A Knowledge Compilation Method Through
Conversion of Symbolic Rules and Facts
into Functions

, an
YasuHIRO KoBavasHI*, ToorRU MITSUTA* and YuTaka WADA*

This paper describes a practical knowledge compilation method which is based on conversion of knowledge
from rules and facts, in a symbolic data form, to those in a functional form through a semi-automatic transla-
tion process. Knowledge is doubly compiled at a declarative/ procedural level of knowledge representation and

at a Lisp/machine code level of computer language.

The proposed method is applied to a knolwledge-based system for automatic pipe route planning in the area
of industrial plant layout design. The inference program, based on the proposed method solves route priority
assignment problems more than 50 times efficiently than a reference inference program in logic programming
style. The results suggest that the proposed knowledge compilation method should be a useful tool, through its
coordination of the requirement of inference efficiency in system utilization and that of knowledge transparency

in system construction and maintenance.

1. Introduction

Many inference mechanisms have been proposed for
knowledge-based systems in accordance with the
various kinds of knowledge representations available.
Adequate knowledge representation is a key in problem
solving, and strongly depends on the domain and prob-
lem to be treated [l1]. Production systems, frame
representation and predicate calculus are typical in-
ference mechanisms. One basic, shared concept is that
their inference process is based on a central interpreter
which interprets knowledge in the form of symbolic
data. While this characteristic of the inference
mechanisms might be appropriate for use in knowledge-
based systems with limited requirements of inference
performance for narrow domains, it is, however, impor-
tant to enhance the efficiency of inference in applica-
tions of knowledge-based systems to large-scale and/or
real time problems, which are frequently encountered in
engineering.

Inefficiency, for example, has been encountered in
development of a knowledge-based system for
automatic pipe route planning in plant layout design [2].
The system task is composed of two steps; (i) the
knowledge reduction step in which routing knowledge
is reduced to a planning specification of a route in the
frame form obtained from if-then rules by symbolic
manipulation and (ii) the path finding step in which the
optimal route satisfying the planning specification be-
tween fixed start and goal points is determined by

*Energy Research Laboratory, Hitachi Ltd. 1168 Moriyama-cho,
Hitachi, Ibaraki 316, Japan.

Journal of Information Processing, Vol. 11, No. 3, 1988

numerical computation. The knowledge reduction step
is based on backward chaining by a conventional in-
ference program KRIT-PC [3] and consumes most of
computer CPU time. Then one practical incentive is to
develop a method for improving the inference efficien-
cy.

Major requirements for knowledge-based systems in
engineering applications may be summarized as the
efficiency of knowledge utilization and the transparency
of knowledge representation. Two approaches are possi-
ble to realize knowledge-based systems which satisfy
these requirements:

(a) employ a software system of high transparency
and improve its efficiency by advanced hardware, or

(b) combine a software system of high transparency
with a software system of high efficiency.

The first approach is being actively pursued in com-
puter science. New programming styles have been pro-
posed to simplify computer aided problem solving and
enhance the transparency of the problem solving pro-
cess. Typical examples include logic programming and
object oriented programming, which potentially realize
advanced knowledge-based systems through the first
straightforward approach. To achieve very efficient in-
ference in advanced knowledge-based systems, the basic
research has been directed towards development of ad-
vanced computers with parallel processing architecture
[4]. However, much remains to be done for this first ap-
proach to reach the stage of practical use.

The second approach offers a practical means, ap-
plicable to the inefficiency problem in present
knowledge-based systems. It is often referred to as a
knowledge compilation method and several types are

184

discussed in Ref. [5]. One well-known example is
translation from if-then rules to a network to describe
incremental change of known facts, as proposed by
Forgy [6] for production systems. It is intuitively
understandable that a declarative representation, like
if-then rules, is highly transparent and a procedural
representation, like programs, is highly efficient in the
present problem-solving systems [7]. Reddy [8] de-
scribed the transformation process from logic program-
ming based on declarative knowledge to the functional
programming based on procedural knowledge. Karey
and Juell [9] proposed an expert system compiler which
translates a rule-based language to a set of C language
procedures. The former language is based on
knowledge representation in the declarative form and
the latter language is based on that in the procedural
form.

