Invited Paper

Tridiagonal Factorization Algorithm:
A Preconditioner for Nonsymmetric System
Solving on Vectorcomputers

SHUN Do1* and Norio HArRADA*

The Tridiagonal Factorization (TF) algorithm was originally introduced by the authors as a matrix splitting
type preconditioner for regular sparse nonsymmetric system solving on vector and/ or parallel computers. It has
been re-introduced using a Preconditioner Introduction Process, which also gives an alternative introduction
process to the ILU preconditioner. The approximation properties of the TF and ILU preconditioners against
the coefficient matrix of linear systems have been analyzed. It is shown that they have similar approximation
properties versus the change in diffusion anisotropy as well as advection intensity of an advection diffusion equa-
tion. Convergence and CPU-time of both preconditioners have been compared for some practical 2D and 3D
device simulation problems on the NEC SX-2 supercomputers. It is observed that the iterative procedures with
the TF preconditioner are up to 3 times faster than those with vectorized ILU preconditioners.

1. Introduction

This paper discusses the solution for regular sparse
nonsymmetric linear systems, suitable for vector
and/or parallel computation, arising from the finite
difference approximation for advection diffusion equa-
tions. The most promising class of the solution methods
at present includes preconditioned iterative methods,
such as the preconditioned Bi-Conjugate gradient
(BCG)[1], preconditioned Conjugate Gradient Squared
(CGS)[2] and preconditioned Conjugate Residual (CR)
[3] methods. Especially for the ILUBCG and ILUCGS
methods, the combination of the Incomplate LU fac-
torization preconditioning technique[4] with the BCG
and CGS basic iterative procedure, are thought to be
the most efficient and the most popular methods for use
on scalar computers. However, these methods have se-
quential features when conventionally programmed.
Among several vectorization techniques reported[6],[7],
[8], the most efficient and robust one, at the moment, is
to change the order of computation, called the
diagonalwise and hyperplane vectorization technig-
ues[8],[9].

Algorithms inheriting more ‘natural’ parallelism are
investigated because it is confidently expected that they
will lead to more efficient processes. However, addi-
tional mathematical problems arise which must be
analyzed. The Tridiagonal Factorization (TF)
algorithm is proposed as a preconditioning algorithm
for the solution of regular sparse nonsymmetric linear

*M.B.31-3610
Information Basic Research Laboratory C & C Information
Technology Research Laboratories NEC Corporation, 4-1-1,
Miyazaki, Miyamae-ku, Kawasaki, 213 JAPAN.

Journal of Information Processing, Vol. 11, No. 1, 1987

systems, suitable for vector and/or parallel computa-
tion[14]. The TF preconditioning matrix, termed the
TF preconditioner, is defined by matrix splitting to
tridiagonal matrices, each of which corresponds to an
independent variable of P.D.E.s.

Section 2 presents a Preconditioner Introduction Pro-
cess, which gives an alternative way of introducing both
the TF and ILU preconditioners. Section 3 serves to
show that the approximation properties of both the TF
and ILU preconditioners against the original coefficient
matrix of linear systems have quite similar features ver-
sus changes in diffusion anisotropy as well as advection
intensity in P.D.E.s. Section 4 discusses parallelism and
vectorization of both the TF and ILU preconditioners
for 2-dimensional 5-point and 3-dimensional 7-point
difference problems. In section 5, comparison with 2-
and 3-dimensional practical device simulation on the
NEC SX-2 supercomputer has shown the effectiveness
of the TF preconditioner.

2. The Tridiagonal Factorization Preconditioner

The original TF preconditioner is in the class of
matrix splitting algorithms. In this section, the Precon-
ditioner Introduction Process is shown to be an alter-
native definition process to both the TF and ILU precon-
ditioners. This process leads to a better understanding
of the TF preconditioners as concluded in this section.
Although discussions here are restricted to the 2-dimen-
sional 5-point finite difference approximation of
P.D.E.s defined over rectangular regions, they can
easily be expanded to other cases, including higher
order difference cases as well as 3-dimensional cases.

Consider the linear system,

Tridiagonal Factorization Algorithm: A Preconditioner for Nonsymmetric System Solving on Vectorcomputers 39

<

Fig. 1 An Illustrative matrix structure for 2D 5-point finite
difference approximation.

Au=f 1)

where A is a given regular sparse nonsymmetric matrix,
such as shown in Fig. 1. Let M be a non-singular
matrix, Eq. (1) is equivalent to

(AM ™Y Mu)=f. 2

Equation (2) is generally known as the preconditioned
system, and M is the preconditioning matrix or precon-
ditioner. The preconditioned iterative method is, name-
ly, a combination of a basic iterative procedure, such as
BCG(1], CGS[2] or CR[3], and a preconditioning
technique, e.g. ILU[4], SSOR[S5] or TF[14].

