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Techniques in vectorizing compilers and optimizing program transformations for supercomputers are de-
scribed. First we give a brief overview of programming languages for supercomputers, especially a historical
review of languages for early vector processors in Japan in relation to languages for supercomputers in the pre-
sent day. Then we give conditions for vectorization of basic loop programs. The order of vector instructions
does not correspond, in general, to that of source statements in the program in order to attain high vectorization
ratio. This can be considered as the reordering of statements in the source program. For dedugging a program,
however, there are cases where it is convenient to force a compiler to keep the order of instructions with that of
source statements, even if vectorization ratio is affected to some extent. We give conditions for vectorization
with/without reordering of statements, in a easily verifiable way. Finally we describe an analysis of loop unroll-
ing techniques for nested loops. This programming technique is one of few general and effective optimizing
transformations. Reasons why the technique is effective depend on architecture of computers and compilers
used. It is shown that the situation can be well understood using a rather simple machine model.

1. Introduction

Because of the great success of CRAY-1 supercom-
puters and of an ever-increasing demand for large scale
scientific and engineering computation, new series of
supercomputers have recently been developed and
much more attention has been paid to supercomputers
and their applications. The wider the scope of applica-
tions, the more important the system support for pro-
gram development suitable for supercomputers
becomes. A good vectorizing compiler plays a crucial
role in program development of efficient programs. In
fact recent supercomputers provide user with an
automatic vectorizing compiler, the language specifica-
tion of which is fully compatible with that for conven-
tional scalar computers. This is effective to make
supercomputers popular and in fact nowadays, super-
computers become indispensable to scientific and
engineering computations of a wide range. Although
supercomputers have become relatively easy to use
recently, some skill in programming is still now re-
quired if one wants to use the full computation power
of supercomputers. In this paper we try to describe the
status of compiling techniques and discuss related
problems. In section 2, we give a brief overview of pro-
gramming languages for supercomputers, especially a
historical review of languages for early vector pro-
cessors in Japan. In section 3, we describe basic features
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of automatic vectorization of FORTRAN programs.
Conditions for vectorization are given for basic loop
programs. We give condition for vectorization with and
without statement reordering. This is important
because in the debugging phase of programs, vectoriza-
tion without statement reordering is useful. Some other
problems are also briefly reviewed. In section 4, we
describe an analysis of loop unrolling techniques for
nested loops and discuss problems in vectorizing com-
pilers.

2. Brief Overview of Programming Languages for
Supercomputers

Programming languages for supercomputers can be
generally classified into the following categories:

(1) Assembly languages

(2) High level programming languages dedicated
for vector/parallel processing

(3) Standard programming languages (e.g.
FORTRAN) with language extensions for vector
/parallel processing

(4) Standard programming languages (e.g. FOR-
TRAN) and automatic vectorization by a compiler

(i) Automatic vectorization by a compiler and
system-defined functions for vector processing

(ii) Full compatibility with programming languages
on conventional computers.

Assembly languages are not used in general, except
for development of system-defined functions, because
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description of vector/parallel processing by an as-
sembly language is highly machine dependent and its
debugging is extremely difficult. Dedicated language ap-
proach for vector / parallel processing is adopted only in
cases of research or experiments because it is difficult to
make use of vast amount of existing software so far de-
veloped. In 1970’s, automatic vectorization technique
was in a primitive state and various language extensions
to describe vector/parallel processing were introduced
to standard languages, mainly to FORTRAN. In case
of Japanese computers, AP-FORTRAN for FACOM
230-75 AP was among them|1, 2]. Statements for array
processing were introduced to AP-FORTRAN. We give
several examples in AP-FORTRAN to show the outline
of the language:

DIMENSION V(100), X(100), Y(100)
V()=S*X(x)+ Y(x)

The meaning of the statement is almost self-ex-
planatory. The above statement is equivalent to the
following:

DO 10 I=1, 100
V(I)=8SxX({)+Y{)
10 CONTINUE

In order to apply operations to a part of an array,
‘Index Declaration Statement’ was introduced:

INDEX J/2, 100, 2/
V(J)=S*xX(J)+ Y({J)

The meaning of the above statement is as follows:
DO 10 I=2, 100, 2
V(J)=8S*X(J)+Y(J)
10 CONTINUE

It should be noted that the indirect addressing was
already made available in vector processing in
AP-FORTRAN:

DIMENSION ¥(100), X(100), Y(100), LX(100)
V(*)=S+X(*)+ YUIX(*))

The above statement is equivalent to the following DO
loop.

DO 10 I=1, 100
VI)=S*xX(I)+ Y(IXU))
10 CONTINUE

Besides the above kind of vector operations, system
functions for vector operations: sum of vector
elements, inner product of vectors, search for max-
imum (minimum) values in a vector elements or its
index. Techniques for these macro operations in
AP-FORTRAN lead to yield current vectorizing
FORTRAN compilers which can detect and vectorize
the above kinds of macro operations by pattern match-
ing of statements. Vector version of basic external func-
tions including elementary functions were also provided
in AP-FORTRAN. Only two FACOM 230-75 AP
systems were installed at users’ sites. The considered
reason for the few system is as follows: The maximum
performance of FACOM 230-75 AP was 22 MFLOPS
and was not enough; absence of automatic vectoriza-
tion in the AP-FORTRAN compiler required rewriting
existing software and users were not willing to do so;
the number of application programs provided for the
machine was small. It is often said that the experiences
of FACOM 230-75 AP formed the basis for the design
of FACOM VP series. There are certain similarities be-
tween array processing functions in AP-FORTRAN
and those in the proposed FORTRAN 8X. In fact
features for array processing in FORTRAN 8X are
already introduced into the extended language of FOR-
TRAN 77/VP.

