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Automatic Code Generation Method of DEQSOL
(Differential EQuation SOlver Language)

CHISATO KONNO*, MICHIRU YAMABE*, Mivuki San*,
NOBUTOSHI SAGAWA*, Yukio UMETANI, HIROYUKI HIRAYAMA**
and TaDpAsHI OHTAY*

DEQSOL is a high-level programming language specially designed to describe PDE problems in quite a
natural way for numerical analyses. This language has two design targets. One is to enhance programming pro-
ductivity by establishing a new architecture-independent language interface between numerical analysts and vec-
tor/parallel processors. The other is to automatically generate highly vectorizable FORTRAN codes from DE-
QSOL descriptions, thus realizing efficient execution.

The DEQSOL translator automatically generates highly vectorizable simulation codes using intrinsic
parallelism remaining in DEQSOL descriptions. As a discretization method, both FDM and FEM are provided.
The key techniques of the translator are the symbolic manipulation to discretize PDE and the code generation
utilizing maximum DO-loops.

DEQSOL has been applied to over 30 practical problems, and the above targets are successfully attained. Pro-
ductivity, when measured by the required source’s lines-of-code, is improved by almost one order of magnitude
over FORTRAN programming. Also, most of the generated FORTRAN codes have extremely high vectoriza-

tion ratios (91%-96%) on the HITACHI S-810/20 vector processor.

1. Introduction

As indicated by the wide-spread use of supercom-
puters, demand for numerical simulations of physical
phenomena has been increasing rapidly. Hardware used
for such numerical simulation has made remarkable
advances through innovations in LSI technology and
computer architecture such as vector and parallel
processors. However, the programming itself still re-
mains at a relatively elementary level.

Simulation program development with such conven-
tional languages as FORTRAN is faced with the follow-
ing problems. One is that a long period of time is
necessary to develop even a simple simulator. Another
is that special knowledge of numerical analysis
methods, like discretization, is needed. In addition, a
specialized programming technique is required to ex-
ploit the performance of vector/parallel processors.
Moreover, such programs are so lengthy and com-
plicated that they can not be extended easily.

One approach for coping with these problems is the
use of mathematical libraries or software packages
designed for special application fields. However, there
are distinct limitations in applicable fields and adopted
numerical algorithms. Additionally, users can not fully
control the numerical scheme in the details, and they
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often can not understand or utilize the complicated
functions and interfaces.

To address these limitations, DEQSOL has been de-
veloped. DEQSOL (Differential EQuation SOlver
Language) is a high-level programming language system
specifically designed to describe PDE (Partial Differen-
tial Equation) problems in a natural way for numerical
analyses. This system has two main purposes:

(1) To enhance programming productivity by
establishing a new architecture-independent language
interface between the numerical analyst and the com-
puter.

(2) To generate highly vectorizable FORTRAN
codes from DEQSOL descriptions using its intrinsic
paralielism.

Several past or current simulation language systems
such as SALEM[1], PDEL[2]), and ELLPACK]J3, 4]
have been developed. In particular, ELLPACK seems
to be a powerful system. ELLPACK has ample problem
solving capabilities due to its extensive library, and its
capabilities are still expanding in response to the
demands for an interactive and distributed system en-
vironment (cf.[4]).

Recently, a program generator for fluid dynamics us-
ing a symbolic manipulator system has been reported
(cf.[5])). PDE transformation facility using the bound-
ary fitted coordinate transformation technique and its
discretization facility are realized on MACSYMA[6],
and furthermore, the program generator generates a
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calculation program by FORTRAN. However, the ap-
plicable field and descriptive capability of this system ap-
pear to be limited. Also performance is a problem
because it is implemented upon a general purpose for-
mula manipulator.

Compared with these systems, DEQSOL has the
following significant advantages:

a) It posseses the capability to select and describe
various numerical algorithms within the language.

b) It has the capability to describe complicated
space regions with their automatic meshing facilities.