This paper describes a more practical, but ad hoc ap-
proach, to knowledge-based systems of improved in-
ference efficiency. The proposed knowledge compila-
tion method is based on the conversion of knowledge
from rules and facts in symbolic data form to those in
functional form through a semi-automatic translation
process. This method attempts to satisfy two major re-
quirements in knowledge-based system utilization; the
efficiency of inference especially required for practical
use of a knowledge-based system and the transparency
of knowledge representation required during the con-
struction and maintenance of a knowledge base.

2. Method

2.1 Knowledge Compilation

In this paper knowledge compilation means conver-
sion of knowledge representation to give improved
efficiency of knowledge utilization. Knowledge in the
declarative form is compiled to that in the procedural
form at the knowledge representation level. This is the
first compilation in which rules and facts in a symbolic
data form are translated into those in a functional
form. Once knowledge is compiled into the procedural
level, procedural knowledge in a description language
can be compiled to that in a faster language at the com-
puter language level. This is the second compilation in
which the procedure, written in Lisp, is translated into
that in machine code. This knowledge compilation is a
powerful way to realize efficient knowledge utilization
by advantageous combination of the first and second
compilations. The efficiency due to this double compila-
tion is brought about by the use of rules and facts
represented in the functional form.

The knowledge handling process based on the pro-
posed method is characterized by three major stages:

(i) transparent description of rules and facts in
predicate calculus syntax, which is suitable to construc-
tion and maintenance of knowledge bases;

(ii) semi-automatic translation from rules and facts

Y. KoBayasHI, T. MiTsuTa and Y. WADA

written in stage (i) to procedures in machine code; and

(iii) efficient utilization of doubly compiled pro-
cedures, generated at stage (ii), which is suitable to prac-
tical use of knowledge-based systems.

2.2 Comparison of Knowledge-Based System

A knowledge-based system with rules and facts in the
functional form can be compared with a conventional
knowledge-based system with rules and facts in the sym-
bolic data form. (The inference method in the former is
referred to as the proposed method and that in the latter
as the conventional method.) The anticipated behavior
of inference programs based on these two inference
methods is described for a typical backward chaining
process. The inference is initiated by asking the in-
ference program a question about whether the proposi-
tion of a a hypothetical assertion is true or not. The
inference program tries to prove the hypothetical asser-
tion through backward chaining. Both methods can
handle the proposition which contains an unknown
variable or variables.

(1) Conventional method

The following steps are taken by the inference pro-
gram using rules and facts in the symbolic data form.

(i) Focus on the proposition of the primary ques-
tion to be answered. This is the hypothesis about the
conclusion to be proved by backward chaining.

(ii)) Repeat steps (ii—a), (ii—b) and (ii—c) to
answer the primary and secondary questions, if ap-
plicable.

(ii—a) Find a fact proposition which matches the
currently focused-on proposition. If such a fact is
found, the present question is answered affirmatively.

(ii—b) Find a rule the conclusion proposition of
which matches the currently focused-on proposition. If
such a rule is found, ask a secondary question about
whether its premise proposition can be true or not. Go
to step (ii), focusing on the premise proposition.

(ii—c) If neither fact nor rule is found, the present
question is answered negatively.

(iii) Return the answer to the primary question
about whether the hypothetical assertion formed at step
(i) is true or not. If the hypothesis contains unknown
variables, the value for each variable is also obtained.

Thus, the inference program interprets the facts and
rules in the knowledge base to process these steps.

(2) Proposed method

The following steps are taken by the inference pro-
gram using rules and facts in the functional form.

(i) Focus on a keyword predicate in the argument of
the function invocation for the primary question to be
answered.

(ii) Repeat steps (ii—a), (ii—b) and (ii—c) to
answer the primary and secondary questions, if ap-
plicable.

(ii—a) Invoke functions of facts which are associ-
ated with the focused keyword predicate. After the in-
voked functions return the result, if it is affirmative, the

(‘F

A Knowledge Compilation Method Through Conversion of Symbolic Rules and Facts into Functions 185

present question is answered affirmatively.

(ii—b) Invoke functions of rules the conclusion of
which is associated with the focused-on keyword
predicate. The invoked functions then cause function in-
vocations to ask whether the premise of the rules can be
true or not. Go to step (ii), focusing on the keyword
predicate in the argument of the function invocation
for the secondary question.

(ii—c) If neither fact nor rule function return an
affirmative result, the present question is answered
negatively.

(iii) Return the answer to the primary question
about whether the hypothetical assertion formed at step
(1) is true or not. If the hypothesis contains unknown
variables, the value for each variable is also obtained.