Automatic vectorization was first realized in the
CRAY FORTRAN compiler. Vectorization in early
CRAY FORTRAN compilers was very restricted and
many system-defined functions for vector operations
were provided. The  first Japanese vectorizing
FORTRAN compiler was for HITAC M-180 IAP
(Integrated Array Processor)[3, 4]. In the HITAC IAP
FORTRAN, a certain kinds of macro operations such
as inner product operation in FORTRAN could be vec-
torized together with assignment statements in the inner-
most DO loop. It should be noted that although there
were restrictions, simple IF statements in FORTRAN
could also be vectorized in the IAP FORTRAN com-
piler. IAP FORTRAN was reviewed in reference[5].
Fully automatic vectorization without resorting to the
use of system defined special functions is indispensable
to popularization of supercomputers and this was first
realized in recent Japanese models of supercomputers
such as HITAC S-810, FACOM VP and NEC SX. It
should be noted that this approach was adopted and
developed in HITAC IAP and NEC IAP.

3. Advanced Vectorization Techniques and its For-
malization

3.1 Relative Execution Order of Statements and Colli-
sion of Variable References

In 3.1, 3.2, we consider basic features in automatic
vectorization and we discuss the DO loops with the
following restrictions:
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[Restrictions]

1) The loop body consists of assignment statements
only. The variable on the left-hand side is neither a sim-
ple variable nor an array variable with constant index.

2) There is no function call in the expression.

3) No variable used in the loop under consideration
are connected with other variables by Equivalence
statements.

If there are several statements in a vectorized loop,
the relative execution order of statements in vector
execution is different from that in scalar execution. Let
us consider the following DO loop:

DO 1=I|,Iz, . ,[,.
S
S,

Sm
END DO

We denote the scalar execution of the statement S;
for the control variable /=1, by (S;, I));. The total scalar
execution of the DO loop is carried out in the following
order:

[Ss L)s, i=1,. .. ,ml, j=1,...,n].

On the contrary if we denote the vector execution of
the statement S; for the control variable I=1; by (S, I;).,
then the total execution of the DO loop is carried out in
the following order:

(s, e, j=1,...,nl, i=1,...,m]

[Definition]) relative execution order of statements

I) In scalar execution mode, the relative execution
order
<, (precede) or =, (same time) or >; (succeed)
between (S;, I)); and (S;, I;-); is defined as follows:

(Si, I)s<s(Si, I;)s=j <)’ or (i< and j=/") (1)

(S, I))s=s(Sr, I;)s=j=j’ and i=7 )

(S, 1)s>(Si, I;)s=j>)’ or (i>8 and j=/") ()
where = denotes if and only if.

II) In vector execution mode the relative execution

order between (S;, 1)), and (Sr, I;-), is defined as follows:

(S, 1), <.(Sr, I),=i<? or (i=0 and j<;’) “)

Si I)e=.(Sr, I;)y=i=7 and j=j &)

Si, 1)o>.(Sr, 1), =i>7P or (i=i and j>j’) 6)

We now give an example. In scalar execution mode the

execution of the statement S, for the control variable

I=1I, precedes the execution of the statement S, for the
control variable /=1, and in fact we have
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(SZ, Il)s< s(Sls IZ)s-

In vector execution mode, however, the execution of
the statement S, for the control variable /=1, succeeds
the execution of the statement S, for the control
variable /=1,. In this case we have

(Sz, Il)v > t‘(SIy IZ)w

The computation result in vector execution mode
must be the same as that in scalar execution mode even
if there are changes in the order of execution of
statements. In order to check this we have to check the
‘“‘reference relation of variables’’ and we introduce
some technical terms:

[Definition] Definition and Use of a variable

If a variable appears on the left-hand side of an
assignment statement, the occurrence of the variable is
called a definition of the variable. If a variable appears
on the right-hand side of an assignment statement, the
occurrence of the variable is called a use of the variable.
The definition or the use of a variable is also called a
reference to the variable.

[Definition] Collision of variable references

When the address of a certain variable v in (S;, I))s
coincides with the address of a variable v’ in (Sr, I;)s, it
is said that there is a collision in variable references.

We now describe how to detect collisions of
references of variables. In case of simple variables, for
any two occurrences of the same identifier, there is a col-
lision of references. There is no problem in detection of
collision of references for simple variables. Let us con-
sider a case of a k-dimensional array identifier. We
denote the index set of an array variable v in (S;, ;); and
that of an array variable ¢’ in (S;, I;)s by (f1, /2 - - -,
Sy and (f1,f3...,f%, respectively, where f,
(1=p=k)is a function of I;and f} (1 =p=k) is a func-
tion of I. There is a collision of references when there
is a set of integer solutions valied as control values satis-
fying the following Diophantine equations:

Si=f1

Sr=f3 @

Si=fk

In case of control values of DO loop and values of f,
and f, (1 =p=k) can be computed at compile time, it is
possible to verify the existence/nonexistence of valid
solution of the equation by computation at compile
time. If the upper and/or lower bound of the DO loop
control variable are/is given by variables and cannot be
determined at compile time, then the Diophantine equa-
tion must be solved symbolically. If the form of expres-
sions for array index is restricted, e.g. a linear form,
there are cases where the Diophantine equation can be
solved symbolically. In actual programs expressions of
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Table 1 Cases of Collision of References

case vin (S, I), v in (Sp, 1),
I Definition Use
11 Definition Definition
11 Use Definition

v Use Use

Table 2 Dependence Relations

S0y )e:(Siy 1),

case ) @ )
< = >
D) vin (S, I));: Def Flow Anti Anti
v’ in (S, Ip)g: Dependence?® Dependence Dependence?*
Use
1) v in (S, I): Def Output Output
v’ in(S;, I):  Dependence?* Dependence?*
Def

array index have simple forms in many cases where
detection of collisions of references can be done rela-
tively easily. If nonexistence of solution can be verified,
then there is no collision of references and the loop can
be safely vectorized. It should be noted that this is a
sufficient condition and even when it is difficult to prove
nonexistence of solution at compile time, there are
many cases where there is no solution in practice. In
those cases a compiler must stand on the safer side and
abandon vectorization of the loop. In order to cope
with this situation, a compiler usually provides com-
piler option of ‘forced vectorization’ by user-supplied
information on reference relation of variables.

3.2 Dependence Analysis and Condition for Vectoriza-
tion with/without Statement Reordering

When there are collisions of variable references, we
must analyze the situation more precisely. We use
dependence analysis technique discussed by the research
group of Kuck. It should be noted that we will pay
careful attention to statement reordering in vectoriza-
tion, different from the treatment described in Paudal6].

Let us assume that there is a collision of references be-

tween v in (S;, I)); and ¢’ in (S, I;);, namely the address
of v is equal to that of »>. We must consider the follow-
ing cases shown in Table 1:
For case IV, there is no problem from the view point of
vectorization, because the computation result cannot be
affected by the changes in the execution order. Cases I
and III can be treated in the same way and without loss
of generality, we can only consider case I as a represen-
tative. Thus in the following we consider cases I and II.
The relative execution order between (S;, I)s and (S:,
I;), is either <; or =; or >, and we can further carry
out case analysis which can be summarized as the
following Table 2:

We now give some definitions of technical terms:

[Definition] Flow Dependence

If the value defined by the statement S; is used in the
statement S;, then it is said that there is a Flow
Dependence relation from the statement S, to the state-
ment Si-. This relation is denoted by

S0 Si. ®
[Definition] Anti Dependence

If the old value used in the statement S; is redefined
in the statement S;, then it is said that there is an Anti
Dependence relation from the statement S; to the state-
ment S;. This relation is denoted by

S 0S8 )]
[Definition] Output Dependence

If the value defined in the statement S; is redefined in
the statement S;, then it is said that there is an Output
Dependence relation from the statement S; to the state-
ment S;.. This relation is denoted by

S S;. (10

In the following we consider cases given in Table 2.
Case 1-(1): v: Definition; »’: Use and (S;, I)); < (S, I;")s

If there is no assignment statement for the variable v
between S; and S;*, then the value of v defined in (S;,
I), is actually used in (S:, I;-); and there is a Flow
Dependence from the statement S; to the statement S;.
Depending on the relation between i and /°, the relation
can be represented graphically as shown in Fig. 1.

For the case (a), Eq. (1) and (i<’) give

(i<i’) and (j=,°) (11
and from Eq. (4), we have
(S,', [j)u<t‘(si's [J)'

Since we are now analyzing the case of (S;, 1) <s(Sr, S/)ss
the relative execution order in vector execution mode is
the same as that in scalar execution mode, as far as
definition and use of variable v and »’ are concerned. In
this case DO-loop can be vectorized. Let us give a sim-
ple example:

DO 10/=1, N
C(I+1)=A)+B{)
E()=C{I)—D()
10 CONTINUE
In fact for the array variable C, there is a collision of
references between (S, I)); with I;=j+1 and (S, [;)s

with I;;=;’. The Diophantine equation to be solved is
given by

*If there is an assignment statement S;* for the variable » between
S;and §;, then the value defined in S; is killed by the definition in S’
and cannot reach to the statement S], and therefore there is no
dependence relation between S; and S;. The marks‘?’ in Table 2 deno-
te the necessity of carrying out this kind of flow analysis.



(@i<i
=y

can be vectorized

bi=7
i<y

cannot be vectorized because of
recurrence nature, except for the
first order recurrence of some
special form

@i>7
i<y

1

cannot be vectorized as it is
but can be vectorized with
statement reordering

00 § OO

Fig. 1 Flow Dependence Relation.
v in (S;, I);: Def; v’ in (S;, 1) Use

j+1=y

and this has the solution set (/, /")=1{(1,2), (2,3), . . .
(N—1, N)}. For this set of solutions we can verify that
Egs. (1) and (4) hold.
For the case (b), Eq. (1) and (i=i") give

@(i=7)and (j<)’) 12)
and in this case, too, we have

(Sis I)o<o(Ses I5)o-
We give an example:
DO 10 I=1, N
c(I+nN=Cc)/B{)
10 CONTINUE

From the logical point of view, the relative execution
order is preserved but owing to the nature of pipeline
arithmetic, this case is inadequate for vector operation.
In fact except for the first order recurrence in a simple
form, this kind of recurrence loop cannot be vec-
torized.

For the case (c), Eq. (1) and (:>7") give
(>7) and (j</") (13)
and in this case, we have from Eq. (6)
(S, I)o>o(Sr, 1)

Since we are now analyzing the case of (S, )s
< «(Sr, I1)s, the relative execution order in vector execu-
tion mode is different from that in scalar execution
mode. In this case DO-loop cannot be vectorized. Let
us give a simple example:
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]

Fig. 2 Recurrence Flow Dependence Relation.