¢) It provides both the Finite Difference Method
(FDM) and Finite Element Method (FEM) as discretiza-
tion facilities.

d) It generates FORTRAN simulation codes so that
a high acceleration ratio can be realized with supercom-
puters.

Due to these features, DEQSOL is applicable to a
wide range of practical and complex problems.

In this paper, an outline of DEQSOL, the automatic
code generation method for supercomputers, and its
evaluation through application to practical problems
will be presented.

2. Outline of DEQSOL

First, an outline of DEQSOL is shown by using a sim-
ple example. A simple thermal diffusion problem and its
description of a DEQSOL program are shown in Fig. 1.
The DEQSOL program is divided into two definite
parts, that is, the part defining structure of numerical
model and the part describing numerical algorithm to
solve problems.

Statement (1) declares the program name and state-
ment (2) indicates the discretization method chosen by
the user. Statements (3) to (10) specify the elements of
the numerical model, namely, domain (DOM), time do-
main (TDOM), FDM meshes (MESH), unknown
physical variables (VAR), known physical constants
(CONST), subregions (REGION), initial condition (IN-
IT), and boundary conditions (BOUND).

Between the ‘SCHEME’ statement (11) and the
‘END SCHEME’ statement (17), the numerical
algorithm is described. To develop a numerical
algorithm for this problem, time differentiation is
replaced by forward difference and the left term is esti-
mated according to either an explicit or implicit
method. When the explicit method is selected, state-
ment (14) is used, which assigns the evaluated value of
the right terms to the left variable. Statements (12) to
(17) represent a numerical algorithm by Euler’s explicit
method, where the statements between ‘ITER’ ation
and ‘END ITER’ ation are executed until the specified
condition is satisfied. For the implicit method, the
‘SOLVE’ statement is used, which solves the PDE for
the indicated variable. If an implicit method such as
backward Euler’s method is selected, statement (14)
should be replaced by the ‘SOLVE’ statement (19), This
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Fig. 1 A Simple Example of Description by DEQSOL.
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Fig. 2 Processing Flow of DEQSOL Program.

‘SOLVE’ statement is one of the key functions of
DEQSOL. It is used to obtain the indicated variable
value in the PDE which is linear with respect to the
variable. The ‘SOLVE’ statement can be applied not
only for transient problems, but also for static pro-
blems.

The structure of the DEQSOL system and its process-
ing flow are shown in Fig. 2. The DEQSOL description
is automatically translated into a FORTRAN sim-
ulation program by the DEQSOL translator. The
DEQSOL translator has two discretization facilities,
namely FDM and FEM. The generated FORTRAN pro-
gram is executed on the ordinary route, and a large
quantity of numerical result is analyzed by the post-pro-
cessor S-GRAF.

The features of DEQSOL can be summarized as
follows:

(1) It adopts the description form consisting of two
distinctly separated parts. One part defines the structure
of the numerical model and the other part describes the
numerical algorithm. As a result, the numerical
algorithm is easily modified independent of model part.

(2) In order to attain high productivity, readability
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and extendability of program, concise styles and sym-
bols commonly used by numerical analysts have been in-
troduced. Namely,

a) New data types such as scalar, vector and tensor
variables have been introduced to express various
physical quantities.

b) Differential operators, such as first and second
derivatives, gradient, divergence, rotation and Lapla-
cian, have been introduced, so that field equations and
conditions can be described in natural style.

(3) It is capable of describing complicated space
regions and their automatic meshing schema.

(4) It can select and describe various numerical
algorithms using the following functions in the scheme
block:

a) Assignment statement with differential operators
and the ‘SOLVE’ statement playing a basic role in up-
dating or obtaining physical quantities.

b) ‘ITER’ation, ‘WHILE’, ‘IF-THEN-ELSE’ block
and linkage function to external modules to construct
various numerical algorithms.

