetic operations take at
most two cycles, the execution stage completes most of
the instruction execution in two cycles. This considera-
tion implies that the maximum speed of a processing ele-
ment is about 5 MIPS and 3 MFLOPS. For a structure
element, each read and write instruction is carried out
in two cycles. Since instructions for allocating and
deallocating structures are implemented by a
microprogrammed buddy system, the execution times
estimated are between 10 to 340 cycles. The network
transfers a packet every two cycles. Therefore, structure
elements can utilize maximum performance of the net-
work.

Performance is to be measured in terms of program
execution time rather than raw machine cycles. The
measured performance of the preliminary version of the
SIGMA-1 is approximately 1.4 MIPS. The FLOPS per-
formance is approximately 0.3 MFLOPS, measured by
executing the Lawrence Livermore Loops program
which is not suited to dataflow architecture. This
measurement study proved that there is no difference in
computing ability of a single processing element be-
tween dataflow architecture and von Neumann architec-
ture, in case of constructing them using the same device
technology.

Performance evaluation on the four processing ele-
ment SIGMA-1 of the LSI version was studied by ex-
ecuting benchmark programs. The program executed
computes the numerical integration of sim(x) over
—n/2 to n/2 using the trapezoidal method. The
number of divisions on the integration range cor-
responds to the length of the vector. The program was
written in DFC, and then optimized manually. The
clock cycles were measured using a logic state analyzer.

The following observations were made in this study:

1. The effective performance of the four processing
element organization is 6.4 MFLOPS, approximately
half of the maximum performance. The speed of the
FACOM M380, a general-purpose mainframe com-
puter, was 9.6 MFLOPS for this benchmark.

2. A speed degradation of 30% occurs when struc-
ture elements are adopted. This is due to the extra in-
structions and address calculation for structure handl-
ing.

3. The single processing element performance is
almost constant over the vector length, because of the
short pipeline architecture.

4. The speedup ratio for a single processing element
to four processing element organization is 3.9 without
structure elements and 3.5 with structure elements.

This preliminary performance evaluation predicts
that the average performance of the 128 processing ele-
ment organization is more than 100 MFLOPS.

5. History

The SIGMA-1 project started in April 1982 as part of
the national project for new generation supercom-
puting systems under the auspices of the Ministry of In-
ternational Trade and Industry, Japan. The national
project aims at research and development of the basic
technology for next generation supercomputers based
on parallel processing with new devices. The main objec-
tive of the SIGMA-1 project is to identify and establish
the basic technology for highly parallel dataflow super-
computers and verify the ability to surpass successful
conventional von Neumann computers by a practical
datafiow computer.

In 1982, the proposal for the SIGMA-1 architecture
was outlined and its software simulator, written in
LISP, was implemented on the DEC20/60 and the
LMI’s Lambda Machine. The simulation study concep-
tually verified the dataflow architecture. Hardware
design started in 1983. A preliminary version of the pro-
cessing element was fabricated and has been in opera-
tion since November 1984. A paper describing the ar-
chitectural design of the SIGMA-1 was presented at the
1984 International Conference on Parallel Processing
[5]. The performance evaluation of the preliminary pro-
totype SIGMA-1 was carried out to confirm the effec-
tiveness of the new control schemes and was reported at
the International Symposium on Computer Architec-
ture held in 1986 in Tokyo [10].

From 1984 to 1985, the SIGMA-1 processing element
was redesigned using semi-customized (gate-array) LSI
technology to reflect the features of the preliminary pro-
cessing element. The architecture was presented at the
1986 International Conference on Parallel Processing
[6]. A local communication network was implemented,
and a single cluster SIGMA-1 consisting of four process-
ing elements and a local network was constructed and
has been in operation since December 1986.

The SIGMA-1, with 128 processing elements, will be
completed in 1987. Software implementations effec-
tively utilizing dataflow architecture and controlling
and managing resources are planned after testing the
hardware soundness. After establishing programming
environments and confirming the usefulness, the SIG-
MA-1 will be in open use.

The man power used in this project may be of some
interest. A group of four researchers was involved in
the development, two for hardware and two for soft-
ware. The design of the preliminary processing element
was carried out by the staff at ETL using a non-commer-
cial logic simulator. However, its fabrication was done
by Central Electric Corp. The gate-array design of the
LSI version of the processing element was carried out
by Central Electric Corp. staff, with no experience of
logic design, mainly using the HILO-2 logic simulator
on a CAD workstation.