The inference program utilizes the flow control
mechanism embedded in the description language and
does not need to control explicitly the step-wise process
of backward chaining. The functions of facts and rules
operate as if they know what they should do when they
are invoked. This system configuration, based on
atomic procedures corresponding facts and rules,
assures high modularity of the knowledge base in the
compiled form.

3. Inference Program

The inference method based on the double
knowledge compilation was implemented as an in-
ference program.

3.1 Program Specification

The basic specification of the program are stated in
the following.

(a) Rules and facts are originally written in the syn-
tax of KRIT-PC. [3] The system KRIT-PC is based on
first order predicate calculus and is employed as a
reference inference program with rules and facts in sym-
bolic data form. The KRIT-PC program is comparable
to Prolog, but it offers better control mechanisms for
inference.

(b) Propositions of rules and facts are simple 3-
tuples of the form [attribute object value] and may con-
tain unknown variables for objects and/or values. The
attribute of this expression is often referred to as a
keyword predicate in this paper.

(¢) The language for system description is Lisp.

(d) The inference type to be realized and tested is
backward chaining.

3.2 Representation of Rules and Facts

(1) Rules

A simplified sample rule is taken to illustrate rules in
the symbolic data form and the functional form. The
sample rule is selected from the knowledge base of a
system for automatic pipe route planning and the com-
parison is made in Fig. 1. A rule for pipe priority assign-
ment is shown in Fig. 1(a). The symbolic data in Fig.

If the diameter of pipe L1 is D1,
the diameter of pipe L2 is D2, and
D1 is greater than D2,
then pipe L1 is given higher priority than
pipe L2.

(a) Rule for pipe priority assignment
(If (And (diameter $11 $d1)
(diameter $12 $d2)
(greater__than $d1 $d2))
(higher__priority $11 $12))

(b) Rule in symbolic data form

Start
)

Generate the partial template for the premise part of the rule. PRO-
VABLE is a special function which drives the backward chaining
with related rules and facts in the functional form.

(And (PROVABLE (diameter $11 $d1))
(PROVABLE (diameter $12 $d2))
(PROVABLE (greater__than $d1 $d2))
[l
Generate the link from the keyword predicate in the conclu-
sion part to the rule name.

—

‘ Initialize the variables $11 $12 $d1 $d2 as unknown variables
1

Bound the variables appearing in the premise template with

the values,

if the their values are determined

through the match between the conclusion template and the

question which fires this rule.

]

Evaluate the premise template, which defines

the function named “‘rule__of__higher__priority’’ to judge

whether the premise conditions are satisfied or not through

function calls.) |
1

End

[higher__priority - - -> rule__of__higher__priority J
y

(¢) Rule in functional form

Fig. 1 Comparison between rules in symbolic data form and func-
tional form.

1(b) are declarative representations of the rule and con-
tain no information about how to use themselves to
realize the inference process. The function in Fig. 1(c) is
the procedural representation and contains information
about how to behave to realize inference process when
invoked from other functions. The procedure which is
embedded into the rule function is shown in Fig. 1(c) as
five steps. The function of the rule judges if a proposi-
tion related to ‘‘pipe diameter’” and a proposition
related to ‘‘greater than’’ in the premise of the rule are
all true on the basis of the information available when
invoked from other functions. Whether the focused-on
conclusion proposition can be true or not is asked by
the invocation of appropriate functions to check the

186
The diameter pipe L1 is 80 mm.
(a) Fact about pipe diameter
(diameter L1 80)
(b) Fact in symbolic data form

Start
i

Invoke special function PROVABLE with argument (diameter L1
80).

1
Find a search function linked to predicate ‘‘diameter’’ and in-
voke the function with proper argument.

[
Find the value of diameter attribute of the variable L1 and
report the result to answer the question.

!
End
(¢) Fact in functional form

Fig. 2 Comparison between facts in symbolic data form and func-
tional form.

propositions appearing in the premise of the rule and by
evaluating the returned value from the function.

Two stages are adopted to realize the inference pro-
cess by function invocation: the first stage generates a
function to check propositions and the second executes
this function. Template is used as the prototypical sym-
bolic datum for function definition, which can be inter-
preted as the ‘‘source list’’ of a function definition pro-
gram. The function source list to check propositions on
the premise of the rule is cast on the template. The
template is “EVAL’’ed in Lisp to define the objective
rule function. The first stage is covered by steps from 1
to 4 and the second stage is step 5. Two special func-
tions PROVABLE and UPDATE appear in the
template used in stage 1. PROVABLE drives the
backward chaining with related rules and facts in the
functional form. UPDATE manages the status of
unknown variables which are unified in the course of
backward chaining. A rule in the functional form is
translated from the corresponding rule in the symbolic
data form by one to one mapping.

