A Theorem Proving System for Logic
Design Verification

NAOYUKI YAMADA,* YASUHIRO KoBAYASHI* and TaKAsHI KiGUCHI*

This paper describes a logic design verification system based on a heuristically guided theorem proving
method. The system called HTPS consists of three main programs; meta-level program, base-level program and
control program. In the meta-level program, domain specific knowledge expressed in the form of a rule is used
to generate guidance for the proof procedure. According to this guidance, proof is performed in the base-level
program. The control program regulates these procedures. In order to facilitate this hierarchical inference
mechanism, a connection graph method is adopted as the proof strategy in the base-level program.

HTPS was successfully applied to verification of logic circuits and its effectiveness and usefulness were clearly

demonstrated.

1. Introduction

Hardware verification that makes use of the theorem
proving techniques has been receiving much attention.
It is considered to be one alternative to numeric simula-
tions for verification of the correctness of logic design
[1]. Verification by theorem proving techniques,
sometimes referred to as formal verification, is based on
the following idea; if the proposed design is correct and
meets its design specifications, the specifications can be
logically proved as a theorem under the proposed
design. Under a hierarchical design methodology of
digital systems, there are several steps that can be
viewed as levels in the design process. Usually, verifica-
tion utilizes this hierarchical nature; i.e. verification is
done by proving the desired behavior specified at one
level of the design hierarchy under the proposed im-
plementation at a level one lower.

One notable study with this verification method was
performed by Wagner [2], who developed a non-pro-
cedural hardware description language RTS (Resister
Transfer Statement) and used a theorem prover called
FOL (First Order Logic) [3]. Although the proof of an
8 bit multiplier with 260 steps was excellent, it was en-
tirely guided manually. Wojcik and his coworkers tried
to automate a proof and used AURA (Argonne Na-
tional Laboratory Automated Reasoning Assistant) as a
theorem prover in their design verification system [4].
Recently, AURA has been replaced by a more portable
system LMA (Logic Machine Architecture) [5]. They
showed the feasibility of generating a proof automati-
cally by verifying simple logic circuits [6].

In these works, existing general purpose theorem pro-

Energy Research Laboratory, Hitachi Ltd. 1168 Moriyamacho,
Hitachi, Ibaraki 316, Japan.

A paper submitted to Journal of Information Processing for review
by Information Processing Society of Japan.

Journal of Information Processing, Vol. 11, No. 2, 1988

vers were employed to generate a proof, and in order
for efficient verification, domain specific knowledge was
utilized implicitly only in the selection of proof
strategies they provide and/or in the way of grouping
axioms which were supplied to them. Therefore, com-
plexity of the proof process was still exceedingly high,
even in the case of verification of simple logic circuits.
Certainly, the efficiency of verification depends heavily
upon the symbolic manipulation abilities that the
theorem prover has. However, there still remains a
possibility to improve the efficiency drastically by in-
troducing domain specific knowledge explicitly into the
control of a proof procedure. From the viewpoint of ar-
tificial intelligence, control of the proof procedure can
be categorized as an inference mechanism known as
meta-level reasoning.

This paper describes an efficient theorem proving
system called HTPS (Heuristically guided Theorem Pro-
ving System), which is suitable for logic design verifica-
tion. HTPS is a resolution-based theorem prover which
embodies an introduction of domain specific knowledge
explicitly into the control of the inference procedure. It
adopts a connection graph method as an appropriate
proof strategy in order to make the hierarchical in-
ference easy to perform.

2. Hardware
Method

Verification by Theorem Proving

2.1 General Description

The logic design verification method by theorem prov-
ing techniques involves verifying a proposed design by
proving the design specifications under the proposed
design. As mentioned before, this technique is used
under a hierarchical design method [1] and so the pro-
posed design and its specifications are sometimes refer-

A Theorem Proving System for Logic Design Verification

[oo

1(0) 1(1)
MC

S-R Flip-flop

R Q
MC :Mode control
SL :Serial input
CLK: Clock s
CLR:Clear signal

—JCcK

[

CLK
CLR

Qo)

Fig. 1 Partial logic circuit diagram of the 4 bit shift register.

(Rt CLR (Rf Q 0 0) c0) (2-1)
(Rt (And (Not CLR)(Td CLK)) (Rf Q 0 0) &) (2-2)
(Rt (And (Not CLR)(Not (Td CLX))) RfQ 0 0) REQO00) (2-3)
(Rt c1 (Or (And (Not MC) SL)(And C (Rf I 0 0)))) (2-4)

Fig. 2 Part of the RTS expression of the 4 bit shift register.

(Eq (Conc (Rf $x 0 0)(Rf $x 1 $m)) (Rf $x O $m)) @3-
(Eq (Conc (Rf $x 1 1)(Rf $x 2 $m)) (Rf $x 1 $u)) 3-2)
Bq (Conc (Rf $x 2 2)(Rf $x 3 $m)) (Rf $x 2 m)) (3-3)

(if (and (Rt $x $a $c) (Rt $x b §c))
(Rt $x (Conc $a $b) $c)) (3-4)

—

Fig. 3 Examples of axioms.

(not (Rt CLR (Rf Q 0 3) c0) @1
Paramodulation on (3-1)

(not (Rt CLR (Conc (Rf Q 0 0) (Rf Q 1 3)) c0)) @-2)
Resolution on (3-4)

(not (Rt CLR (Rf Q 0 0) c0)) V (not (Rt CLR (Rf Q 1 3) c0)) (4-3)
Resolution on (2-1)

(not (Rt CLR (Rf Q 1 3) c0)) (4-4)

Fig. 4 An example of proof process.

red to as the proposed implementation and the desired
behavior, respectively.

In order to realize this verification, the following
three key techniques are required; (a) the development
of a flexible hardware description language which
covers broader levels of design hierarchy, (b) the
establishment of enough axioms which operate upon
the theorem to be proved and form a proof process and
(c) the development of an efficient theorem proving
system with powerful symbolic manipulation ability to
generate a proof. Usually, a non-procedural language is
used as its description language. As for the theorem pro-
ver, a resolution-based one is adopted since it is suitable
for mechanical theorem proving.

93

Table 1 RTS expression.

(Rt W A B) : Register Transfer Statement
W : Boolean condition
A : Destination
B : Source
meaning : if W is true then B
is transferred to A
(Rf A nm) : Reference to register A,
bit n through m

(Td A) : Down transition for signal A
(Conc a b) : Bit concatenation a and b
(And a b) : Boolean operator

(Orab) : Boolean operator

(Not a) : Boolean operator

In the following, the verification technique is out-
lined through a verification using a 4 bit shift register [4].
Figure 1 shows the partial logic circuit of the register
and its description written in RTS (Register Transfer
Statement) is given in Fig. 2. Figure 3 shows some ax-
ioms needed for this verification. Here, RTS is a non-
procedural register transfer language developed by
Wagner [2]. The present HTPS uses RTS as its descrip-
tion language. The RTS is summarized in Table 1 in a
form convenient for HTPS.