DO 10I=1, N
E(=C{)—-Dd)
C(I+1D=Al)+B()

10 CONTINUE

It is easy to see that without changing the meaning of
the program, this DO-loop can be transformed into the
DO-loop we considered as the case (a). So if we allow a
compiler to reorder source statements for vectorization,
then the compiler can vectorize this loop.

Let us consider the following example:

DO 10 I=1, N
c=A)+B(I) S
A(I+1)=Cc()-D({) A

10 CONTINUE

In this case there are two collisions of variable
references. One is for the variable A and the other is for
the variable C. It is easy to verify that both of them are
flow dependence relations. There is a cycle in the
dependence graph shown in Fig. 2 and this loop cannot
be vectorized because of its essentially recurrence
nature.

Case I-(2): v: Definition; v’: Use and (S;, I))s=5(S¢, I;)s
From Eq. (2) and (5), we have
i=r, j=y (14)
and
(Sis I).=o(Se, Ir).e
We give a simple example for this case:
DO 10 /=1, N
C()=C{)+B{)
10 CONTINUE

The value of C(J) is used first in the evaluation of the
right-hand side and then the store operation is carried
out (anti dependence relation). There is no problem in
vectorization.

Case I-(3): v: Definition; v’: Use and (S;, 1))s>s(Sr, Ij")s

If there is no assignment statement for the variable v
between S» and S;, then after the value of ¢’ is used in
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(Si, I;)s, the variable v is defined in (S;, I});. There is an
Anti Dependence relation from the statement S; to the
statement S;. Depending on the relation between i and
i’ the relation can be represented graphically as shown
in Fig. 3.

For the case (a), Eq. (3) and (i< /) give
(i<i’) and (j>,) (15)
and from Eq. (4) we have
Sis 1o <o(S, 1)

Since we are now analyzing the case of
(Si, I))s>5(Siv, 1), the relative execution order in vector
execution mode is different from that in scalar execu-
tion mode. In this case DO-loop cannot be vectorized
without statement reordering. We give a simple exam-
ple:

DO 10 I=1, N
C)=A)+B() S
EN=Cd+1)—D() S,

10 CONTINUE

In fact for the array variable C, there is a collision of
references between (S, I))s with I;=j and (S, I;) with
Ir=;+1. The Diophantine equation to be solved is
given by

j=y+1
and this has the solution set (/, /)=1{(2,1),(3,2), .. .,
(N, N—1)}. For this set of solutions we can verify that
Eqgs. (3) and (4) hold. If we are allowed to introduce a
temporary array, then the above loop can be transform-

ed to the following loop which is vectorizable without
statement reordering.

DO 10 I=1, N
TEMP(I)=C{I+1) So
C)=A)+B{) S,
E({)=TEMP({)—D() S,

10 CONTINUE

The dependence graphs for the original loop and
modified loop are given in Fig. 4.

For the case (b), Eq. (3) and (=) give

(i=i"y and (j>j’) (16)
and in this case, we have

Sis I)o> (S, Ir)..
There is no problem for vectorization. We give an exam-
ple:
DO 10/=1,N
C(H=CcJ+1)/B{)
10 CONTINUE

bi=ri
>y

can be vectorized
- can be neglected in the
8 dependence graph

|(a) i < i
3> cannot be vectorized as it is but
/. can be vectorized with statement
\ & reordering or using a temporary
array

@i>7
AES

can be vectorized

Fig. 3 Anti Dependence Relation.
vin (S;, I),;: Def; ¢ in (S;, I;): Use

( S Sp

Sg

(i) (ii)

Fig. 4 Vectorization using a temporary array.

For the case (c), Eq. (3) and (i>/") give
(i>7) and (jz)) an
and in this case, we have from Eq. (6)
(Sis 1)0> (S, I7)e-

Since we are now analyzing the case of (S;, )s> (S,
I;),, the relative execution order in vector execution
mode is the same as that in scalar execution mode. In
this case DO-loop can be vectorized. We give a simple
example:

DO 10 /=1, N
E()=C(+1)-D({)
C)=A(I)+B(I)

10 CONTINUE

As far as cases II-(1) and 1I-(3) are concerned, we can



& i>7
: <j‘ °

(@)i<i
50
§0 @  cannotbe

= @
can be vectorized ;f:stg: irzi;dgwithout
> ) @

Fig. 5 Output Dependence Relation.
vin (S, I));: Def; ¢ in (S, I;));: Def

only consider the case II-(1) without loss of generality.
Case II-(1): v: Definition; »’: Definition and (S, I))s
<S(Si's IJ)S

If there is no assignment statement between S; and S;,
then there is an output dependence relation, as shown
in Fig. S.

(@ i<r
For this case, we have from Eq. (1) and (i</’)
i<i’ and j=j’ (18)

Since (S, 1));<s(S+, I;)s and i< P, the relative execution
order is preserved in vectorization. Thus there is no
problem for vectorization. Although not an interesting
example, we give an example:

DO 10 /=1, N
CU+1)=A)+B{)
CH=EI)-DW)

10 CONTINUE
(b) i>?

Eq. (1) and (i>7) gives
> and j<j’. 19)

In this case the relative execution order is changed by
vectorization, therefore this loop cannot be vectorized
without statement reordering. We give an example:

DO 10 /=1, N
C(H=Al)+B()
CU+1)=EU)-D()

10 CONTINUE
Let us consider the following example:

DO10/=1,N
CU)y=AI)+B()
Ccd+1DH=C(H—D{)

10 CONTINUE

This loop cannot be vectorized by simple statement
reordering, because there is a cycle in the dependence
graph shown in Fig. 6(i). Introducing a temporary ar-
ray, the loop can be transformed into the following
loop which can be vectorized:
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s1 )

S2

Sr )

i) (ii)
Fig. 6 Vectorization by reordering statements and using a tem-
porary array.