Note that the following three requirements should be
satisfied on any successful preconditioners:

1) The computational work for preconditioning
matrix inversion, usually forward and backward
substitutions, is O(/V), where N is the matrix size. This
is because the computational work should be consistent
with that for a basic iterative procedure.

2) M is an appropriate approximation to the
original matrix A. This comes from the fact that
coefficient matrix eigenvalues concentration generally
improves convergence.

3) The M inversion process has parallelism suitable
for the computer architecture.
On computers with higher vector and/or parallel pro-
cessing capabilities, the third requirement for
parallelism is a key for a more efficient preconditioner.
This is discussed in more detail in section 4.

Define a 2-dimensional 5-point difference matrix as

Alil=1b, ¢ di e f])

i=ngi=1 i i+l i+n,

which indicates non-zero row elements in i-th column.
The term n, is the number of gridpoints along the x
axis.

With this notation, the original definition of the TF
preconditioner, Mryr, is written as,

MTF=XDY,

Table 1 The number of operations for M ~' (or M ~7) for one grid-
point per one iteration step.

addition multipl.
2D 5-point 4 5
3D 7-point 6 7

where
X=[0c¢ d e0],
D=[001/d; 00},
Y=[b;0 d: 0 f]. @)

D is a diagonal matrix and X is a tridiagonal matrix. 4
simple permutation also makes Y a tridiagonal matrix.

X and Y, respectively, are to be factored to multiples
of upper and lower triangular matrices, for Mrr inver-
sion in every iteration step. Note that these LU fac-
torizations are complete and cause no filling-in, and
that the computational work for M1/ is the same as
that for M i}, (Table 1).

A Preconditioner Introduction Process is introduced:

STEP 1. Introduce the preconditioner M as a multiple
of component matrices, whose non-zero
elements are unknown variables. Each com-
ponent matrix must be easily inverted and
have a specific zero and non-zero structure.
Compute the multiple of component
matrices and express the non-zero elements
in M as functions of the unknown variables
in the component matrices.
Determine the unknown variables of the
component matrices so as to satisfy the
following equivalence condition: Each non-
zero element in 4 has the same value as the
corresponding element in M.

First, the TF preconditioner is introduced using this
process.
STEP 1.

STEP 2.

STEP 3.

Let Mrr=XDY, where
X=[0 C:1/D; E; 0],
D=[0 0 D: 0 0},
Y=[B; 0 1/D; 0 FJ. &)

B, C,, D;, E; and F; are unknown variables. X and Y
(after permutation) are tridiagonal matrices. The
difference from Eq. (4) is that elements are unknown.
STEP 2. Computing the multiple XDY results in,

row
{(XDY}[i]=[CiDi-1Bi i—ny—1
B; i—n,
BiDj\Ej+, i—ny+1
Ci i—1
1/D; i
E; i+1
CiD;-\Fi-, i+n.—1

40

F; i+n,
EDiy\Fiv]. i+n+1

From the equivalence condition; i.e., i, i1
and itn, rows in Eq. (6) have the same
values as the corresponding rows in Eq. (3),

B;=b, Ci=c, Ei=¢, F;=f, Di=1/d,. @)

Substituting Eq. (7) into Eq. (5) yields Eq. (4), the
original definition of the TF preconditioner.
Next, the ILU preconditioner is introduced.

(6)

STEP 3.

S. Do1 and N. HARADA

L=[B, C,‘ I/D, 0 0],
D=[0 0 D; 0 0],
U=[0 0 1/D;E; F). (8)

Here, B, C;, D,, E; and F; are unknown variables. D is a
diagonal matrix, and L and U, respectively, gives the
lower and upper triangular matrices which have the
same non-zero structure as A. It should also be noted
here that the difference from Eq. (5) is only in the posi-
tion of two unknown elements; B; and E,.

STEP 1. Let M;,u=LDU, where STEP 2. Computing the multiple LDU results in,
row
{LDU}i]l=[B; i—n,
BD;, ,E; ., i—n,+1
C; i—-1
B\D;-p Fi-n,+ C:D;-\E;-,+1/D; i
E; i+1
CiD;-F;_, i+n—1
F; 1. i+n,)
STEP 3. Comparing Eq. (9) with Eq. (3) yield the Define an approximation error matrix R by M—A

following equivalences,
Bi=b, Ci=c,, E=e;, Fi=f,

bifi-nDi-n+ciei-\Di-+1/D;=d,. 10)
Equation (10) is rewritten as
D,‘=1/(di_bif;‘—,;,Di—n,_ciei—lDi—l)- 1

It can be easily shown that Eq. (11) gives the recursive
equation for the ILU preconditioner.