Consider the verification of a design specification for
which each bit of the output register is set to ‘‘0’’ by a
clear signal. This specification is expressed in RTS as
follows,

(Rt CLR (Rf Q 0 3) c0)
where, CLR and c0 denote the clear signal and signal
value ““0”, respectively. A resolution-based theorem
prover proves a theorem by extracting a contradiction
from the clause set which includes the negation of the
theorem to be proved. This resulting process is called a
refutation process. In this example, the clause

(not (Rt CLR (Rf Q 0 3) c0))
is added to the clause set given in Figs. 2 and 3. In
generating a proof, an inference rule that handles ax-
ioms expressed in a equality relation is indispensable
since such axioms as Boolean algebra play an important
role in the logic design verification. In this example,
resolution and paramodulation are used and its proof
process is shown in Fig. 4. Although the proof is given
for only the first bit of the register, the proof for other
bits can be obtained in the same manner.

The procedure outlined above was employed in
previous works [4], [6]} for the logic design verification
method based on theorem proving technique, though
demodulation was used for equality handling instead of
paramodulation. However, as can be easily predicted
from the above description, it is rather difficult to find a
refutation process when this technique is applied to the
verification of larger circuits. Therefore, development
of an efficient control mechanism in theorem proving is
required in order to make this verification technique
practical.

94

2.2 The Principle of HTPS

The principle underlying HTPS is that in proving the
desired behavior under the proposed implementation,
the manipulation sequence of the desired behavior can
be determined by the characteristics of the desired
behavior, information about the proposed implementa-
tion, and the meaning of each axioms that can be ap-
plied to the desired behavior. From the viewpoint of a
verification method by theorem proving, the proof pro-
cedure is considered to be composed of the following
steps.

(1) The desired behavior is expanded into a descrip-
tion at a lower level by using axioms for expansion.

(2) The expanded behavior is modified by axioms
for transformation.

(3) Then each modified behavior is refuted with the
proposed implementation.

The characteristics of the desired behavior and the
proposed implementation can be utilized to determine
the proof strategy through steps (1) to (3). On the other
hand, the meaning of each axiom can be used to
generate detailed proof steps in step (2) under the deter-
mined strategy.

The use of this information (domain specific
knowledge) explicitly in the control of the inference br-
ings about big advantages in the verification efficiency.
Firstly, it enables the system to execute a bottom-up in-
ference as well as the usual top-down inference. By us-
ing the characteristics of a theorem to be proved and the
proposed implementation, it is possible to set a poten-
tially complimentary unifiable literal and modify it into
a convenient expression. Secondly, it allows implemen-
tation of the ‘‘modification if-needed’’ idea. Namely, a
modification is executed only to reduce discrepancies be-
tween the theorem to be proved and the nominated
potentially complimentary unifiable literal. In logic
design verification, it is necessary to handle many
equalities and that produces an astronomically large
search space. Therefore, the ‘“‘modification if-needed”’
process cuts down the search space considerably.

3. Theorem Proving System HTPS

3.1 System Overview

3.1.1 Basic Approach

According to the principle mentioned above, HTPS
is organized in the hierarchical structure; meta-level and
base-level. The meta-level program controls the proof
procedure by using the domain specific knowledge.
Under this control, proof is executed by the base-level
program. The domain specific knowledge includes
characteristics of the desired behavior, information
about the proposed implementation and knowledge
about axioms usage.

In order to implement the meta-level program, the

N. YaMADA, Y. KoBavasHl and T. KiGucH!

following requisites should be taken into consideration.

(1) The program should be flexible and modular so
that its capability to determine the proof procedure can
be easily enhanced.

(2) The overhead time caused by introduction of
this level should be as small as possible.

Considering these items, the meta-level program is
realized as a kind of production system. In this
framework, the domain specific knowledge is organized
hierarchically and represented in the form of if-then
rules. In addition, each rule is expressed by using prede-
fined functions in order to be easily converted to an ex-
ecutable program.

On the other hand, the following items should be
taken into consideration in developing the base-level
program.

(3) As an inference rule, a method to treat
equalities, besides resolution, is needed.

(4) The proof strategy employed in resolution
should be effective and suitable for clear separation of
the meta-level and base-level.

Item (3) reflects the fact that theorem proving for
logic design verification needs groups of axioms, for ex-
ample, rules of Boolean algebra and rules for handling
the concatenation of the bit level structure, and that
most of them are represented in the form of equality
literals. As for item (4), a proof strategy that it is itself
effective and has specifications of inference under it
which are simple enough, to ensure the total inference is
effective. In order to meet these requisites, HTPS
adopts the connection graph method for resolution and
paramodulation [7], [8].

3.1.2 System Configuration

The system configuration of HTPS is shown in Fig. 5.
The meta-level program and base-level program are
combined through the control program. The meta-level
program consists of two modules. The miscellaneous
function module gives function definitions which are uti-
lized in describing the knowledge in the knowledge
base. The proof guidance generation module is an inter-
preter that operates upon the knowledge base to yield
proof guidance.

In the base-level program, the resolution and
paramodulation modules execute inference using the
connection graph method. In this execution, the unifica-
tion module is accessed frequently as a basic operation.
In order to enhance the symbolic manipulation ability,
a lexical ordering module is added which performs lex-
ical ordering under the connection graph method. Allin-
teractions of these modules with the connection graph
are performed through the connection graph manage-
ment module.

As shown in Fig. 5, HTPS also has a preprocessing
module. With this module the proposed design ex-
pressed in RTS and axioms are simplified, lexically or-
dered and converted into expression in the Conjunctive
Normal Form (CNF). In the description of the propos-

A Theorem Proving System for Logic Design Verification

95

) Meta-level
Design I o et
specifications i !
| Miscellaneous :
| function |
Proposed | - module \
design E> Preprocessing Control | Proof gt‘,”d’"“ i
. module module |7 Beneration !
Axioms || modute X
| Knowledge || !
|
| base |
L \
______________ 1
Base-level
r‘ ____________________________ -
|]
|
| Resolution Unification |
7] module module !
| . |
\ L] Connection graph Connection |
\ mansgement et n |
i module grap |
1| Paramodutation Lexical '
1 modul ordering |
) ¢ module
1 |
L o o e L e e e m d

Fig. 5 The system configuration of HTPS.

ed design, there are many redundant and complex ex-
pressions including the signal value ‘‘0’’ and ‘‘1’’. In
order to reduce the burden of theorem proving system,
these expressions are simplified beforehand by applying
simplification rules. Most of these simplification rules
are from Boolean algebra. Canonicalization aids in the
identification of equivalent expressions. In particular,
in the case of unification of two expressions that con-
tain functions that follow commutativity and
associativity, canonicalization is needed. As an example
of this module, the following expression,

(And a (And (And $x (RfFQ 22)) (Rf Q1 1))
is transformed to

(And $x (And a (And (Rf Q 1 1) (Rf Q 2 2)))),
where the symbol which begins with ‘“$’’ denotes a
variable. Note that the lexcial ordering in the theorem
proving process plays an important role.

The major characteristics of HTPS as compared to
the theorem proving techniques developed so far can be
summarized as follows.

(1) A way to introduce domain specific knowledge
to inference control is developed.

(2) The inheritance mechanism of paramodulation
under the connection graph method is improved to com-
plete the inheritance.

(3) A lexical ordering algorithm under the connec-
tion graph method is developed.

3.2 Metal-level Program

The meta-level program is constructed as a kind of
production system. The knowledge base contains if-
then rules that relate the characteristics of the theorems
to be proved, information about other theorems and ax-
ioms which can be used in the proof procedure with pro-
of guidance. These rules are obtained through investiga-
tion of the structure and the meaning of the circuit
representation and the usage of axioms.