Table 3 Vectorizability of statements. V: Vectorizable; S: Not Vec-
torizable because of recurrency; VR: Vectorizable with
Reordering Statements; VT: Vectorizable using Tem-
porary; VR*: Vectorizable with Reordering Statements and
using Temporary

vin (S, L), i ¢

o in (Sp, L), PP Dependency Vectorizability

v: Def i< j=j Flow \Y

v’: Use =i j<y Flow S
>0 j<) Flow VR
i<’y j>j Anti VT, VR
iz jzj Anti \%

v: Def i< j=j Output v

v*: Def > j<yf Output VR*

DO 10/=1, N

TEMP(I)=A(I)+ B(I)
C(I+1)=TEMP(I) - D(I)
C(I)=TEMP()

10 CONTINUE

The dependence graph of this loop is shown in Fig.
6(ii).
Results given in Figs. 1-6 and Eqs. (11)-(19) can be sum-
marized in Table 3.

We can now summarize the analysis that we have so far
described:

If we carry out analysis of collision of variable
references and dependence analysis using compiler flow
analysis techniques if necessary, and make a
dependence graph. We can say the following:

[Vectorization without Reordering Statements]

1) The loop can be vectorized if there is no upward-
directed edge in the dependence graph.

2) The loop can be vectorized if there is no upward-
directed edges except for those of anti dependence rela-
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tions, because upward-directed edges related to anti
dependence can be eliminated by introducing tem-
porary arrays. This case can thus be reduced to case 1).

[Vectorization with Reordering Statements)

The loop can be vectorized if there is no cycle (strong-
ly connected components) which consists of only edges
related to flow dependence in the dependence graph.

Vectorization can be done by the following steps:

1) Elimination of cycles in the dependence graph
Even if there is a cycle in the dependence graph, at least
one edge of the cycle is related to anti dependence or
output dependence. By introducing a temporary array
and reordering statements if necessary, the cycle can be
broken. This procedure is repeatedly applied until there
is no cycle in the dependence graph.

2) Elimination of upward-directed edge in the
dependence graph
Using the topological sort, as pointed out in the
reference[7], the dependence graph can be transformed
(reordered) in such a way that there is no upward-
directed edge in it.

3) Vectorization
The program can now be vectorized.

It should be noted that except for cases of essentially
recurrence algorithms, the loop can be vectorized if we
allow a compiler to reorder statements and this is re-
alized in recent Japanese FORTRAN 77 compilers.
Although the maximum degree of vectorization is good
for production programs, there are cases where it is
good to restrict vectorization by prohibiting a compiler
to reorder statements; it makes it easier to identify a
statement causing a run-time error. It is convenient for
users to have this kind of control on the degree of vec-
torization by a compiler option. (e.g. NOADYV option
in FACOM FORTRAN 77/VP). Table 3 gives con-
ditions of vectorization with/without reordering
statements. It should be noted that the conditions in
Table 3 can be verified rather easily.

3.3 Vectorization in Other Cases

In this section we briefly summarize vectorization of
loops which were not treated in the previous section. So
far we assumed the variable on the left-hand side is
neither a simple variable nor an array variable with a
constant index. Important cases involving simple
variables are cases of macro operations, such as vector
sum and inner product operations, and cases where a
temporary array variable must be used for vectorization
as in the following example:

DO10/=1, N DO10I=1,N

X= ... TEMP({)= . ..

=..X =TEMP(). . .

10 CONTINUE
X=TEMP({)

These cases are well treated by recent vectorizing com-
pilers and there seems to be no problem.

In vectorization of IF statements, there are three
kinds of patterns of object codes supported by the hard-
ware in case of FACOM VP, and one of them can be
selected depending on conditions such as how often the
condition of the IF statement becomes true. Detailed
description of them is given in reference[8]. The compil-
ing algorithm of IF statements on HITAC S-810 is de-
scribed in reference[9]. In case of NEC SX system,
readers are referred to reference[10]. Vectorization of
the loop involving ‘GO TO statement going outside the
loop’ is not easy in general but such a loop can be vec-
torized in Japanese FORTRAN 77 compilers under cer-
tain rather restrictive conditions. In case of multiply
nested DO loops, techniques in existing compilers are i)
the loop interchange, ii) reduction of tightly nested
loops into a single loop, and iii) splitting a non-tightly
nested loops into separate tightly nested loops[10]. The
loop interchange technique is used if the original inner-
most loop has a recurrence data reference relation, but
by the loop interchange, the innermost loop becomes
vectorizable. It is also used in such a way that vectoriza-
tion becomes most efficient from the view point of
memory access pattern. Continuous memory access is
generally most efficient compared with constant stride
access or indirect access, and if both 7 and J can be the
control variable of the vectorized loop involving A(Z, J),
then a compiler tries to select 7 as the control variable of
vectorization. As far as techniques ii) and iii) are con-
cerned, the situation is not so easy and the condition im-
posed on current compilers are very restrictive. Tsuda et
al.[11] give a method to treat general multiply nested
DO loops by vector indirect addressing.