From the above discussions, the following are ob-
served:

1) The TF preconditioner and the ILU precondi-
tioner can be introduced from the same process, which
we call the Preconditioner Introduction Process.

2) Their major difference is in their structure; i.e.,
triangular matrices for the ILU and tridiagonal
matrices for the TF.

3) They both satisfy the equivalence condition:
‘““Each non-zero element in A has the same value as the
corresponding element in M.”

3. Evaluating the Approximation Properties

Equations (6) and (9) indicate that the TF precondi-
tioner has 4 error terms in the i—n,—1, i—n,+1,
i+n.—1 and i+n+1 columns for each i-th row,
whereas the ILU has 2 in the i—n,+1 and i+ n,—1 col-
umns. Figure 2 gives an alternative expression of these
error structures. In this section, these error terms for
both the TF and ILU preconditioners are evaluated and
their variation is compared against the change of
anisotropy in diffusion parameters and the advection in-
tensity.

and express the i-th row as

Riil=l » pr» B 1

i=me=1 i—n+1 itn—1 i+n-+1

In the following, discussions are restricted to the case
where bi=b, ¢;=c, di=d, e;=e and f,=f, and hence
subscript i will be omitted.

The TF preconditioner error is easily obtained from
Eq. (6) and (7) as follows:

r'lrF(=r'll‘Fi=cibi—l/di—l)=bc/da
rie(=rtei=ebiv\/ div1)=be/ d,
r'zl'F(=r‘3l‘Fi=ci.ﬁ—l/di—l)=cf/d1
rte(=rtei=efiv/div)=ef/d. (12)

Although the recursive equation (11) prevents the
ILU preconditioner error from being expressed as an ex-
plicit function of given elements such as b; and ¢;, the
following approximate equations are obtained on an
assumption that the series {D;} converge to a definite
value D. This assumption is actually satisfied on some
simple numerical examples. From Eq. (9) and (10), in
which D;, D;-, and D;_,, are replaced by D, it follows
that

"I'LU=’?LU=0,
riiu=0.5be{d — (d*—4(bf+ ce))**} / (bf + ce),
riw=0.5¢f{d—(d*—4(bf +ce))*S} / (bf +ce). (13)
An advection diffusion equation,
(kxt)x+ (kytty)y — vt =0,

is now used for evaluating Eq. (12) and (13) against the

Tridiagonal Factorization Algorithm: A Preconditioner for Nonsymmetric System Solving on Vectorcomputers 41

i1, J#1 1#1, 14 -1, /;/
/ \ 1,/
\ﬁ)
i-1,j~1 141,/~1 i, -1
TF (HV)

Fig. 2 Spatial expression of preconditioner errors.

g
2
&
o !
=1 o |
Pa

Fig. 3 Approximation errors for preconditioners vs. anisotropy
in the diffusion factors in P.D.E.s.

change in the diffusion factors &, and k,, and the advec-
tion term intensity »,. Terms u, and u, are partial
derivatives. Adapting the Ist-order centered difference
approximation to the diffusion term u,, and u,,, and
Ist-order up-wind difference approximation to the
advection term u, results in 5-point finite difference
equations, whose matrix has the form shown in Fig. 1.
The grid size Ax and 4y are, for simplicity, fixed as 1.

First, in order to analyze an approximation property
of rrr and iy against the diffusion anisotropy, let v, be
0 and express b, c, d, e and f as functions of k, and k,:

b=f=—k,, c=e=~k,, d=2k,+k,).
Substituting these into Eq. (12) and (13), it follows that:
rie=rie=rir=rir=k.k,/ 2(k:+k,),
riw=riw=kk,{k+k,— (2kck,)**} [(k3 +KD) (14
Equation (14) indicates that all non-zero elements in
R+r become equal. It also indicates that all non-zero

elements in Ryy have approximately the same
magnitude. Define an anisotropy parameter P, as

P,= (kx _ky)/(kx"'ky)’

which has value in the range ~1 to 1. Figure 3 shows
the change in rr and ryy (both normalized by A
diagonal elements) against P,.