These rules are grouped into two categories, one is
that used for generating global strategies (hereafter the

(a) Functions used for describing the if-part of strategy determination rules

*Target_literal (p) : get the literal index of the current theorem
Cond_part_of (p q) : get the Boolean condition part of literal p, and set it to q
*Dest_part_of (p q) : get the destination part of literal p, and set it to g
*Sour_part_of (p q) : get the source part of literal p, and set it to q
*Has_R_link (p 9 r) : got the R-link index connecting literal p and the

literal which has the name q, and set it to r
*Has_P_link (p 1) : get the P-link index connecting tera p and the term

vhich has the name q, and set it to r
*Exist_spliteral (p q r 8) : get the literal index which has the same q part

vith p and different r part vith p, and set it to s

Differ (p q 1) 3 check vhether literals p and q have different r parts

(b) Functions used for describing the then-part od strategy determination rules

Set_t1 {(p) * set the literal index p to TL
Set_tt (p) © set the term index p to TT

Set_cl (p) : set the literal index p to CL
Set_ct (p) : set the ters index p to CT
Set_strategy (p) : set the strategy name p to STRATEGY
Set_link (p) : set the link index p to LINK

Note : Functions for which the name begin with “s” expect return values
and others do not.

Fig. 6 The functions used in describing strategy determination rules.

term strategy is used for simplicity), and the other is
used for finding concrete inference steps (hereafter the
term tactics is used). This categorization is useful to
keep the size of the search space for applicable
knowledge manageable. On the other hand, in order to
have fast processing of knowledge itself, the knowledge
in each category is expressed in if-then rules and both if-
part and then-part of the rules are written by using
predefined functions. This representation method
enables conversion of each rule into an executable func-
tion.

It is important to be able to add, modify, and delete
knowledge easily in the meta-level program. This
feature not only ensures the meta-level program flexibil-
ity, but also makes incremental development of the
system possible.

3.2.1 Rules for Strategy Determination

Rules for strategy determination are evaluated to find
the global proof strategy. Rules are therefore,
represented by using the relations between
characteristics of theorems to be proved and their en-
vironment, where environment means the status of the
connection graph, or more precisely, the existence of

96

Rule fora

Meanings

(Srule-1
(If (and (sTarget_literal $x)
(sExist_spliteral $x ' (BC DT) *(ST) #y)
(sSour _part_of $x $v)
(+Sour_part_of $y $2))
then (Set_cl $y)

As against the theorem to be proved

if there exists the literal which has
the same BC, DT and different ST, then
set the literal and its ST to CL and CT
and set the ST of the theorem to TT

(Set_ct $z) and set “Unite-ST” to STRATEGY.
(Set_tt $v)
(Set_strategy ’Unite-ST))
6)
(Srule-2

(If (and (eTarget_literal $x)
{sDest_part_of $x $y)
(Has_P_linkz $y ’Expand $z)

then (Set_link $z)
(Set_strategy 'Expand-DT))

As againt the theorem to be proved

if there exists the literal DT of vhich
has an P-link to the equality literal
“Expand”, then set the link to LINK
and set “Expand-DT” to STRATEGY.

2)

R-link : Resolution link
P-link : Paramodulation link

BC : Boolean condition term,
DT : Destination ters,
ST _: Source term

Fig. 7 Examples of strategy determination rules.

Table 2 Global constants and their usage.

STRATEGY | Store the strategy name

“ULINK T Store the link index on which inference
is performed

B P O Store the literal index which is to be
proven

B A Store the term index which is to be modified
in TL

o H Store the literal index which is nominated
as a potentially complimentary unifiable
literal of TL

Ter T Store the term index which is to be modified

in CL

literals that can be complementarily unifiable with the
theorem. If it is difficult to find the appropriate literals,
it is necessary to find an appropriate axiom to convert
the theorem into a more desirable form. As a result,
rules for strategy determination can be grouped into
one of two functions; one is to set a target hypothesis
(literal) and strategy name which is used to trigger the
tactics determination rules and the other is to set a link
directly.

Examples of standard functions to be used in these
rules are shown in Fig. 6. Each rule is expressed in the
if-then rule by using these functions. Typical examples
of the strategy determination rules are shown in Fig. 7.
As shown there, each rule consists of the rule index,
rule body and its priority, where each priority is given
to specify the order of evaluation.

In the HTPS, some global constants are set up to
smooth the interaction between strategy determination
and tactics determination, and also between the meta-
level and base-level. These constants and their usage are
summarized in Table 2.

3.2.2 Rules for Tactics Determination

Tactics determination rules are used to find detailed
proof steps in the form of link indecies. These rules are
basically expressed as relations between characteristics
of both the theorems to be proved and the nominated

N. YAMADA, Y. KoBAavasHI and T. KiGUCHI

(a) Functions used for describing the if-part of tactics determination rules

sHas_P_linkx (p ar) : got the P-link index connecting p and the term which
has the group name q, and set it to r

i get the P-link index connecting p and the term vhich
has the name g and the triggering direction of which
is normal, and set it to r

% get the P-link index connection p and the term which
has the group name q and the triggering direction of
vhich is norsal, and set it tor

i get the q-th element of p, and set it to r

© check vhather the elements of p subsuse the elements
of q

2 if the elements of p subsume the elements of g, set
the extra elements of p to r

*Has_P_linky (p q r)
*Has_P_linkz (p q r)
“Get_elen (p q r)

Subsuse {p q)

+Subsuse (p q 1)

(b) Functions used for describing the then-part of tactics determination rules

Resolve (p q)
Paramodulate (p q)
Unite_terns (p)

+ resolve upon the link index q of literal p

: paramodulate upon the link index q of literal q

¢ make the tvo terms given in the pair form p equal
by applying one or more paramodulations

¢ place the elements q at the head of the tera p and
lexically order the rest of the elements of p by
applying paramodulation

: apply the lexical ordering to the elements of p

Lex_part (p qr)

Lex_all (p)

Note : Functions for which the name begin vith “=” expect return values
and others do not.

Fig. 8 The functions used in describing tactics determination rules.

Rule form Meanings

(Trule-1
(If (Strategy Unite-ST) 1f STRATEGY is “Unite-ST” and TT has
then (If (sHas_P_Link TT ’Simplify $x) P-1ink to the equality literal “Simplify”
then then paramodulate on the link and set
(Paramodulate TT $x) the ST of the resulting literal to TT.
{sSour_part_of TL $y)
(Set_tt $§y)))
3 .

(Trule-2
(If (Strategy Unite-BC)
then (If (and (*Func_symbol TT $x) 1f STRATEGY is “Unite-BC” and the function
(Ea_symbol $x ’ And) of TT is “And” and the second term of TT
(sGot_elem TT 2 $y) subsuses CT, then find the R-link of TL
(Subsume $y CT)) vhich connects to the literal “and_red2”
then and resolve on the link and set the BC of
(sFind_R_link TL "and_redZ $z) | the resulting literal to TT.
(Resolve TL $z)
(+Cond_part_of T $v)
(Set_tt $)))

)]

BC : Boolean condition term,
DT : Destination term,
ST _: Source term,

R-1ink : Resolution link
P-link : paramodulation link

Fig. 9 Examples of tactics determination rules.

potentially complimentary unifiable literal, and con-
crete proof guidance.