10 CONTINUE

4. Some Analysis of Loop Unrolling Transformation
and Related Codes

Although the peak performance of supercomputers is
very high, e.g. several hundreds MFLOPS or one or
two GFLOPS, one of the problems with this type of vec-
tor supercomputers is that it is not necessarily easy to
attain such high performance with ordinary programs.
In fact it is often said that in case of register-register
type of vector supercomputers, such as CRAY-1, there
are typical three performance levels[12, 13].:

Scalar: a performance level when a vector processing
unit is not utilized in the computation

Vector: a performance level when a vector processing
unit is effectively used in the most CPU-time consuming
part of the computation

Super-vector: a performance level when vector pro-
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cessing units are fully utilized. Chaining is effectively
used.

In order to attain high performance, there are many
things to be considered. Among them are whether a
computational algorithm used is well vectorized or not,
characteristics of hardware and compiler, programming
techniques such as loop unrolling and hidden perfor-
mance bottleneck caused by various details such as
memory bank conflict. Supercomputers have inherently
specific characters and characteristics differ greatly
from computer to computer. It is often the case that a
slight modification in an algorithm or in a program
causes transition from one performance level to higher
one. The loop unrolling technique for nested loops is
one of few general and powerful programming techni-
ques. Loop unrolling applied to the inner loop is one of
common optimizing transformation which is effective
on scalar computers. On the other hand, loop unrolling
for the outer loop is useful for supercomputers. It is
often quite effective to attain super-vector performance.
Although conceptually simple, and generally effective,
the reason why it is effective in performance improve-
ment is not so simple. It depends on computer architec-
ture and the compiler used. For example, if there are
sets of the same kind of independent pipeline arithmetic
units, as in the case of HITAC S-810, then the loop
unrolling transformation enables the compiler to make
full use of many independent pipeline arithmetic units.
This immediately leads to effective performance im-
provement. Even if there is only one set of the same
kind of arithmetic pipeline unit as in the case of CRAY-
1 and FACOM VP, the loop unrolling technique is still
effective. In order to carry out quantitative analysis, we
consider a model of a register-register type vector super-
computer to model CRAY-1 or FACOM VP etc, which
is similar to that used by Dongarra[14]. We assume the
following virtual vector instructions

VL M Vector Load Load from memory
r<M to
vector register
including a constant
vector
VST rn M Vector Store Store from vector
r—-M register to memory
VAD r3, r1, r2 Vector Add Vector elementwise
r3<r+r2 addition Vector

VMS r2, rl, s Vector Multiply each element
MultiplyScalar of vector by scalar
r2<rl*s

Vector Register Transfer from vector
Transfer register to vector
r2<rl register

VTR 2, r1

where r or r; denotes a vector register, s denotes a
floating point scalar register and M denotes the memory
address.

Following Dongarra, we assume that the time chart
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Fig. 7 Time chart of instruction execution.

of instruction execution can be represented by Fig. 7:

The parameters 7' and 7, are Hockney’s
parameters and rz' denotes the maximum performance
and n,,;, N-half gives the vector length for which a half
of the maximum performance is attained[14]. We
assume chaining may occur after the time rx' ny/, has
elapsed. For simplicity, we assume that all the instruc-
tion can produce one result per chime and the values of
ny, are all equal. Different from conventional scalar
computers, it is not allowed to use a single vector
register both as an operaned register and as the resul-
tant register on vector computers, and we assume the
VTR instruction.

Let us consider the following program for matrix
multiplication using SAXPY operation. The method is
called the middle product method. For comparison of
the method with other method such as the inner pro-
duct method, readers are referred to[14-16].:

DO 40 J=1, N
DO 10 /=1, N
X(I)=0
10 CONTINUE
DO 30 K=1, N
DO 20 I=1, N
X(I=X{I)+B(, K)xC(K, J)
20 CONTINUE
30 CONTINUE
DO 40 /=1, N
A, J)=X{)
40 CONTINUE
If the compiler cannot produce object codes to keep
the value of X (/) in a vector register during the execu-
tion of loop 30, and only one load/store pipeline is
available, then we can give the execution chart in Fig. 8:

The cpu time can be estimated by the following equa-
tion, where n denotes the value of the variable N:

T\=rz'n*(3n+5n,) (20)

Now let us consider the program in which loop unroll-
ing of depth m is applied to the loop 30: The relevant
portion of the program is given as follows:

NN=(N/m)*m

DO 30 K=1, NN, m

DO 20 /=1, N
X(H=X({I)+BU,K)*CK, J)+
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n2

------------ inner loop (%) -

VL rl, X rl<X
VL 2, B r2<B
VMS r3,r2,fc  r3er2*fe
VAD rd, r1,r3 rd~rli+r3

VST rd, X rA—-X
------------ inner loop end --------o---

Fig. 8 Time chart of the program without unrolling (1). X(/) is not kept in a vector register in this case. The vectorized instructions for the inner-
most loop 20 are repeated for »* times (J=1, N; K=1, N), where n denotes the value of variable N.

L1 VL
L Lt Vb
fl avms togvms
E LL__1 VAD . LL_1VAD
Lerrennrene ettt » VST L1
M (m) =

n2/m

--------- inner loop (n*/m) ---------
VL r, X
VL r,B
VMS r3, r2, fc
VAD rd, rt, r3
VL r2,B
VMS i, r2, fe
VAD rl,rd, r3
VST rl, X
----------- inner loop end ------------

m: even

Fig. 9 Time chart of the loop program with unrolling (1). X (/) is not kept in a vector register.