In the same manner, an approximation property of
rre and Ly against the advection intensity can be ana-

orR¥rr———————

ERROR (%)
<]

o L= " N 1 2 M N 1 1

O I/8 I/4 172 |

AL}

2 4 81632 oo

CELL-PECLET NUMBER

Fig. 4 Approximation errors for preconditioners vs. advection in-
tensity in P.D.E.s.

lyzed. Let k, and k, be unity and express b, c, d, e and f
using v,

b=c=f=—1, d=4+v,, e=—(1+v).
Substituting these to Eq. (12) and (13), it follows that:
r%F=f%F=l/(4+Ux),
rir=rie=(1+v)/(@d+v,),
riw=0.51+v) {4+ v, ~ B +4v,+)"} /2 +vy),
riy=0.5{4+v,— (8 +4v,+v)*} / 2+ vy, (15)

Equation (15) indicates that r}r (=r%r) and rj.y are ma-
jor parts of the approximation error, because others
simply decrease as v, increase. The Cell-Peclet number
P, an advection term intensity parameter, is defined:

P¢‘=A-x*vx/kx= Uxe

Figure 4 shows the change in r3 and rfy (both normal-
ized by A diagonal elements) against P..

From these two figures, the following are concluded:

1) Both rrr and riy change against P, or P. with
almost the same behavior.

2) rrr is always about 20% smaller than r, . Note
that this does not mean the TF preconditioner is
superior to the ILU preconditioner, because the TF
preconditioner has 4 error terms whereas the ILU has 2.

3) Both rr¢ and ryy become smaller as either the
diffusion anisotropy or the advection intensity become
larger. Both rrr and ryy have a peak around P.=2.
These analyses indicate that the TF preconditioner con-
vergence performance is not significantly inferior to the
ILU preconditioner. Therefore, on computers with
high vector and/or parallel processing capabilities, the
requirement for parallelism is a crucial factor for
estimating the efficiency of the preconditioners. The
next section discusses parallelism and vectorization of
both preconditioners.

42

X
Y-Factor Parallelism

e —

{ » — Grid-points computed inparallel

-

Fig. 5 Parallelism for TF preconditioner.

4. Parallelism and Vectorization

4.1 2-Dimensional 5-Point Difference Case

First, the TF Preconditioner vectorization is dis-
cussed. The x-direction factor, X, of the 2D TF pre-
conditioner defined by Eq. (4) has no y-direction
connection term. Therefore, inverting X involves n,
independent tasks, where n, is the number of grid-
points along the y-axis. Inverting Y also involves n, inde-
pendent tasks, where nx is the number of gridpoints
along the x-axis. Figure 5 shows the parallelism for the
TF preconditioner. Gridpoints encircled by dotted lines
are computed in parallel. These parallel tasks can also
be executed in a vectorizable manner. For the inverse of
the X factor, the vector length is n,, and the stride is n,.
For the inverse of the Y factor, the vector length is n,,
and the stride is 1. Note that this TF preconditioner in-
verse requires no special vectorization techniques, and
that a simple FORTRAN program yields a vectorizable
code.

Next, consider the forward substitution process,
v=L"'g, of the ILU preconditioner for the 2D 5-point
case; i.e.,

v =(gy—ly—1vy-y—li-yvic1) /1y (16)

Gridpoints with i+j=constant can be executed in
parallel. In Fig. 6, dotted lines indicate this parallelism.
This results in a vectorizable do-loop with a stride of
n,—1. This is called the diagonalwise vectorization
technique. Note that the vector length for this techni-

S. Dot and N. HARADA

Fig. 6 Parallelism for ILU preconditioner.

que ranges from 1 to min (n,, n,), and that the average
vector length for a typical case with n,=n,=n is n/2,
half of that for the TF preconditioning technique. This
variable short vector length is the major drawback of
ILU preconditioner vector processing.

4.2 3-Dimensional 7-Point Difference Case

Next, consider a 3D 7-point difference case. First, the
TF preconditioner for a 3D 7-point difference matrix is
introduced. Denote the 3D 7-point difference matrix A4:

A[’]=[a b ¢ die f: gi]’

i—neny i—n, i—=1 i i+l i+n i+nn,

where n, and n, are the number of gridpoints along the
x and y axis, respectively. The TF preconditioner, Mr,
for this matrix is defined as follows:

My=XDYDZ
where
D[i]=[0001/d;00 0],
X[i1=[0 0 ¢ d; e00],
Yli}=[0 b;: 0 d;: 0f O],
Z[i]=[a; 00 d; 00g].

X is a tridiagonal matrix. Y and Z can also be transform-
ed to tridiagonal matrices by a simple permutation as in
the 2D case. Note that this definition can also be in-
troduced by the Preconditioner Introduction Process.

The inversion of Mrr is executed factor by factor. X
is, for example, obtained by omitting the y- and z-
direction connection terms in A. Hence, X "' has n¥n,
independent tasks. This is also the same for the y- and
z-direction terms. The computational work to invert
Mie and M,y is equal (Table 1).