(2) Facts

A sample fact is taken to illustrate facts in the sym-
bolic data form and the functional form. This fact is
related to the sample rule given in section (1). The com-
parison of the forms is made in Fig. 2. A fact about
pipe diameter is shown in Fig. 2(a). The symbolic data
in Fig. 2(b) are declarative representations of
themselves and contain no information about how to
use the fact to realize the inference process. The func-
tion in Fig. 2(c) is the procedural representation and
contains information about how to realize the inference
process when invoked from other functions to check
fact propositions.

The procedure which is embedded into the fact func-

Y. KoBaYAsHI, T. MiTsuTa and Y. WADA

LIS <-- Argument list

ATR <~- First element of LIS
OBJ <-- Second element of LIS
VAL <-- Third element of LIS

‘ END

Fig. 3(a) General procedural flow for fact search.

Start of CASE B

CAND_VAL <~-- Value of VAL
FACT_VAL <-- Value for ATR VAL <-- Value of ATR
attribute of OBJ attribute of OBJ
VAL <-- Intersection of
CAND_VAL and FACT_VAL I

| -
no Is value of VAL NIL 7
yes

End of CASE B

Fig. 3(b) Partial general flow for CASE B.

tion is shown in Fig. 2(c) as three steps. The fact func-
tion is simpler than the rule function, since it handles
only one proposition, not the logical combination of
propositions. When the pipe name and diameter value
are known, the function of the sample fact behaves as a
simple check function. The function returns ‘‘true”’, if
and only if the value of the pipe diameter is correct in
the knowledge base. It returns the value of the pipe
diameter if it is found in the knowledge base, when the
pipe name is known, but the diameter is not. The fact
function can be obtained from that in the symbolic data
form through one-to-one translation, as in the rule func-
tion. Unlike the rule function, the fact function can be
provided by using several kinds of general purpose
primitive search functions, because checking fact pro-
position can essentially be realized by several kinds of
basic search tasks. The fact function behaves as if it
knows what kind of search task is required to check the

A Knowledge Compilation Method Through Conversion of Symbolic Rules and Facts into Functions

fact and which general purpose search function should
be invoked from it.
(3) Fact search function

The function LOOKATR is one primitive search func-
tion and a search function appears in step 2 of Fig. 2(c).
The general flow of this search function is shown in Fig.
3(a) and (b). LOOKATR treats a wide range of search
tasks and covers various cases where objects and/or
values are known, unknown or partially known by
CASE A—D in Fig. 3(a). The value is referred to as
known, if it is not a variable or if a final value is given to
the variable. The value is referred to as partially known,
if no value is given when the inference is initiated and
candidates of its final value are obtained in the course
of backward chaining. The simple fact in Fig. 2 does
not require such general functions. The procedural flow
in Fig. 3(b) gives CASE B, as a case of them, in which
VAL is a variable but OBJ is not in the proposition
[ATR OBJ VAL].

The fact function invokes the proper type of search
function which is specific to the fact, checks if the fact is
true or not, and returns the result, when invoked from
other functions. Fact propositions are represented by
structured Lisp objects. Since the proposition [attribute
object value] is structured as a frame, the search for the
value is effecient once the object is pointed out in the
data retrieval process. The search function LOOKATR
uses the procedure in the following to find the proposi-
tion with unknown objects.

(i) Find the type of variable OBJ on the basis of a
relationship between objects and attributes.

(ii) Find the instances of objects from the set of in-
stance sets which is given for the type of objects.

(iii) Set the union of instances as a candidate value,
which is partially known. A partialy known value is
screened to the final value throughout the inference pro-
cess.

3.3 Control of Inference

In the knowledge-based system with rules and facts in
the functional form, the flow of inference is inherently
controlled by the function call mechanism embedded in
the description language. A special function is provided
to tune the flow control of the inference process realized
by the function calls. The function PROVABLE
manages detailed control of backward chaining. The
general flow of PROVABLE is shown in Fig. 4. In the
course of backward chaining to judge whether a given
proposition X is true or not, intermediate propositions
Y are secondarily hypothesized and tested. Two basic
processes are used to judge whether the proposition Y is
true or false from the rules and facts in the knowledge
base.