. +BU,K+m—1)
*CK+m—1,J)

20 CONTINUE
30 CONTINUE
IF (MOD(N, M).NE.O)THEN

... (*post processing of remaining loop for
K=NN+1, N

ENDIF

For this case we can give the time chart shown in Fig. 9.
In this case the cpu time can be estimated by the follow-
ing equation:

T.=rz'nt/m{(m+2)n+(@Bm+2)n,} (21)

where we assumed that mod (n, m)=0 for simplicity. If
we define the effect of the loop unrolling in this case by
E,=T./T.., then we have

E,=m(3+5n,2/n)/ {(m+2)+@Bm+2)n,,2/n}
=3m/(m+2) n»np; (22)

We give values of E, for values of m usually used in
Table 4.

If we compute E, from the MFLOPS data reported
by Dongarra[l4], we have for m=2, 4, 8, 16,
E,=60/39(=1.54), 83/39(=2.13), 101/39(=2.59),
111/39(=2.85), respectively for CRAY-1M. It can be
said that the result is in fairy good agreement with
Table 4. For the data of CRAY-1S, E, for m=2, 4, 8,
16, are 53/40(=1.33), 72/40(=1.80), 86/40(=2.15)

Table 4 Effect of Loop Unrolling computed by Eq. (22)

m E,
2 1.50
4 2.00
8 2.40

16 2.67

and 96/40(2.4), respectively. In this case it is not as
good in agreement as in the case of CRAY-1M.

Let us consider the case where the compiler can pro-
duce object codes to keep X(I) in a vector register®.
Furthermore we assume that there are two load/store
pipes. We can give the instruction sequence and its tim-
ing chart for the unrolled program on our model shown
in Fig. 10. On vector computers, vector register r4 must
not be equal to r1 in the VAD r4, rl1, r3 instruction and
we must use the VTR instruction.

In this case the cpu time can be estimated by

T:=2ra'n{n(n+2n,,5)+(n+n,)} (23)

If we apply the loop unrolling to the loop program
once, we have the instruction sequence and timing chart
given in Fig. 11, where we assume that m is even. It
should be noted that it is not necessary to use VTR in-

*For the simplicity of analysis, we give an analysis for the case
when n=n,, where n, is the length of a vector register. It should be
noted that even in the case when n>n,, X(I) can be kept in a vector
register during execution of the nested DO loop, if the loop segmenta-
tion technique is used. We give discussion on the effect of n, in Appen-
dix.
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VL rl, X rl—X
------------ inner loop (n) ------------
VL r2, B r2«<B
VMS r3, r2, fc r3—r2*fc
VAD rd, rt, r3 rd—rl+r3
VTR rl, r4 rl«r4
------------ inner loop end ------------
VST rl, X rl—=Xx

Fig. 10 Time chart of the loop program without unrolling (2). X(7) is kept in a vector register.

L1 VL
: L] VL

L1 VL

2 |_1_|L;1 VAD

vsT Lo
w2 )

n

VL rl, X rl—=X
------------ inner loop (n?) --------eeo
VL r2, B r2«<B

VL r3, B r3<B
VMS rd, r2, fc rd—r2*fc
VAD rs, rl, r4 rS«rli+r4
VMS 6, 3, fc r6+-r3*fc
VAD rt, r5, r6 rlers+ré

------------ inner loop end -----oooee-
VST r, X ri-Xx

Fig. 11 Time chart of the loop program with unrolling (2). X(/) is kept in a vector register.

struction. The cpu time can be estimated by
To=ra'n{(n/2)(2n+5n,,2)+(2n+2n,,,)} (24)

Therefore in this case we have for the effect of loop
unrolling E», =T/ T,

E»=2{n(n+2n))+(n+n)}
[{n(n+5/2n2)+2n+2n,2)} (25)

In order to check the validity of Eqgs. (24) and (25), we
show the result of experiments on FACOM VP 200 at
Data Processing Center of Kyoto University.

The graph of E, vs n the order of matrix is shown in
Fig. 12. If n> vn,;, we can consider the higher order
terms of n in Eq. (25) and we have from Eq. (25)

E,=2-2/Q2n/ni;»+5) =2(n/nmp>»1).  (26)

The graph of Eq. (26) is also shown in Fig. 12, and it
can be said that the result can be explained by the
analysis and Eq. (26).

Although the same unrolling technique is used, the
situation varies depending on whether X'(/) is kept in a
vector register or not. In the following we give more
discussion on this point. Judging from the time chart
shown in Fig. 11, even if we apply loop unrolling with
the depth of m>2, we cannot expect significant im-
provement in performance. On FACOM VP 200 (clock
cycle:7.5 nsec; FORTRAN 77/ VP V10L20) at Data Pro-

Table 5 Matrix multiplication of FACOM VP 200 (clock cycle 7.5

ns, FORTRAN 77/VP Compiler V101.20) (N=2300)

m MFLOPS
1 245.2
2 434.2

4 450.6

cessing Center of Kyoto University, we obtained the
following data given in Table 5:

In fact with m=2, the super-vector performance was
already obtained and the improvement for m>2 was
not so significant.