Next, the vectorization of this 3D TF preconditioner

Tridiagonal Factorization Algorithm: A Preconditioner for Nonsymmetric System Solving on Vectorcomputers 43

is discussed. Suppose that the 3D gridpoints (i, j, k) are
assigned on a memory unit so as to be continuous first
in the x (or /) direction, then continuous in the y (or)
direction and finally continuous in the z (or k) direc-
tion. This is practically the simplest and the most
popular mapping when they are coded by FORTRAN.
Then, X factor inversion vector processing has n}¥n, vec-
tor length with a stride of n,. Z factor inversion vector
processing has n¥n, vector length with stride 1.
Although Y factor inversion has n¥n, independent
tasks, it does not have a constant stride. The inversion
consists of n, sets of n, continuous data units, where
each set has a stride of n¥n,. Therefore, it can not be ex-
ecuted by a single vector operation on the state-of-the-
art vector computers. As a result, for the Y factor inver-
sion, the vector length is n, with stride 1. Sophisticated
compilers, which can vectorize douple do-loops, do not
require any special programming techniques to vec-
torize the inversion of this TF preconditioner.

Two implementations, the diagonal and the
hyperplane vectorizations, are introduced for the ILU
preconditioner inversion for the 3D 7-point difference
case. Consider the forward substitution process,
v=L""g, of the ILU preconditioner for the 3D 7-point
case; i.e.,

Uijk=(gijk_ tjk—lvijk—l"lij—lkvij—lk_ i—ljkvi—ljk)/lijk- (17)

Gridpoints (i, j, k) lying in a hyperplane, defined by
i+j+ k=constant, are executed in parallel. In this case,
the stride is not a constant, as in the 2D case. The most
popular and the simplest way to achieve a long vector
length is to use indirect list-vectors. This is called the
hyperplane technique. Equation (17) can be divided
into the following two steps:

hijk=gijk - Il'jk— 1Vijk—1- (18)
Vijk= (hijk —lij— 1k Vij—1k— bi- 1jk Vi~ ljk)/lijk- (19)

Equation (18) for k=constant has n¥n, independent
tasks. Therefore, they are computed in a vectorizable
manner. The vector length is n¥n, with stride 1. Equa-
tion (19), on the other hand, is equivalent to Eq. (16).
Therefore, the diagonalwise vectorization technique
can be used to vectorize Eq. (19). The average vector
length for Eq. (19) for a typical case with n,=n,=n is
n/2, as in the 2D case.

In both vectorization techniques for the ILU precon-
ditioner, artificial modifications in programs are
necessary.

Several drawbacks for the ILU or TF preconditioner
vectorizations are listed below:

1) In the diagonalwise vectorization technique (for
both 2D and 3D ILUs), the vector length changes from
1 to min (n,, n,), and the average vector length is about
half of that for the 2D TF preconditioning technique.

2) Inthe hyperplane vectorization technique for the
3D ILU, the indirect memory access, which generally
degrades memory access performance, is required.

1
L Poislson]

Current Continuity
Momentum Conservation

[Energy Conservation |

C d
<Coaei>

Y

Fig. 7 Decoupled iteration for device simulation.

3) Inthe 3D TF preconditioner vectorization techni-
que, y factor inversion has vector length of a single
dimensional order. (orthers have two dimensional
order.)

The TF preconditioners have several advantages
when used on multi-processing systems. Each factor in-
version can be divided into independent sub-tasks.
Hence, they will be well handled on multi-processing
systems, including SIMD machines with common
memory units. On the other hand, it is impossible to
divide the ILU preconditioner inversion task to indepen-
dent sub-tasks, as shown in Fig. 6.

5. Numerical Examples

Convergence and computational speed of the TF
preconditioner and the ILU preconditioner have been
compared on 2- and 3-dimensional device simulation
problems.

5.1 2-Dimensional Examples

Numerical examples are 2-dimensional nonsymmetric
linear systems arising from the carrier continuity equa-
tions and the energy conservation equations for 2-
dimensional MOSFET device simulation with energy
transport phenomena[l2]. Equations of the simulation
model are listed in Appendix A. The decoupled method
is used, in which each equation is solved independently
and iteratively until the solution reaches a self-consis-
tent state (Fig. 7). Equations arising at an initial step of
the Decoupled iteration is, in general, ill-conditioned,
and hence requires more iterations for linear equation
solving.

The Bi-conjugate Gradient (BCG) method and the
Conjugate Gradient Squared (CGS) method are used as
the basic iterative procedure. The BCG basic iterative
procedure for Eq. (2), where M is replaced by M, for
example, results in the TFBCG algorithm. The most
time consuming and hence important part in vector
and/or parallel computation is the preconditioner inver-
sion process. The TF preconditioner inversion vectoriza-
tion is explained in section 4. The diagonalwise vec-
torization technique, which is also explained in section
4, is used for the ILU preconditioner inversion vec-
torization.