Simplification and canonicalization are necessary
operations in mechanical theorem proving procedures.
In the HTPS, these operations are also accessed by
evaluating these rules, by which the important idea “‘if-
needed paramodulation’’ is realized. In addition to
these expression manipulation functions, the HTPS has
a function like ETG (Equality Tree Generator) [7] to
find a link sequence that makes two expressions equal
by triggering plural equality literals.

Examples of standard functions which the HTPS has
to represent these rules are shown in Fig. 8, and typical
rules are shown in Fig. 9. Tactics determination rules
have nested premises in their bodies. The first premise
denotes the strategy name under which the rule is
searched, and the second one is used as the premise in
ordinary if-then type rules. Each priority included in
the rules indicates the order for applying them under
the specified strategy. It is important to note here that
HTPS is free from the loop problem which may happen
in applying such an equality axiom as Boolean
distributivity [4], [6]. In each tactic, triggering direc-
tions of equality axioms can be specified if necessary.
For example, the function *Has__P__linky in Fig. 8 is

A Theorem Proving System for Logic Design Verification

used for this purpose, and some equality axioms are as-
sociated with normal triggering direction as shown in
Fig. 16 later. Each rule of this category is also converted
into an executable function.

3.3 Base-level Program

According to the proof guidance generated in the
meta-level program, proof is performed in the base-
level program. Therefore, the main part of the base-
level program is mainly composed of the inference
module and the unification module which is a fun-
damental procedure for inference. As mentioned
earlier, the proof procedure in the HTPS base-level
adopts the connection graph method as its strategy. As
for the unification module, the HTPS: uses Martelli’s
and Montanari’s algorithm [9].

3.3.1 Connection Graph Method

The connection graph method was first developed by
Kowalski [7], and extended by Siekmann and
Wrightson [8] to handle equality. The proof procedure
of the base-level program is based on the
paramodulated connection graph method. Its proof pro-
cedure is made more compact than original connection
graph method by introducing some refinements.

In order to gain notion of the connection graph
method, the example proof process should be explained
first. The example gives proof of the specification of a 4
bit shift register, corresponding to Fig. 4. In Fig. 10, the
connection graph is represented by drawing R-links and
P-links between literals and terms, the roots of which
are located at the position of their predicates and func-
tion symbols. The R-link is a link which connects com-
plementary literals, on the other hand, the P-link is one
which connects paramodulable terms.

The upper most graph is the initial connection graph
constructed by both the theorem to be proved (b), and
other clauses shown in Figs. 2 and 3. In this graph, only
the minimum set of clauses is displayed and the R-inks
which connect two literals in the same clause (auto-
links) in (d) are omitted for simplicity. The paramodula-
tion on link (D yields the paramodulant (e) in the sec-
ond graph. R-link (5 is obtained by the inheritance
mechanism (mentioned later). Then resolution of link
(3 yields the resolvent (f) in the third graph. Here, link
(® is also obtained by the inheritance mechanism. The
final clause (g) which corresponds to the clause (4-4) in
Fig. 4 is obtained by resolving link (6). Although the
links attached to the clause (g) are not shown in Fig. 10,
there are P-links to the omitted clause and it is possible
to continue the proof.

As can be seen from the above example, the connec-
tion graph method is suitable for a theorem proving
strategy that requires clear separation from its control.

A detailed proof procedure of the connection graph
method is described in Fig. 11. In the procedure there,
the inheritance check of R-links and P-links for resol-
vent and paramodulant is one of the distinct

97

(a) (Eq (Cone (Rf $x 0 0)(Rf $x 1 $m)(Rf $x 0 $m))

Pt

O_ -
(Rt CLR (Rf7Q 0 3) c0) T--.0

(b

B

(Rt_CLR (Rf Q 0 0) c0) \

® \
(d) (Rt $x $a $c)IV(RL $x $b $c)V(Rt $x (Conc $a $b) $c)

U Paramodulation on D

(a) (Eq (Cong (Rf $x 0 0)(Rf $x 1 $m))(Rf $x 0 $m))

- e
(e) (Rt CLR (Conc (Rf Q 0 0)(Rf Q 1 3)) c0) ™,

(¢) (Rt CLR (Rf Q 0 0) c0)
@ @ N
(d) (Rt $x $a $c)V(Rt $x $b $c)V(Rt $x (Conc $a $b) $ec)

U Resolution on ®

(Eq (Cone (Rf $x 0 0)(Rf $x 1 $m))(Rf $x 0 $m))

(a

(Rt CLR (Rf Q 0 0) c0)V(Rt CLR (Rf Q 1 3) co) ~~ -
i ,
(Rt CLR (Rf Q 0 0) c0) },’

® ® !
(4) (Rt $x $a $c)V(RL $x $5 Sc)V(RL $x (Cone Sa §b) $e)

U Resolution on ®

(g) (Rt CLR (Rf Q 1 3) c0)

(f

9

D

underlining : Negation
------- * Resolution link

— — — — ! Raramodulation link

Fig. 10 An example proof process of connection graph method.

characteristics of the connection graph method. That is,
in the proof process, the applicability of resolution and
paramodulation of the resolvent and paramodulant is
inherited from their parent clauses and no further sear-
ching for them is needed. The procedure for checking
the inheritance of R-links is as follows.

For each literal L in R (resolvent),

if L descends from L’ in C or D (parent clause)

and if L’ is connected by an R-link to some
literal X,

and if L and K are unifiable,

connect K and L by an R-link.

As for the inheritance of P-links, the mechanism is
improved to complete the applicability of paramodula-
tion. A newly introduced procedure checks for unifiabil-
ity of the terms replaced in the paramodulant by its
parent term in the equality literal. This procedure is in-
dispensable for paramodulation in which equality
literals with a self unifiable term are used, where a self
unifiable term is one which contains a subterm unifiable
with itself. The improved procedure for checking the in-
heritance of P-links consists of two steps as follows.

98

(1) Initially set up the connection graph <S>,

(a) Generate and include the graph all factors of clauses in <S>,

(b) For every pair of unifiable complementary literals in clauses
in 8, insert an R-link connecting them.

(c) For every pair of literals, one is either equality or non-equality
literal and the other is an equality literal in the clauses in S,
if the term of either side of the latter literal is unifiable with
some term in the former literal, insert a P-link connecting them.

(d) For every equality literal, if any term on one side is unifiable
with the teram of the other side, insert a P-link connecting them.

(2) In order to process a connection graph,
if <S> contains the empty clause, terminate successfully,
else if <S> is itself empty, terminate with failure,
else
(a) Select a link 1
(b) If 1 is a R-link,
(b-1) Add the resolvent R and its factor F to <S>,
(b-2) For each literal in R and F, check the inheritance of R-links,
(b-3) For each term in R and F, check the inheritance of P-links.
(c) If 1 is a P-link,
(c-1) Add the paramodulant P to <S>,
{c-2) For each literal in P, check the inheritance of R-links,
(c-3) For each term in P, check the inheritance of P-links,
(c-4) For each nev P-link connecting a term in a literal L in P to
some other term in a literal K, if L and K are unifiable,
erase P-link and insert R-link connecting L and K,
else erase the P-link,
(c-5) Add each factor F of P to <S>,
(c-6) For each literal in F, check the inheritance of R-links,
(c=7) For each term in F, check the inheritance of P-links.