The research fund amounted to about 500 million
yen, excluding salary spreading over six years. 70% of

226

the fund has been used to fabricate the SIGMA-1
system. The remainder is for computing facilities, their
maintenance charge, electricity, etc. The number of pro-
cessing elements was greatly influenced by the financial
support. Initially, we planned to construct a parallel
computer consisting of more than 200 processing
elements. However, the hardware prototype will only
be a reduced version of the potentially large system that
was designed.

6. Concluding Remarks

So far, no attempt has been made to maintain com-
patibility with conventional von Neumann computer ar-
chitecture. From now on, we must evaluate the
practicability of the SIGMA-1 by comparing its perfor-
mance with von Neumann computers. In order to make
a detailed comparison, a common high-level programm-
ing language is required. We have implemented a
SISAL [8] compiler for the SIGMA-1 by using its in-
termediate language. Application programs in SISAL
will be executed on the SIGMA-1, CRAY supercom-
puters and VAXs. This type of compatibility is required
to show the superiority of dataflow architecture over
von Neumann architecture.

The SIGMA-1 with 128 processing elements will be in
operation at the end of 1987. This will mean that the
center of dataflow research shifted away from the
United States or England to Japan. The main reason is
that our laboratory is a government owned organiza-
tions, where the basic researches requiring risk, a large
amount of funds and long-range perspective are carried
out. Research on dataflow computer architecture is a
typical example satisfying such conditions. That is, in-
dustries are not interested in such revolutionary architec-
ture and universities do not have enough research funds
and technology to construct a practical dataflow com-
puter.

Dataflow computer research is still at the feasibility
study level, verifying the ability to surpass the suc-
cessful conventional von Neumann computers by a prac-
tical dataflow computer. The SIGMA-1 dataflow com-
puter, which is predicted to outperform conventional
supercomputers in some applications, is an important

K. HiraAKI, K. NISHIDA, S. SEKIGUCHI, T. SHIMADA and T. YUuBA

mile stone in computer architecture research. Many
evaluation studies will be carried out on the SIGMA-1
to confirm the effectiveness of dataflow computer ar-
chitecture.

Acknowledgements

The authors wish to thank the staff of the Computer
Architecture Section, Electrotechnical Laboratory, for
their fruitful discussions. They are also grateful to Dr.
H. Kashiwagi, Deputy Director-General of Elec-
trotechnical Laboratory, for his continuous encourage-
ment and Dr. Wim Bohm, the University of Man-
chester, for improving the manuscript. This research is
supported by the High-Speed Computing System for
Scientific and Technological Use Project of the Ministry
of International Trade and Industry, Japan.

References

1. Arvind and lannucci, R. A. A critique of multiprocessing von
Neumann style, Proc. 10th Annu. Int. Symp. Computer Architec-
ture, IEEE, 426-436 (1983).

2. Dennis, J. B., Lim, W. Y. P. and Ackerman, W. B. The MIT
data flow engineering model, Proc. IFIP Congress 83, 553-560 (1983).
3. Dennis, J. B. First version of a data flow procedure language, Lec-
ture Notes in Computer Science, 19, Springer-Verlag, 362-376 (1974).
4. Gurd, J., Kirkham, C. C. and Watson, 1. The Manchester pro-
totype dataflow computer, Commun. ACM, 21, 1, 34-52 (1985).

5. Hiraki, K., Shimada, T. and Nishida, K. A hardware design of
the SIGMA-1—A data flow computer for scientific computations,
Proc. 1984 Int. Conf. Parallel Processing, IEEE, 524-531 (1984).

6. Hiraki, K., Nishida, K., Sekiguchi, S. and Shimada, T.
Maintenance architecture and its LSI implementation of a dataflow
computer with a large number of processors, Proc. Int. Conf.
Parallel Processing, IEEE, 584-591 (1986).

7. Hiraki, K., Sekiguchi, S. and Shimada, T. System architecture of
a dataflow supercomputer, Proc. 1987 IEEE Region 10 Conf., IEEE,
1044-1049 (1987).

8. McGraw, J. SISAL: Streams and iteration in a single assignment
language, Language Reference Manual, Lawrence Livermore Na-
tional Laboratory (1985).

9. Miller, R. E. and Cocke, J. Configurable computers: A new class
of general purpose machines, Lecture Notes in Computer Science, 5,
Spinger-Verlag, 285-298 (1974).

10. Shimada, T., Hiraki, K., Sekiguchi, S. and Nishida, K. Evalua-
tion of a single processor of a prototype data flow computer SIGMA-
1 for scientific computations, Proc. 12th Ann. Int. Symp. Computer
Architecture, IEEE, 226-234 (1986).

11. Yuba, T. Research and development efforts on dataflow com-
puter architecture in Japan, J. Inf. Process. 9, 2, IPS Japan, 51-60
(1986).

(Received November 17, 1987)