44

Table 2 Numerical results for 2D device simulation with high gate-
voltage. (Problem 1; n,*n,=50+50)
(a) The number of iterations.

BCG CGS
TFBCG ILUBCG TFCGS ILUCGS

Equation Iter. Step

Carrier Initial 170 133 114 82

Continu. il 105 91 59 49

Eq.

g"e’gy Initial 8 8 5 5
onsery. Final 9 5 6 3

Eq.

(b) CPU-time. (x 10~ sec)

BCG CGS

Equation Iter. Step
TFBCG ILUBCG TFCGS ILUCGS

Carrier Initial 877 151.2 56.1 93.2
g;’“"““' Final 50.4 103.8 28.2 56.1
g“”sy Initial 4.1 9.6 2.8 6.1
ONSEIY- Final 45 6.1 3.2 3.8
Eq.
Total 146.7 270.7 90.3 159.2
Ratio 1.62 3.00 1.00 1.76

Table 3 Numerical results for 2D device simulation with low gate-
voltage. (Problem 2; n,*n,=50%50).
(@) The number of iterations.

BCG CGS
TFBCG ILUBCG TFCGS ILUCGS

Equation Iter. Step

Carrier Initial 158 102 68 53

Continu. g a1 103 7 70 4

Eq.

'Z,“"gy Initial 12 8 9 6
ONSeTY- Final 12 8 7 4

Eq.

(b) CPU-time. (x 1077 sec)

BCG CGS

Equation Iter. Step
TFBCG ILUBCG TFCGS ILUCGS

Carrier Initial 76.3 88.7 32.6 47.0
Continu. gy 472 64.0 33.4 40.7
Eq.
Energy Initial 6.0 7.3 46 5.6
Conserv. pinal 5.9 7.3 3.7 3.9
Eq.
Total 135.4 167.3 74.3 97.2
Ratio 1.82 2.25 1.00 1.31

S. Dot and N. HArRADA

(a)

(b)

Fig. 8 Typical simulation results. (a) 2D potential distribution,
(b) 2D energy distribution. #MOS, V,=V;=2V,
Ley=0.25 um, T,,=100 A, X;=0.1 ym.

Table 2 and 3 show numerical test results. Each cor-
responds to different test conditions (see Appendix A,
Problem 1). The higher gate-voltage condition in Pro-
blem 1 leads to greater ill-conditioning than in Problem
2. This reflects in the number of iterations. The number
of gridpoints is 50»50. Figure 8 displays a typical exam-
ple of the solution. Table 2.a and 3.a show the number
of iterations required to achieve

NAu—fll,/1f ;<1071 (20)

where [l - [l denotes the L;-norm of a vector. Table 2.b
and 3.b show the CPU-time measured on the SX-2
supercomputer. The following are concluded from
these test results:

1) The CGS procedure requires less iterations than
the BCG procedure for both preconditioners.

2) The TF preconditioner requires 20 to 50% more
iterations for the carrier continuity equation, as well as
up to 100% more iterations for the energy conservation
equation than the ILU preconditioner.

3) The average CPU-time for one iteration step is
about 0.5 msec for the TFBCG and TFCGS programs
and about 1.1 msec for the ILUBCG and ILUCGS pro-
grams. Iteration procedures with the TF proconditioner
are about twice as fast as those with the ILU. (The
reasons are discussed in section 4.)

4) As aresult, the TF preconditioner requires 20 to
50% less CPU-time for the carrier equation, and up to
60% less for the energy equation than the ILU precondi-
tioner.

5.2 3-Dimensional Examples

Numerical examples are 3-dimensional nonsymmetric

Tridiagonal Factorization Algorithm: A Preconditioner for Nonsymmetric System Solving on Vectorcomputers 45

Table 4 Numerical results for 3D device simulation. (Problem 3; n,
*n4n,=51%51%21)

Drive Vortage (V)

METHOD
0 25 50 75 100
ILUBCG
Number of 12 12 12 12 12
Iteration
CPU-fime 422 .422 .422 422 422
(ratio)

(2.65) (2.51) (237) (2.37) (2.26)
320 .320 320 .320 320

Diagonal-wise

Hyperplane (.01) (1.90) (1.80) (1.80) (1.71)
TFBCG 15 16 17 17 18
Number of
Iteration
CPU-time 159 168 178 178 .187
(ratio) (1.00) (1.00) (1.00) (1.00) (1.00)

Table 5 Numerical results for 3D device simulation. (Problem 4; n,
*n,xn,=201%21+21)

Drive Vortage (V)