(d) Delete 1 from <S> and remove the tautology and pure clauses and all
the links connecting them from <S> until <S> contains no tautology
and pure clauses.

(e) Return to (2).

S ¢ Set of clauses

<S> i Connection graph constructed from S
P,R,F : Clause

L,k 2 Literal

Fig. 11 Proof procedure of connection graph method.

(1) For each literal L in paramodulant P,
For each term ¢L in L,
if L descends from L’ in parent clauses

Cor D,
and if ¢L descends from ¢tL’ in L’,
and if L’ is connected by a P-link to
some term tK
in some literal X,
and if tL and ¢K are unifiable,
connect tL and ¢K by a P-link.

(2) For each subterm ¢L in T in paramodulant P,
if T descends from ¢7” in equality literal C,
and if tL and ¢7T’ is unifiable,
connect L and 7’ by a P-link.

In order to clarify the improved procedure, an exam-
ple inference process is given in Fig. 12, along with a
connection graph. This example shows the inference
process by which the second term of (a) is lexically or-
dered using the commutative law (b) and associative law
(c). The equality literal (b) permits a ‘‘one-sided”’
paramodulation, i.e. the right hand side of (b) is not
connected and only the P-links in the left hand side are
used for paramodulation. Paramodulation on () in the
upper graph of Fig. 12 generates the new literal (d) and
the connection graph is changed to the middle graph
shown. In that graph, the newly inserted P-links @), @3,
(), (9 and @ are inherited from &), D, @),) and (O re-
spectively. At this point the wusual inheritance
mechanism has no way to connect the left hand side of
(b) and the term (And ¢ (And d b)) in (d), which must be

N. YAMADA, Y. KoBavasHi and T. KiGucHI

(a) (Rt (And (And d h)(And ac¢)) paq)

(d4) (Rt (And a (%nd e (And d b)) pq)
Paramodulation on ®

(a) (Rt (Ang (And d b)(And 2 c)) p q)

!@

N ~ ~ R
. \ ST L]

PR

(e) (Rt (And 2 (And b (And ¢ 4))) p q)

Fig. 12 An example proof process for connection graph method.

linked by a P-link. By introducing the new mechanism
mentioned above, they can be connected as P-link @.
As a result of this method, the lexically ordered literal
(e) is obtained by paramodulating on (® (in the middle
graph) as shown in the lower graph of Fig. 12.

Note that this inheritance mechanism of P-links does
not destroy the main principle of the connection graph
method, which is to eliminate unsuccessful searchs for
unifiability.

3.3.2 Unification Method

Unification is a key operation of theorem proving
and considered to be time consuming. Therefore, the
unification efficiency dominates the global efficiency of
the inference process. In the connection graph method,
it is necessary to check the inheritance of links which
the parent clauses have after each resolution and
paramodulation. This means that the unification
method should be suitable for retrieving link informa-
tion from the resulting substitution, as well as being
efficient. Taking accounts of these requisites, the HTPS
implements Martelli’s and Montanari’s algorithm [9] by
modifying its substitution generating mechanism.

A Theorem Proving System for Logic Design Verification

(r $x1 (¢ $x2)) (r (f $x3) $x3)

fs g fs £
— —

] 4
l,’ con ($x2) ‘/ con_ ($x3)
/S —

" var_((#x2:1)

fs_r fs r

/
tOOl(\\ con ($x1 002

T

/ ,’Ii,_ var __(($x3-1))
t003(‘\ con (t004 $x3)

\Lvar (1) ($2:1)) S var (($x3-2)

“fs” : function symbol con” i contents “var” : variables

Fig. 13 Internal expression of HTPS.

Uz { [01(x) =(t001 t003)
[11{8x1)=+¢
[11(8x2)=¢ --=>
[2){$x3)=¢
[2){$x3}=¢ }

T: ()

Common part : (r $x1 $x3)
: (($x1)=(t004),
{$x3)=(t002))

Frontier

(a)
U s { [01{$x1)=(t004)
[11($x2)=¢ --=>
[11{$x3)=(t002) }
T ({x)=(r $x1 $x3))

Common part : t004
Frontier : ({$x3,8001)=¢)
(b)

Common part : t002
+ ({8$x2,8002)=¢)

U { [11{#x2)=9
[01{8x3,8001)=(t002) } --->
T : ({x)=(r $x1 $x3),{$x1}=(t004))
(c)

Frontier

U ([0)(8$x2,8002)=9)}

T 3 ({x)=(r $x1 $x3),($x1}=(t004), ($x3,$001)=(t002))
(d)

R

T : ({x)=(r $x1 $x3),($x1)}=(t004), ($x3,8001)}=(t002), {$x2,$002)=¢)
(e)

Fig. 14 Unification process.

Martelli’s and Montanari’s algorithm formulates the
unification problem as the solution of equations and it
involves no substitution procedure. Here, in order to
show its appropriateness to be used in the connection
graph method and also its modification, the unification
procedure implemented in HTPS is shown with a sim-
ple example. Consider the unification of (r $x1 (g $x2))
and (r (f $x3) $x3). In HTPS, these terms are
represented in the frame structure using term indexing
t001 and t003 respectively as shown in Fig. 13. Each
term has a pair designation composed of its variable
name and its number for convenience in unification.

The unification process is shown stepwise in Fig. 14,
where U and T denote a set of multiequations and a se-
quence of multiequations respectively, and other nota-
tions are consistent with Ref. [9]. As shown in Fig. 14,
term indices are retained in overall procedure. From the
end of the process in Fig. 14(e), we obtain the final
substitution in this example,

{$002/$x2, t002/$x3, t004/$x1}.

The characteristics of this procedure are that the
substituent for each variable is given by the term index
and that it is facilitated by HTPS’s internal implementa-
tion. Therefore, if we attach link information to each
term index, we can retrieve them from the results of the

99

unification. This process is appropriate to resolution
and paramodulation under the connection graph
method.

3.3.3 Lexical Ordering

HTPS has a built in lexical ordering mechanism for
manipulating expressions. While the lexical .ordering
used in the preprocessing module does not use the
paramodulation, it is indispensable for the lexical order-
ing in the base-level program. The ordering rules ap-
plied are as follows.

(a) Single terms are placed before nested terms.

(b) Variables are placed before non-variable terms.

(c) Non-variable terms are ordered alphabetically.

(d) The order of nested terms follows the order of
their elements.

In order to realize these rules, the commutative and
associative laws of function f,

(f $x $y)=(/ 8y $x)

(f3x (f 8y $2))=(f$z (f $x $y))

are handled. In particular, the associative law is used
from both sides. In the HTPS, its algorithm is devel-
oped which takes advantage of the fact that usage of
these rules is determined uniquely by the position index
of the objective term. The position index represents the
position of the objective term in the expression using a
sequence of symbols ‘‘1’” and ‘‘r’’, where ‘‘1’’ denotes
the term which is the first argument of its embracing
function and “‘r’’ denotes the term which is the second
one. For example, the position index of ‘‘a’’ in (And ¢
(And (And b a) d)) is ““rIr’’. Only the last two characters
of this position index are used to determine the rule.
The algorithm is shown in Fig. 15. The link inheritance
mechanism after paramodulation described before com-
pletes the links needed for this algorithm.

3.4 The Proof Procedure

The proof is performed for each design specification
(theorem), individually. The proof procedure of HTPS
is the following non-deterministic algorithm.