(5) Parallelism lurking in numerical algorithms can
be expressed naturally by programmers without taking
notice of it. That parallelism is utilized in generating vec-
torizable simulation programs by the DEQSOL
translator.

At present, applicable fields of DEQSOL are the pro-
blems formulated by elliptic or parabolic PDEs on a 1-3
dimensional domain. As the automatic discretization
method, both FDM and FEM are provided.

In the first example, the iteration block was used to
control time steps. The iteration block and other con-
trol blocks also can be utilized for Newton Raphson’s
loop of non-linear PDE, for a successive scheme of
simultaneous PDEs and so on. Other descriptions of
numerical algorithms and more details of language
specification can be found in the references ([7], [81, [9]).

3. DEQSOL Translator

In this section, how the DEQSOL translator
generates simulation codes is described. The main con-
cerns are the automatic discretization method and
highly vectorizable code generation.

The parallelism existing in the numerical algorithm is
classified into the following four types:

(A) Parallelism in discretization of region

This is a parallelism existing in the meshing process to
represent the objective continuous region by finite
nodes and elements. Parallel processing can be acheived
for each coordinate or each subregion which is a unit of
the automatic meshing process.

(B) Parallelism in discretization of PDE

This is a parallelism existing in the discretizing pro-
cedure inducing linear equations from PDE with FDM
or FEM. It constructs the matrix by evaluating the
coefficient elements and constant vector. There is mesh
point-wize parallelism in this procedure.

DEQSOL  TRANSLATOR

FOM FEM
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-sufficiency of conditions
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PARSE

internal
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Fig. 3 DEQSOL Translator.
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Fig. 4 Structure of Generated Codes.

(C) Parallelism for solving a linear equations
system

This is a parallelism existing in solving the matrix in-
duced by the above process. There are mesh point-wize,
staggered mesh point-wize or other level parallelism ac-
cording to matrix solution algorithms.

(D) Parallelism in scheme flow

This is an upper level parallelism in a numerical
scheme algorithm. For example, according to the order
of updating or refering to variables, parallel processing
can be realized between PDEs or parts of the scheme.

All of these parallelisms remain natural in DEQSOL
descriptions, and the translator (or compiler) can easily
utilize them for code generation.

3.1 Outline of the translator and the generated code

As shown in Fig. 3, the DEQSOL translator consists
of two main parts, namely PARSE and CODGEN .
(CODe GENerator). PARSE checks on the consistency
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of regions, statement structure and sufficiency of intial
or boundary conditions and finally generates in-
termediate codes. CODGEN generates FORTRAN
codes from the intermediate codes, provides variable
declarations needed in the program and generates con-
trol-loops and subroutines. Particularly with the
‘SOLVE’ statements, the DEQSOL translator dis-
cretizes the PDE according to the specified discretiza-
tion method and generates codes that calculate the
value of the matrix and constant vector elements in the
discretized linear equations system.

The structure of the generated code is shown in Fig.
4. The codes consist of one main (control) program and
many subroutines. At the head of the main program,
there are declarations of variables defined by the ‘VAR’
or ‘CONST’ statements, declarations of the workarea
for the indicated matrix solution library, and so on.
The main procedure is divided into 3 parts. The first
part provides meshing information and performs other
preprocessings. The second part provides initial settings
for known constants and initial conditions for variables
corresponding to the ‘CONST’ or ‘INIT’ (initial condi-
tion) statements. The last part has essentially the same
structure as the scheme block of DEQSOL, where the
CALL statement, control statement or 1/0 statement is
positioned corresponding to each executable statement
of DEQSOL such as ‘SOLVE’, ‘ITER’ or ‘PRINT’
statements. The subroutines for each CALL statement
come after the main program. However, one executable
statement in the scheme block of DEQSOL often cor-
responds to several subroutines in order to improve
compiling efficiency of FORTRAN as long as the
parallelism in calculation is not destroyed.