METHOD

0 25 50 75 100
ILUBCG
Number of 9 9 9 9 9
Iteration
CPU-time 517517 517 517 517
(ratio)

(3.29) (3.04) (2.84) (2.64) (2.69)
.501 .501 .501 .501 .501

Diagonal-wise

Hyperplane (G.19) (2.95) (.75 (2.58) (2.58)
TFBCG 1 12 13 14 14
Number of
Iteration
CPU-time A57 1700 182 194 194
(ratio) (1.00) (1.00) (1.00) (1.00) (1.00)

linear systems arising from a carrier diffusion equation
for opto-electronics device simulation[13]. The equa-
tion of the simulation model is given in Appendix B.
Two different numbers of gridpoints corresponding to
two different device shapes, are used as examples; one is
201%21%21 (Problem 3) and the other is 51%51%21 (Pro-
blem 4). Convergence and speed were evaluated against
the change in the advection intensity, which cor-
responds to the drive potential for the devices. The
BCG method is used as a basic iterative procedure.

The ILUBCG algorithm was coded in two ways, as in-
troduced in section 4. One uses the diagonalwise vec-
torization technique, and the other uses the hyperplane
vectorization technique with list-vectors. Iterations are
terminated when a relative L,-norm of the residual vec-
tor, defined by Eq. (20), reaches 107'%

Numerical results are shown in Table 4 and 5. From

these tables, it can be seen that:

1) According to the ILU preconditioner vectoriza-
tion, the hyperplane technique is faster than the
diagonalwise vectorization. However, the difference is
not great.

2) The TF preconditioner requires about 20 to 50%
more iterations than the ILU preconditioner.

3) CPU-time required for one iteration step for the
TFBCG program is 1/3 to 1/4 of that for the vectoriz-
ed ILUBCG programs.

4) As a result, the TFBCG program is about 2 or 3
times faster than the vectorized ILUBCG programs.

5) In Problem 4, 450 MFLOPS were obtained by
the TFBCG program.

It is a well-known fact that the Gustafsson’s modifica-
tion version of the ILU preconditioner for a certain
class of problems reduces the number of iterations.
However, it does not improve convergence for pro-
blems used here[14],[15]. (The same tendencies are
often reported in other device simulation problems.)

6. Conclusion

This paper introduced the Preconditioner Introduc-
tion Process, which gives an alternative way of introduc-
ing both the TF and ILU preconditioners. This process
also gives a way of introducing the Gustafsson’s
modification version of the ILU[10] and TF[16] precon-
ditioners. The Gustafsson’s modification for the TF
preconditioner should be studied in more detail.

The approximation properties of the TF and ILU
preconditioners against the coefficient matrix of linear
systems were compared to show that they have similar
approximation properties versus the change in diffusion
anisotropy and advection intensity of P.D.E.s Con-
vergence and CPU-time were compared for both precon-
ditioners for practical 2D and 3D device simulation pro-
blems on the NEC SX-2 supercomputer. Although the
TFBCG and TFCGS programs, respectively, require
more iterations than the ILUBCG and ILUCGS
programs, they are 20% to 3 times faster than the vec-
torized ILUBCG and ILUCGS programs. The TF
preconditioner has several advantages when used on
multi-processing systems. Performance comparison of
both preconditioners for these systems is an interesting
and important task.

The ADI (Alternate Direction Implicit) method in-
cludes parallelism similar to the TF preconditioner. It is
also possible to apply the ADI method as a precondi-
tioner[11]. Performance comparison of these two
preconditioners is also important and is the subject of
further study by the authors.

The BCG and CGS iterative procedures with both the
TF and diagonalwise ILU preconditioners for the 2D 5-
point and 3D 7-point differencing are installed in the
ASL/SX (A Scientific Library for SX supercomputers).

46

Acknowledgment

The authors would like to thank Mr. M. Fukuma of
Micro Electronics Research Labs., NEC Corp., for pro-
viding the Appendix A problem, and Mr. N. Oda of
Material Development Center, NEC Corp., for pro-
viding the Appendix B problem. The authors also
would like to thank Prof. B. Parlett of University of
California, Berkeley, and Prof. G. Golub of Stanford
University for suggesting some studies on the ADI
methods used as preconditioners.

References

1. FLETCHER, R. Conjugate Gradient Methods for Indefinite
Systems, Proc. of the Dundee Biennial Conf. on Num. Anal., Spr-
inger-verlag (1975), 73-89.

2. HEeuer, C. peN lterative Methods for Nonsymmetric Linear
Systems, Proc. of Int. Conf. on Simulation of Semiconductor
Devices and Processes, SWANSEA (1984), 267-285.

3. Sabp, Y. and ScHurts, M. H. Conjugate Gradient-Like
Algorithms for Solving Nonsymmetric Linear Systems, Math. Comp.
44, 170 (1985) 417-424.