(1) Input a theorem and add to the connection
graph.

(2) Select one literal in the theorem and set it to TL.

(a) If TL is empty then terminate successfully.
(b) If TL has a link to a unit literal clause then

resolve on that link, and go back to step (2).
(c) Strategy determination

(c-1) Select a strategy and set it to
STRATEGY.

(c-2) If STRATEGY is empty then enter in-
teractive module 1.

(¢c-3) If LINK exists then resolve or
paramodulate on LINK, and go back
to (2).

(c-4) Tactics determination

(c-4-1) Select a tactics and set it to TAC-
TICS.
(c-4-2) If TACTICS is empty then enter in-

100

CT+objective term

l TT¢ lexically ordered CTI

TTe-the second term of T1
CTe—the second term of CT

Ti¢=the first term of TT
Cle—the first term of CT

1————Y<ﬂ>

PAT2="r1"
h

PAT<-the position index
of T1 in C1

N. YAMADA, Y. KoBayasHi and T. KIGLCHI

LINIK¢—1ink index which
connects to
commutative law

PAT2+the last two
character of PAT

: PAT="rr"

PAT2="11"0r"1r"
1

LINK«—1link index which
connects to the
rhs of associative

law

1

LINK¢=1ink index which
connects to the
1hs of associative
law

LINK«link index which
connects to
commutative law

T

T

)=

{ Paramodulation on LINK l

CT+-Paramodulant

Fig. 15 Lexical ordering algorithm.

teractive module 2.

Resolve or paramodulate according
to TACTICS.

If STRATEGY still exists go back to
(c-4), else go back to (2).

Before starting a proof, the initial connection graph
is constructed with the proposed design expressed in
RTS and general axioms. Rules used for strategy and
tactics determination are converted into executable func-
tions and also loaded. Among the literals which con-
stitute the theorem to be proved, one literal is selected
in a depth-first manner in the first step of (2). Against
this literal TL, all R-links are investigated to find the
link that connects to a unit literal clause. If such a link
exists, the number of literals in the theorem is certainly
decreased by one, after the resolution on that link (b).
In the process of strategy determination, if the link to
be inferred is directly determined, the inference on that
link is executed without searching tactics (c-3). As can
be seen in the steps (c-4-1) through (C-4-4), tactics
determination is performed under the selected strategy,
and frequently the sequence of the tactics is selected and
evaluated under the same strategy.

In the above procedure, if the strategy or tactics deter-
mination fails, interactive modules 1 or 2 are called. In

(c-4-3)

(c-4-4)

these modules, information about the history of proof
and the link connecting the current theorem, etc. are
displayed on a demand basis. By selecting a link interac-
tively, it is possible to continue the proof.

Currently, HTPS is implemented with Franzlisp and
is run on the VAX11/750.

4. Verification Example Using HTPS

HTPS has been applied to the verification of some
logic circuits. These examples include a shift register,
synchronous counter and ripple counter. Since their
verification is concerned mainly with the functional and
logic level of design hierarchy, axioms for Boolean
algebra and the related modification expressed in RTS
are used. These axioms are shown in Fig. 16. They are
cited from Refs. [1] and [3], with some of them
modified slightly to be compatible with the expression
employed. As shown in this figure, a unique name is as-
sociated with each axiom so that knowledge in the
meta-level program can easily specify it. Additionally, a
third term is added to some equality axioms in Fig. 16.
These terms denote the normal direction from which
the axiom is used, and also utilized in the evaluation of
knowledge in the meta-level block. As for the

A Theorem Proving System for Logic Design Verification

Expansion

((If (and (Rt (And $v (Not $x)) $a $y)
(Rt (And $v $x) $a (Not $y)))

(Rt $v $a (Eor $x $v))) st_expand)
o ey ey ¥ ¥ or_exp1)
Reduction
((If (Rt $x $a $2) (Rt (And $x §y) $a $2)) and_redl)
((If (Rt $y $a $2) (Rt (And $x $y) #a $2)) and_red2)

Concatenation
((Eq (Conc (Rf $x 0 0) (Rf $x 1 #m)) (Rf $x 0 $a)) concat_expl rhs)
((Eq (Conc (Rf $x 1 1) (Rf $x 2 $a)) (Rf $x 1 $u)) concat_exp? rhs)
Increment
((Eq (Suc (Rf $x 0 3)) (Conc (Eor (Rf $x 0 0)
(And (Rf $x 1 1) (And (Rf $x 2 2)
(Rf $x 3 3))))

(Suc (Rf $x 1 3)))) incrementl lhs)
Commutative lav

((Eq (And $x $y) (And $y $x))
((Eq (0r $x 8y) (Or $y $x))

and_commutative)
or_comnutative)
Associative lav
((Eq (And $x (And $y $2)) (And $z (And $x $y)))
((Eq (Or $x (Or $y $z)) (Or $z (Or $x $v)))

and_associativel)

or_associativel)

Fig. 16 Examples of axioms used in the verification.

knowledge in the meta-level program itself, we imple-
ment 6 and 23 rules for strategy determination and tac-
tics determination, respectively. Example of these rules
were shown before in Figs. 7 and 9.

4.1 Verification of Ripple Counter

The circuit of the ripple counter and its proposed
design expressed in RTS are shown in Fig. 17. The
desired behavior of this circuit is represented with the
following three theorems:

(Rt (Not CLR) (Rf Q 0 3) c0),

(Rt (And CLR (Td CL)) (Rf Q 0 3)

(Suc (Rf Q 0 3))), and
(Rt (And CLR (Not (Td CL))) (Rf Q 03)
(Rf Q 0 3)).

Although the circuit is simple, the proof is very com-
plicated. This is because some of the proposed design
have a transient expression of the first three bits in their
condition part and these expressions must be replaced
by ordinal expressions in order to get refutation.

In reference [1], this circuit was proved manually in
101 steps, excluding the process of simplification. The
HTPS is applied to the verification of this circuit which
can be proved fully and automatically in 200 steps.
Paramodulation for simplification and canonicalization
are involved. Part of this proof is shown in the appen-
dix. The proof process for the second behavior, which
requires 126 inference steps, depends mainly on the
following strategies.

(a) Expansion of the theorem which has an expres-
sion of concatenation in its destination and source parts

101

Q3) Q(2)] Q1) Qo)

14K Q~‘ 1-K Q-‘ 1K Q 1K Q
CLOCK—dC C c
J J J

14

~ O

Ld=

R R
i i

R
CLEAR T

(a) Circuit diagram of ripple counter

(Rt (Not CLR) (Rf Q 3 3) c0)

(Rt (And CLR (Td CL)) (Rf Q@ 3 3) (Or (And cl (Not (Rf Q 3 3)))
(And (Not cl1) (Rf Q@ 3 3))))

(Rt (And CLR (Not (Td CL))) (Rf Q 3 3) (Rf Q 3 3))

(Rt (Not CLR) (Rf Q 2 2) c0)
(Rt (And CLR (Td (Rf Q3 3))) (REQ 2 2)
(Or (And c1 (Not (R Q 2 2)))
(And (Not cl) (Rf Q 2 2))))
(Rt (And CLR (Not (Td (R£ Q3 3)))) (RfQ 22) (REQ22))

(Rt (Not CLR) (Rf Q 1 1) c0)
(Rt (And CLR (Td (R Q 2 2))) REQ1 1)
(Or (And c1 (Not (Rf Q 1 1)))
(And (Not cl) (Rf Q 1 1))))
(Rt (And CLR (Not (Td (Rf Q 2 2)))) (RfQ11) (RfQ1 1))

(Rt (Not CLR) (Rf Q 0 0) c0)
(Rt (And CLR (Td (R Q 1 1))) (Rf Q 0 0)
(Or (And c1 (Not (Rf Q 0 0)))
(And (Not c1) (Rf Q 0 0))))
(Rt (And CLR (Not (Td (Rf Q 1 1)))) (Rf Q 0 0) (Rf Q 0 0))

(b) The proposed design

Fig. 17 Circuit diagram of ripple counter and the proposed design
expression in RTS.

by using concatenation expansion rule (concat__expl).