(i) Find whether proposition Y exists as a fact.

(ii) Find the rule which has proposition Y in the con-
clusion and proposition Z in the premise and replace Y
by new intermediate proposition Z.

These processes are embodied in the present inference

187

LIS <-- Argument list

ATR <-- First element of LIS
OBJ <-- Second element of LIS
VAL <-- Third element of LIS

s
no

FUN <-- Function linked
to CONCLUSION

CNT <-- Second element of LIS
RST <-- Result of application
of PROVABLE to CNT

Return negation
of RST

attribute of ATR
PAR <-- Paired list of FUN

and its argument
BAG <-- List of PAR's

Anyﬁ{}unked ves Add pairs of FUNCTOR valuel
to FUNCTOR attribute and its argument to BAG
no l

Add pairs of function
and its argument to BAG

ny function yes
linked to ATR 2

no
H v
yes
S BAG an empty list ?
no

FRT <-- First pair of BAG

BAG <-- Other pairs of BAG

RST <-- Result of evaluation
of FRT

ng @
ves Yo
Return RST

Fig. 4 General flow of function PROVABLE.

program by the following three schemes.

(a) If a special search function is defined for the in-
termediate proposition, then call the function directly.
The name of the special search function is given in
FUNCTOR attribute of the keyword predicate of the
proposition.

(b) If a general purpose search function is specified
for the intermediate proposition, then call the function.
The name of the search function is also given in FUNC-
TOR attribute of the keyword predicate of the proposi-
tion.

(c) If a rule function the conclusion proposition of
which matches the intermediate proposition is found,
then call the function. Chaining with the rule function
is continued to call the function, the name of which is at-
tached to the CONCLUSION attribute of the keyword
predicate of the intermediate proposition.

In the flow of Fig. 4, the variable BAG is the template
of the flow control function which sequentialy executes
three schemes (a), (b) and (c), and is generated by sym-
bolic manipulation. The flow control function is de-
fined on the basis of this template in PROVABLE. The
inference is initiated by invoking the function and the in-
ference result is returned as the value of the function in-
voked. Thus, the function PROVABLE can locally con-
trol the flow of the inference process which is based on a
function call mechanism offered from the description
language Lisp.

188

3.4 Semi-Automatic Conversion

Representation

of Knowledge

The knowledge compilation method proposed here is
based on the translation from rules and facts in sym-
bolic data form into those in functional form. Practical
use of knowledge-based systems requires that this con-
version process should be done efficiently and
systematically. It is, therefore, desirable to automate it
as much as possible. This conversion of knowledge
representation is, however, only semi-automatic in a
sense that a limited number of basic functions and data
must be prepared manually prior to the main transla-
tion process.

(1) Translation of rules

The general flow of the translation of a rule is shown
in Fig. 5. First of all, the template for the prototype of a
function to be defined is generated by symbolic

manipulation. Then the function is defined by
Start
i ~ S —
Step 1 Extract CONCLUSION and PREMISE parts from rule
in symbolic data form
l 1
Step 2 Define new variables to be used in function to be i
generated from old variables in rule of argument |
— — —_J

[
i . — -
Define function name from rule name to be transformm

Step 3
. 1

Step 4 Configure part which combines variables of argument
with their values in function to be defined
1
Replace variables with new variables in PREMISE part
and insert PROVABLE and UPDATE into expression
i
Replace variables with new variables in ACTION and
form pattern for matching
Il

1

Step 5

Step 6

— — B —

List variables used only in function to be generated
including new variables
]
Elep 8 Configure part which initializes new variables
i

Step 7

]

Step 9 Configure part which updates values of new variables in
comparison between pattern for matching and argument
1
‘ Step 10 Synthesize template for function to be generated l
I

Step 11 Evaluate template expression of function definition and
define function for rule
!
Step 12 Put generated function name into CONCLUSION link of
keyword ATR

!
Step 13 Return function name for given rule —’

1
End

Fig. 5 General flow for rule generation in functional form.