At present, the main target machine for code genera-
tion by the DEQSOL translator is a pipeline vector pro-
cessor, e.g. the HITAC S-810. Therefore, among the
parallelisms lurking in the numerical algorithm, (A) to
(C) are usable informations for parallel code genera-
tion. The key point is how to generate codes using max-
imal vectorizable DO loops. In DEQSOL, type (C)
parallelism is attained by preparing highly vectorizable
and efficient matrix solution libraries. Since most of the
discretization of region is processed at translation time,
the treatment of type (B) parallelism becomes the main
objective of code generation.

In the following section, how to generate codes with
type (B) parallelism is shown.

3.2 Code generation for FDM

The DEQSOL translator discretizes PDEs in the
assignment statement or ‘SOLVE’ statement by follow-
ing the built-in discretization rule. The elementary func-
tions of the translator are symbolic manipulation of
differential operators according to the discretization
rule and the break down of region which extracts the
maximal subregions where the unique discretized equa-
tion can be obtained.

First, the symbolic manipulation of differential
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Fig. 6 Automatic Discretization Method.

operators in DEQSOL for FDM is shown. The key
features of this method in DEQSOL are as follows:

*) Discretization is realized by the recursive pro-
cedure for differential operators, thus all PDEs can be
managed.

*) Discretization is fulfilled by using the 1/2 index
technique with the built-in discretization rule, which is
equivalent to the finite volume method.

The typical flow of the discretization method for a
diffusion term is shown in Fig. 5. Each term in a given
PDE is extracted, and for each term, like div (D*grad
(N)), the discretizing procedure is applied recursively
from the inner differential operator. For example, as
shown in Fig. §, first, Dxgrad (N) is discretized, then
discretization of divergence is applied to the discretized
Dxgrad (N), and finally the procedure is finished by
replacing the remaining 1/2 indices with the average of
both sides of the index.

Another key function of automatic code generation is
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Fig. 7 Generated FORTRAN Code.

the break down of regions. This function is shown by us-
ing the example of the translation for the ‘SOLVE’
statement.

The translation method for the ‘SOLVE’ statement is
described in Fig. 6. First, the region is broken down
into several subregions according to the given PDE,
boundary conditions, and discretization rule, so that
each subregion is dominated by a unique equation and
discretization rule. For example, the domain in the
figure is broken down into 6 subregions: 5 boundary
and 1 inner point subregions. Each subregion is a unit
where the same pattern of linear equations is formed by
discretization of every mesh point. As a result, the
generated FORTRAN codes calculating portions of the
total matrix and constant vector can be combined into a
single DO-loop.

For each subregion, the DEQSOL translator
discretizes the equation according to the discretization
rule, as explained above. It then generates a part of the
linear equations, and creates the FORTRAN codes that
calculate the corresponding part of the total matrix and
constant vector elements of the linear equation system.
After the total matrix is completed, it is linked to the
efficient matrix solution library prepared beforehand.

A portion of the generated FORTRAN codes con-
sisting of the matrix generation and linkage to the
matrix solution library is shown in Fig. 7. Each of the
tightly nested DO loops in Fig. 7 are easily vectorized,
because they contain no data dependencies (cf.[10]).

3.3 Code generation for FEM

The code generation method by FEM is essentially
similar to that of FDM. However, the symbolic
manipulation is based on the Galerkin method. At first,
an outline of this method is shown by letting
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AT 082,
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be a sample target equation.

In the finite element method, the objective unknown
quantity A is approximated by a linear combination of
the basis function ¢; which has a unit value at the j-th
node. In place of the unknown quantity A coefficients
{a;} are derived as the values of 4 at nodes {N;}. In for-
mula (E2), NODE denotes the number of nodes in
region Q to be simulated.

NODE

4= 3 gy (E2)

To determine the coefficients {a;}, the PDE (El) is
multiplied by ¢; and the resultant function is integrated
in the simulation region Q, and reduced to the follow-
ing equation.