(b) Replacement of the transition expression in the
condition part of the theorem.

(c) Transformation of the condition part of the
theorem to the Or-expression.

(d) Expansion of the theorem which has an Or-ex-
pression in its condition part (or__expl).

(e) Reduction of the theorem which has an And-ex-
pression in its condition part (and__redl, and__red2).

The name represented in parentheses denotes the
name of the axiom used and the real expressions are
found in Fig. 16. Strategy (a) is an expansion of the
theorem to be proved, and so regarded as a top-down
process. On the other hand, strategies (b), (c¢) and (d)
are for transformation of the literal which is nominated
as the potentially complimentary unifiable literal of the
theorem and therefore regarded as a bottom-up pro-
cess. In strategy (e), both top-down and bottom-up pro-
cesses are combined to yield refutation.

4.2 Results

Through these verification examples, HTPS
generates appropriate proof guidances and performs
for each proof effectively. This effectiveness is realized
through the following two factors.

(1) The number of clauses generated during proofs
is kept small, and it is often the case that only the
minimum number of clauses is selectively generated to
establish the proof.

(2) The number of unifications needed for the proof
is also kept small.

Concerning factor (1), the meta-level program makes
the main contribution to this. Effective proof guidances

102

Table 3 Comparison of verification data for 4-bit shift register
design.

Number of
Unifications

55 3751
695 6496

Number of
Clauses generated

Proposed Method
Conventional
Method*

*Data from the proof in Ref. [4].

are able to be generated with the use of knowledge
which relates the characteristics of the theorem to be
proved and the proposed design to proof direction ex-
plicitly coupled with knowledge about a role of each ax-
iom.

As for (2), HTPS owes its efficiency not only to its
meta-level mechanism but also to the connection graph
method. In this method, once the initial graph is con-
structed all the information as to which literals are
potentially resolvable is presented and no further sear-
ching for unifiable complimentary literals is needed.

In order to show the usefulness of HTPS, the verifica-
tion result of 4-bit shift register design by the proposed
method is compared with that by a conventional
method in Ref. [4] and shown in Table 3. The figures in
the table suggest that HTPS can save a considerable
amount of search time in theorem proving and indi-
rectly show the efficiency of HTPS.

Although examples so far are restricted to simple cir-
cuits, difficulties which arise from an increase of circuit
complexity can be handled by an increase of rules in the
meta-level program. Therefore, the inference
mechanism realized in HTPS is considered to be both
general and powerful.

5. Conclusions

A theorem proving system HTPS, for logic design
verification has been developed. HTPS has a hierar-
chical structure, meta-level and base-level, and has an
advantage of using domain specific knowledge explicitly
in generating proof plans in the meta-level. The connec-
tion graph method was modified in its link inheritance
mechanism and used as a proof strategy in HTPS.
Adoption of this method was useful in making the
hierarchical structure straightforward.

In application of the verification to simple circuits,
HTPS demonstrated its usefulness and effectiveness.

Through these applications, we are convinced that
the utilization of domain specific knowledge in the
theorem proving process in the way HTPS does it will
be a key technique to the logic design verification by the
theorem proving method.

N. YAMADA, Y. KoBAavasHI and T. KiGUCHI

Acknowledgements

The authors are deeply indebted to Dr. H. Motoda of
Advanced Research Laboratory, Hitachi, Ltd. for
useful discussions.

References

1. H. G.Barrow. VERIFY: A Program for Proving Correctness of
Digital Hardware Designs, Artificial Intelligence 24, p. 437 (1984).
2. T.J. WAGNER. Hardware Verification, Ph.D. Dissertation, CSD,
Standford Univ. No. STAN-CS-77-632 (Sept. 1977).

3. R. WEYHRAUGH. Prolegomena to a Theory of Mechanized For-
mal Reasoning, Artificial Intelligence, 13, p. 133 (1980).

4. A. S. Woickk. Formal Design Verification of Digital System,
Proc. 20th DA Conf. p. 228 (Jun. 1983).

5. E.L.Lusk, et al. Logic Machine Architecture Kernel Functions,
Lecture Notes in Computer Science, 138, Springer Verlag (1982).

6. A.S.WoIcCK, et al. A Formal Design Verification System Based
on an Automated Reasoning System, Proc. 21th DA Conf. p. 641
(Jun. 1984).

7. R. KowaLskl. A Proof Procedure Using Connection Graphs,
JACM 22 (1975).

8. J. SIEKMANN and G. WRIGHTSON. Paramodulated Connection
Graphs, Acta Informatica, 13, p. 67 (1980).

9. A. MaRrTELLI and U. MoNTANARI. An Efficient Unification
Algorithm, ACM Trans. on Programming Lang. and Sys., 4, 2 (1982).
10. J. B. Morris. E-Resolution—Extension of Resolution to In-
clude the Equality Relation, in Automated Reasoning 2, Classical
Papers on Computational Logic 1967-1970, Springer Verlag (1980).

(Received October 13, 1986; revised May 26, 1987)

Appendix

The proof process of the second specification of the
ripple counter in section 4.1 is partially described in Fig.
Al through Fig. A3. In Fig. A1, the clause index c06295
is a unit literal clause which corresponds to the specifica-
tion. In each proof step, the selected strategy and also
tactics if they exist, are displayed followed by the in-
ference rule applied and its arguments. In strategies S1,
S2, S3, S4 and S5 the direct links has been determined,
on the other hand, in strategies S6 and S7, more than
two tactics are selected.

As mentioned in section 4.1, this proof is done in 126
steps.

A Theorem Proving System for Logic Design Verification

-> 06295
(STRATEGY) : Expand-DT (s1)
<< Paramodulation >>
(Rf Q 0 3)

tin:

(not (Rt (And CLR (Td CL))(Rf Q 0 3)(Suc (Rf Q 0 3))))
twith:

(Eq‘((‘onc (Rf $01106 0 0)(Rf $01106 1 3))(Rf $01106 0 3))

[(STRATEGY) : Expand-DT (sz2)
<< Paramodulation >>
(Rf Q1 3)

int

(not (Rt {And CLR (Td CL)
(Cone (Rf Q 0 0)(Rf Q 1 3))
(Sue (Rf Q 0 3))))

Twith?
(Eq (Cone (Rf $01127 1 1)(Rf $01127 2 3)}(Rf $01127 1 3))
[STRATEGY) :Expand-DT (s3)
<< Paramodulation >>
(Rf Q 2 3)

tint

{not (Rt (And CLR (Td CL))
(Cone (Rf Q 0 0)(Cone (Rt Q 1 1)(Rf Q 2 3)))
(Sue (Rf Q 0 3)))

lwith?