In the above measurement, even in the case of m=1,
the DO statement

DO 30 K=1, NN, m

was used to avoid the effect of the compiler optimiza-
tion effect. If we use the DO statement

DO 30 K=1, N

then the compiler detects the situation where the loop
unrolling is applicable, and it really carries out the loop
unrolling optimization in the form of duplicating the
body statement. Unfortunately in this case, unnecessary
register transfer code is issued and the measured perfor-
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Fig. 12 The loop unrolling effect.

mance was 251.5 MFLOPS (vector performance).
Although it is better than the performance without
unrolling in Table § (m=1) but not as good as the result
of m=2 (super-vector performance). If we replace the
loop body of the unrolled loop by

X(=X(I)+BU, K)*C(K, J)
X(NH=XI)+BU, K+ 1)*C(K+1,J)

X(N=XI)+BU, K+m—1)*C(K+m—1,J)

then the performance obtained on FACOM VP is only
vector performance, while the super-vector perfor-
mance was attained before. The reason for the poor per-
formance is that extra register transfer codes are issued.
This shows that on FACOM VP, the loop unrolling
technique in a general form is not so effective, but if it is
carefully coded, the program with unrolling depth 2
gives a satisfactory performance. It is advised to use ex-
plicit loop unrolling carefully on FACOM VP.

On HITAC S-810, the loop unrolling is generally
effective up to the depth of approximately 10. In fact
compiler supports option for automatic loop unrolling
up to depth 10. The above two forms of the unrolled
body give quite similar performance and good code is
produced by the compiler from both forms of the
source code, although load/store instructions are
issued in the inner loop. The important part of the
generated codes are:

VLD
VLD
VMAD
VLD
VMAD

VSTD

Table 6 Effect of Loop Unrolling on HITAC S-810

m MFLOPS E,
| 184.7 1.0
2 325.6 1.76
4 404.4 2.19
8 428.4 2.32
0

446.9 2.42

We give the results of the unrolled program with the
second form of the unrolled body on HITAC S-810 at
Computer Center at University of Tokyo in Table 6.
Measurement was done on August 7, 1987 and the com-
piler used was FORTRAN 77/HAP V20-1C. It seems
performance improvement comes from the fact that rel-
ative weight of load/store instructions decrease as the
unrolled depth increases.

5. Conclusion

We gave a detailed description of basic features of
vectorization. Using the dependence analysis technique,
we made it clear under what condition a loop program
can be vectorized without/with reordering of source
statements, or using a temporary array. In the latter
part of the paper, we gave some performance analysis
of the loop unrolling technique which is one of few
general and effective programming techniques. Without
using machine specific details, e.g. details concerning
chain slot time, performance behavior of the method
become clear to some extent. It became clear that the
features of object code generated by compilers affect
the performance behavior of the method greatly.
Recently compiler technology made a progress to han-
dle this problem but in some cases, there is still room to
be improved. If one wants to make use of the computa-
tion power of vector processors fully, he must pay
careful attention to the problem.

Supercomputers become much more accessible and
easy to use than those of the past generation, owing to a
progress in vectorizing compilers and support software
systems, such as interactive software tools for vectoriza-
tion. However, current systems do not give enough in-
formation to users who want to use fully the computa-
tion power of supercomputers, e.g. information on
possibility of memory bank conflict. It will become an
important problem to future support systems how more
detailed technical information can be presented to users
for effective program improvement in a user-friendly
way.
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Appendix Analysis of the effect of the length of a vec-
tor register
Without loss of generality we can write
n=p-n+q 0=p, 0<qg=n, (Al)

If a vector operation with the vector length » is carried
out as successive p vector operations with the vector
length 7, and the vector operation with the vector length
q, then the CPU time for the total operation can be esti-
mated by the following equation:

t=p-rz'(n+mp)+ra(gtng)
=ra'{n+(p+1)-np} (A2)
Corresponding to Eq. (22), we have
Ei=m(3+5(p+1)ni;2/n)
H{m+2)+@m+2)(p+Dnisa/n}
—m(3+5pn 2/ n)
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[H{m+2)+(@Bm+2)pn,n/n} n—

From Eq. (Al), we have p/n=1/n,—(q/n,)/n—-1/n,,
if n— 00, And we have

E,~»m(3+5n,:/n)
Hm+2)+@Bm+2)n2/n} n—o

If n,/n, is small enough compared with 1.0, then
E,=E,.

Let us consider the case where the compiler tries to
keep X(I) in a vector register, and n>n,. We can use
the loop segmentation technique. If NR is set to n,, the
length of the vector register, the DO loop 30 can be
replaced by the following loop:

DO 35 II=1, (N—1)/NR+1
IIS=(II-1)*NR+1
IIE=MIN (N, IT*NR)
DO 30 K=1, N
DO 20 I=1IS, IIE
X()=XI)+B(, K)*CK,J)
20 CONTINUE
30 CONTINUE
35 CONTINUE
Corresponding to Egs. (23) and (24), we have
T3=2rzx'n[n{n+2(p+n, 5} +{n+(p+ Dni 2} (23°)
and
Th=ra'nl(n/2){2n+5(p+ Dni 2}
+{2n+2(p+)n2}] (24)

Therefore in this case we have for the effect of loop
unrolling E},= T3/ Thu’

E3,=2[n{n+2(p+Dn 2} +{n+(p+ Dny:}]
[In{n+5/2(p+Dmp}+{2n+2(p+ )m 2}
=2{1+2n,2(p+1)/n}/{1+5/2n,,(p+1)/n}
=2—{mp(p+1)/n}/{2+5n,(p+1)/n}
=2—(m2/n)/ 2+5n,:/n,).

In case of FACOM VP-200, n,=1024 and n,,,=~ 80 and
ni;2/ n, is neglisible small. E3, tends to 2 as in the case of
our previous analysis.
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