—L(v-(TVA))¢i+jDﬂA¢f+ng¢f=0 (E3)

Here, the following equivalent relational expression
(E4) is introduced.
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where 492 indicates the boundary of region £2. On the
boundary 4£2,, expression (E5) holds as follows from
the boundary condition of equation (E1).
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By substituting equations (E5) and (E2) for (E3), the
following equation (E6) is derived. Equation (E6) holds
when i indicates a node number of a node on the bound-
ary 99, or a node inside the region .

NODE
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J
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On the other hand, expression (E7) holds on the
boundary 3€,.

=A0; (E7)



20 C. Konno, M. YAMABE, M. Sai, N. Sacawa, Y. UMETANI, H. HirRavaMA and T. OHTA

By using the equations (E6) and (E7), simultaneous
linear equations with respect to coefficients {a,} are ob-
tained. The equations can be represented as a matrix
equation (E8) as follows:

[Killa]=1d)] (E8)

where;

K,,=§ (TV¢j)~V¢,-+S ﬂ(ojwf—g A,
Q Q

e
dj=—§ Fw,-+j Hpi
Q a2

when i/ denotes a node number of a node on the bound-
ary d£2; or a node inside the region Q. Furthermore, the
integrals of basis function are replaced by the formulae
refering to the coordinate value of nodes.

Consequently, by solving the simultaneous linear
equations (E8), the value of coefficients {¢;} (j=1, 2,

, NODE) can be derived. The process of forming
the simultaneous linear equations (E8) from the
original equation (E1) is called discretization, which is
the main task of the DEQSOL translator.

The symbolic manipulation explained above has been
realized in the DEQSOL translator due to the following
key functions:

a) Generation of the integral form by the weighted
residual procedure, corresponding to the (E3) process.

b) Integral transformation using equivalent rules
such as divergence theorem and partial differentiation
formulae. This corresponds to the (E4) and (ES) pro-
cesses.

¢) Manipulation of numerical integration formulae
for the basis function, corresponding to the (E8) pro-
cess.

The basic idea for the code generation is similar to
FDM. Total matrix K; consists of the contribution
from the region integral terms and the boundary in-
tegral terms. The region integral terms are related to all
nodes. On the other hand, the boundary integral terms
are related to only nodes on the boundary and the
modification of (E7) is needed only for nodes on the
Direchlet boundary. Therefore, the contribution of
region integral terms can be calculated by a single DO-
loop for all nodes and the contribution of boundary in-
tegral terms can be calculated by the other DO-loops
for nodes on boundary regions according to the
different boundary conditions.

A part of the generated FORTRAN code computing
the matrix elements and constant vector elements is
shown in Fig. 8. RCOEF is a two dimensional array
that holds non-zero values of the matrix elements.
CONS is a one-dimensional array that holds constant
vector values. This DO-loop corresponds to the calcula-
tion of the contribution of the region integrals. Vector
length is the node number. The innermost DO loop is
efficiently executed by the S-810 supercomputer with the
use of control vector and list vector facility (cf.[11]).
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CI=X(X)-X(J)

RCOEr(ﬂ IZ):RCQEr(ﬂ T2)+(((BJ/(2*ARE(I1,12,13)))) " ((BI/(2ARE{I]
&,12, I}))))‘((CJ/{Z'ARE(II 12, I!))))'((CI/(Z'ARE(I\ 12,13)))))%(-AR
’-E(X‘ 12,I3))-(C(KK(I)®*1. 0/LAMD"2)¢!KX(J)’1 O/LAFD"Z)t(KK(K)'\ er
&LAﬂD"E))/B)’AI'(I! I12,13)/712.0

CONS(I1)=CONS(I1)-(- ((KK(I).K((J).KK(K))/?'( (XXCI)=XX(J)+XX(K))/3
&))'ARE(I‘ 12,13}/3.0)
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Fig. 8 Example of FORTRAN Code Generated by DEQSOL
Translator for the Solve Statement (FEM).