(£q (Cone (Rf $01155 2 2)(Rf $01155 3 3))(Rf $01155 2 3))

(STRATEGY) : Expand-ST (S4)
<< Paramodulation >>
(Sue (Rf Q 0 3))

tind
{not (Rt (And CLR (T4 CL})
(Conc (Rf Q 0 0)
(Conc (Rf @ 1 1){Cone (Rf Q 2 2)(Rf Q 3 3)))
(Suc (Rf Q 0 3)))))

twith:
(Eq (Suc (Rf $01276 0 3))
(Cone (Eor (Rf $01276 0 0)
(And (Rf $01276 1 1)
(And (Rf $0176 2 2){(Rf $01276 3 3))
(Suc (Rf $01276 1 3)}))))

(STRATEGY) :Expand-TL1 (85)
<< Resolution >>
(not (Rt (And CLR (Td CL))
(Cone (Rf Q 0 0)
(Conc (Rf Q 1 1)(Conc {Rf Q 2 2)(Rf Q 3 3)))
{Conc (Eor (Rf Q 0 0)
(And (Rf Q 1

1){And (Rf @ 2 2)(Rf Q 3 3)))
(sue (Rf Q 1 3)))))))

Iwitht

(Rt $00128 (Conc $00130 $00131)(Conc $00133 S00134))
(not (Rt $00128 $00130 $00133))

{not (Rt $00128 $00131 $00134))

{STRATEGY] : Expand-TL2 (ss)
(TACTICS):Trule-7 (T1)

<< Paramodulation >>
(Eor (Rf Q 0 0)(And (Rf Q 1 1)(And (Rf Q 2 2)(Rf Q 3 3))))

tint
(not (Rt (And CLR (Td CL))
(Rf Q 0 0)
(Eor (Rr Q 0 0)
(And (Rf Q 1 1)(And (Rf Q 2 2)(Rf Q 3 3))))))

with?
(Eqa (Eor $04208 $04209)(Eor $04209 $04208))

Fig. Al Verification process-1.

103

(TACTICS J:Trule~8 (T2)

<< Resolution >>
(not (Rt (And CLR (Td CL))
(Rt Q 0 0)
(Eor (And (Rf Q 1 1){And (Rf Q 2 2)(Rf Q 3 3)))
(Rf Q 0 0))))

(not (Rt (And CLR (Td CL))
(Conc (Rf Q 1 1)(Conc (Rf Q 2 2)(Rf Q 3 3)))
(Sue (Rf Q1 3))))
twith:
(Rt $00286 $00287 (Eor $00289 $00290))
(not (Rt {And $00286 (Not $00289)) $00287 $00290))
(not (Rt (And $00286 $00289) $00287 (Not $00290)))

(STRATEGY J:iUnite-BC
(TACTICS):Trule-10 (T3)
<< Paramodulation >>
(Td (Rf Q1 1))

“(Rt (And LR (Not (Td (R @ 1 1))))(Rf @ 0 0)(Rf Q 0 0))
iwiths
(I’:x'i (Td (Rf Q@ 1 1))(And (Rf Q 1 1)(And CLR (Td (Rf Q 2 2)))))

[TACTICS):Trule-10 (T4)
<< Paramodulation >>
(Td (Rf Q 2 2))

EI:: (And CLR (Not (And (Rf @ 1 1)(And CLR (Td (Rf Q 2 2))))))
(Rf Q 0 0)
Rf Q 0 0))

with?
(Eq (Pd (Rf Q 2 2))(And (Rf Q 2 2)(And CLR (Td (R Q 3 3)))))

(TACTICS):Trule-10 (Ts)
<< Paramodulation >>
(Td (Rf Q 3 3))

HIH
(Rt (And CLR
(Not (Ang (RF Q1 1}
(And CLR
(And (Rf Q 2 2)(And CLR (Td (Rf Q 3 3))))

{Rf Q 0 0)
(Rf Q 0 0))))))
twith?
(l".‘q (Td_ (Rf Q 3 3)){And (Rf Q 3 3)(And CLR (Td CL))))

[TACTICS):iTrule-21 (T6)
<< Paramodulation >>
(And (Rf Q 1 1)
(And CLR ()
(And (Rf Q 2 2
(And CLR (And (Rf Q 3 3)(And CLR (Td CL)))))))

ting
(Rt (And CLR
(Not {And (Rf Q@ 1 1)

(And CLR
(And (Rf Q 2 2)
(And CLR
(And (Rf Q 3 3)
(And CLR (Td CL))
(Rf Q 0 0)
(Rf Q 0 0)1)))))))
twitht

(Eq (And $04246 (And $04248 $04249))
(And $04249 (And $04246 $04248)))
)

Fig. A2 Verification process-2.

104

[TACTICS }:Trule-16

<< Paramodulation >>
(And (And CLR (Td CL))(RI Q 3 3))

;:ot (Rt (And (And CLR (Td CL))(Rf Q 3 3))
(Rr Q22
(Not (Rf Q 2 2))))

twith?
(Eq (And (And $04556 $04557) $04558)
(And {And $04557 $04558) $04556))

<< Paramodulation >>
(And {And (Td CL)(Rf Q 3 3)) CLR)

tint
(not (It (And (And (Td CL){Rf Q 3 3)) CLR)
(Rt Q22
(Not (Rr @ 2 2))))
fwith?
(Eqa (And $04033 $04034) (And $04034 $04033))
<< Paramodulation >>
(And (Td CLY(Rf Q 3 3))
tind
{not (Rt (And CLR {And (Td CL}Rf Q 3 3)))
(Rf Q 2 2)
(Not (Rf Q 2 2))))

Iwitht

(12 (And $04033 $04034) (And 304034 $04033))

<< P'aramodulation >>
(And (Td CL)(Rf Q 3 3))
tind
(1t (And CLR (And (Td CL)(Rf Q 3 3)))
(Rr Q z 2)
(Not (Rf Q 22))}

twith?
(Eqa (And $04033 $04034){And $04034 $04033))
(TACTICS):Trule-23
<< Resolution >>
(R (And CLI {And (Rr Q 3 3)(Td CL)))
Q2 2)
(Not (Rf Q 2 2)))

with:
(not (Rt (And CLR (And (Rf Q 3 3)(Td CL)))
(R1 Q 2 2)
{(Not {Rf Q 2 2))))

(not (Rt (And CLR (Td CL))(Rf Q 3 3)(Not (Rf Q 3 3))))
---- [THE CURRENT TIIEOREM 1IAS AN R-LINK TO AN UNIT LITERAL CLAUSE j

<< Resolution >

>
(Rt (And CLR (Td CL))(Rf Q 3 3)(Not (Rf Q 3 3)))

iwith?

(not (Rt (And CLR (Td CL))(Rf Q 3 3){Not (Rf Q 3 3))))

**» Contradiction #*xx

--=- [THEOREM] ----

A KRR A RN ER RN AR NN R A RE AR AERF AR R NN XA AR NN

(Rt {And CLR (Td CL))(Rf Q 0 3)(Sue (Rf Q 0 3)))

L R R T

1AS BEEN PROVED.
done
->

Fig. A3 Verification process-3.

(T?7)

(T8)

N. YAMADA, Y. KoBaYAsHI and T. KIGUCHI