4. KersHaw, D. S. The Incomplete Cholesky-Conjugate Gradient
Method for the Iterative Solution of Systems of Linear-Equations, J.
of Comp. Phys. 26 (1978), 43-65.

5. HAGEMAN, A. and Young, D. Applied Iterative Methods,
Academic Press, New York (1981).

6. JoHNsON, O. G. and PAuL, G. Vector Algorithms for Elliptic Par-
tial Differential Equations Based on JACOBI Method, Elliptic Pro-
blems Solvers, Academic Press (1981), 345-351.

7. VorsT, H. A. VAN DER A Vectorizable Variant of Some ICCG
Methods, SIAM J. of Sci. Stat. Comp 3, 3 (1982), 350-356.

8. UsHIRO, Y. Vector Computer Version of ICCG Method, Trans.
of the Research Institute for Mathematical Science, Kyoto Univ. 514
(1984), 110-134.

9. VorsT, H. A. vaN DER (M)ICCG for 2D Problems on Vector-
computers, Report A-17, Data Processing Center, Kyoto Univ. (1986).
10. GuSTAFSSON, I. A Class of First Order Factorization Methods,
BIT 18 (1978) 142-156.

11. CHIN, R. C. Y., MANTEUFFEL, T. A. and PiLLIs, J. DE ADl as a
Preconditioning for Solving the Convection-Diffusion Equation,
SIAM J. of Sci. Stat. Comp. §, 2 (1984), 281-299.

12. Fukuma, M. and UEBBING, R. H. Two-Dimensional MOS-FET
Simulation with Energy Transport Phenomena, Proc. of the IEEE
Int. Electron Devices Meeting, IEDM 84 (1984), 621-624.

13. Opa, N., Mivamorto, K. and YAMAGATA, T. High Spatial
Resolution HgCdTe Photoconductors with Optical Masks, Proc. of
the 31st SPIE Conf., Infrared Technology XIII, 819 (1988), in press.
14. Doi, S. and HARADA, N. A Preconditioning Algorithm for Solv-
ing Nonsymmetric Linear Systems Suitable for Supercomputers,
Proc. of the 2nd Int. Conf. on Supercomputing 2 (1987) 503-509.
15. Do, S. and HArRADA, N. Comparing Performance of the TF
and ILU Preconditioners for Device Simulation Application, Proc. of
the Numerical Analysis Symposium, IPSJ 21-1 (1987) (in Japanese).
16. Do, S. and HARADA, N. Preconditioners for Nonsymmetric
Systems Suitable for Supercomputers—Comparing TF and ILU
Preconditioners—, Advances in Numerical Methods for Large Sparse
Sets of Linear Equations, 3, Keio Univ. (1987) 1-8. (in Japanese).

S. Dot and N. HARADA
Appendix

Appendix A:
blem.
Poisson Eq.; div (¢ grad ¢)=q(n—p+N,— Np)

Carrier Continuity Eq.; div (nv)=0

Momentum Conservation Eq.; v=(1,/m){gE—(2/3)
gradw—(2w/3n) gradn}
Energy Conservation Eq.;
- (W - WO) / Twe

2-dimensional device simulation pro-

(5/3)v-gradw)=gqE-v

¢: potential, n: electron density, p: positive-hole den-
sity, N4, Np: the accepter and donner density, v; carrier
drift velocity, E: electric field, m: effective mass, w:
average energy, wo: equilibrium state of energy, 75, tw:
relaxation time for momentum and energy.

Model conditions:

nMOS, L=0.25 ym, T,,=100 A, X;=0.1 ym,
Vo=2V, (for Problem 1 and 2),

Ve=2V (for Problem 1),
Ve=1V (for Problem 2).

Discretization conditions:

The Decoupled method is used (see Fig. 7).

The centered and up-wind difference approximations
are used for the diffusion and advection terms, respec-
tively.

The Cartesian non-uniform coordinate system is
used.

The ratio between the largest mesh and the smallest
mesh is about 20 for both directions.

The number of gridpoints is 50%50.

Appendix B: 3-dimensional device simulation pro-
blem.
{(1/7)—D div grad + uE grad} P=n¢,/d,

O<x<!, 0<y<w, 0<z<d),

P: carrier density, 7: carrier life time, D: diffusion
coefficient, u: mobility, E=[E,, 0,0]": bias electric
field, #: quantum efficiency, ¢;: photon flux, d: device
thickness.

Boundary conditions:
Df{grad P},=(uE,+S:)P at x=0,
D{grad P},=(uE,—S,)P at x=I, etc.

(Received August 21, 1987)