4. Evaluation

In this section, an evaluation of DEQSOL, such as
programming productivity, and vectorization ratio of
generated codes is given through its application to prac-
tical problems.

DEQSOL and its processing system have been under
trial use for 5 years and applied to over 30 practical pro-
blems. Applied fields have included thermal conduction
problems, convection and diffusion problems for LSI
manufacturing processes, electric or magnetic field
analysis, fluid analysis, etc. In the view point of
numerical algorithms, explicit and implicit methods for
time-dependent problems, the Newton-Raphson’s
method for non-linear PDE, the successive method for
simultaneous PDEs and also the successive method for
integro-differential equations and other schemes have
been tried.

A few evaluations are shown in Table 1. The descrip-
tive efficiency ratio of DEQSOL (lines-of-code) and the
runtime efficiency of the generated FORTRAN code
(vectorization ratio, acceleration ratio using vector pro-
cessor) for each practical problem are illustrated in
Table 1. Here, acceleration ratio refers to the speed-up
rate for the generated FORTRAN codes executed on
vector processor S-810 against that for the scalar pro-
cessor of the same machine.

(1) Productivity

Productivity, when measured by the required
source’s lines-of-code, has been improved by almost
one order of magnitude over FORTRAN program-
ming. Here, in Table 1, FORTRAN’s lines-of-code for
2 problems marked with (), that is CVD and JJD,
are not for generated codes, but for that of existing
FORTRAN programs.

(2) Vectorization ratio

The vectorization ratio in Table 1 are measured by
the HITAC S-810/20. Most of the generated FOR-
TRAN codes have extremely high vectorization ratio
(91.0-96.4%). When they are executed on the vector
processor, the executions are accelerated 3.8 and 9.4
times faster than by scalar operations. These results are
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Table 1 Evaluation of DEQSOL (FDM/FEM)
(Productivity & Vectorization Ratio).

Program Name CVD PCAD WEL JJD MDH EBT

Discretization FDM FDM FDM FEM FEM FEM

Method (Dim.) @ @ @ O O O

Li’c‘;’::f' DEQSOL 127 79 67 9% 904 239

Generated 1,361 1,312 1,091 1,078 11,558 2,476
FORTRAN *) *

(Ratio) (10.7) (16.6) (16.3) (11.2) (12.8) (10.4)

Vectorization Ratio

. 4 94, 7 939 937
(5-810) [%) 91.0 96 4.1 92 3

Acceleration by Vector

. . . 2 7.7 55
Processor (S-810) 38 82 94 5

CVD: Flow Analysis of Chemical Vapour Deposition
PCAD: Impurity Distribution Analysis in LSI Process CAD
WEL: Device Simulation of WEL Layer in LSI

JJD: Magnetic Field Analysis of Josephson Junction Device
MDH: Magnetic Field Analysis of Disc Head

EBT: Field Potential Analysis of Electron Beam Tube

attained by making discretization codes and linear equa-
tion solving processes highly vectorizable, since they are
the bulk of the calculations.

5. Conclusion

Language features, the automatic code generation
method and an evaluation of DEQSOL have been
shown through application to practical problems.

New data types, differential operators and control
functions have been introduced to DEQSOL. Through
these functions, advanced numerical algorithms can be
described in a compact form retaining intrinsic
parallelism of the algorithm.

Automatic code generation of the DEQSOL
translator have been achieved through both FDM and
FEM. The key functions of the automatic code genera-
tion method are symbolic manipulation of the
discretization process and the control function of
subregions (e.g. the break down of region in FDM case)

so that as many calculations as possible can be bundled
up by a single DO-loop to facilitate vectorization.
DEQSOL have been applied to a wide range of pro-
blems. Simulation program productivity has been im-
proved by almost one order of magnitude. Also, most
of the generated FORTRAN codes have extremely high
vectorization ratios (91-96%) on the HITAC S-810/20.
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