Y. KoBAYAsHI, T. MiTsuTa and Y. WADA

evaluating the template, since the template is the func-
tion definition statement in Lisp. This activates the func-
tion of the objective rule. The major elements of the
template are illustrated in Fig. 6. They are parts of the
source code which describes the corresponding rule
function and their essential part is extracted from the
rule in the symbolic data form. Steps 1 to 10 (Fig. 5) are
employed to combine parts of the source code to pro-
duce a template for rule function definition. The key
code to call the rule function at stép 1 is stored at step
12. The name of the rule function is added to the CON-
CLUSION attribute of the keyword predicate in the con-
cluding proposition of the rule.

(2) Translation of facts

Two steps are used for translation from rules and
facts in the symbolic data form to those in the function
form.

(a) The proposition of the fact tuple is translated to
the more accessible structured Lisp object. As an exam-
ple, the proposition [ATR OBJ VAL] is used to set the
value of the ATR attribute of the OBJ frame as VAL.

(b) The search method is specified by adding the
name of primitive search function to the FUNCTOR at-
tribute of the keyword predicate of the fact proposi-
tion. For example, The diameter attribute of the pipe
frame has the name of the general purpose search func-
tion LOOKATR in its FUNCTOR attribute.

4. Application of Method

4.1 Sample Knowledge-based System

The proposed knowledge compilation method is ap-
plied to a knowledge-based system for automatic pipe
route planning during plant layout design. Making
priority assignments to individual pipe routes, which
are encountered in the pipe route planning, are made
aided by designer’s knowledge.

The knowledge-based system described in Fig. 7 is
chosen as an example system to demonstrate the devel-

Element 1: Function name for translation of given rule

Element 2: Function name for given rule

Element 3: Function name for function type definition

Element 4: List of arguments

Element 5: Comments for function to be generated

Element 6: Function name for program statement

Element 7: List of local variables

Element 8: Local binding variables in arguments and their values

Element 9: Initialization of variables used in template for rule
description

Element 10: Definition of premise part of template

Element 11: Definition of conclusion part of template

Element 12: Update of value of template variables through match-
ing between template and arguments

Element 13: Evaluation of premise template with updated template
variables

Element 14: Return evaluation result

Fig. 6 Configuration of template for rule function definition state-
ment.

A Knowledge Compilation Method Through Conversion of Symbolic Rules and Facts into Functions 189

Knowledge reduction Routing Criteria:

route planned
in later
routing cycle

Initial focus is placed
on a route to be planned,
for exampl, route L.

— ,

/ | | .
Is there any route of /
higher priority
than focused route ? /
/ route planned

in earlier
routing cycle

| 4

[Inference

- Route frame L
| Route L' is of [:\ \
! higher priority.| | None. | \ Slot value
------------------------- { (type) ipe]
1 \| (diameter) (500 mm}
\ (£luid) [steam)
\ (system) cee

Focus is moved
to route L'.
$ \
\

Focused route is selected \
in next routing cycle. \ r—vﬁoute frame L'
O \ Slot
Optimal path finding
rselected route is planned.

Value
L] (type)
T a
: Question, i 1
8 i

(fluid) [steam-drain]
(system) ..

{pipe)
\ | (diameter) [500 mm]
i Answer

Fig. 7 Description of example knowledge-based system.

oped inference program. The left half of this figure
shows the flow of the pipe route planning which is com-
posed of two steps; knowledge reduction and path
finding. Since pipe routes are planned sequentially on
the priority basis, the priority assignment problem is
solved through a knowledge-based approach in suc-
cessive routing cycles. At the top of this flow, an ar-
bitrary route L is chosen as a basis for priority com-
parison. Then a question is asked as to whether there is
any route of higher priority than the currently focused-
on route. This question is answered by the inference pro-
gram through backward chaining. If the answer shows
that another route L’ is higher in routing priority than
the focused-on route L, the focus is moved from route
L to route L’ and another question is asked. If no
higher priority route exists, the focused-on route is
selected for planning in the next routing cycle. The plan-
ning specifications of selected route are also determined
in this knowledge reduction step, and the selected route
is planned in the path finding step.

The right half of Fig. 7 illustrates knowledge utilized
by the inference program for routing priority determina-
tion. Routing criteria are if-then rules to describe
routing priority for various kinds of routes. Route
frames are structured Lisp objects to represent the
characteristics of individual routes. A few typical slots
and their values are shown in the figure. Major slot
values are supplied from a plant design database
through a pre-processing procedure.

rule #1 If the type of route $x1 is pipe,
the type of route $x2 is pipe,
the diameter of $x1 is $d1,
the diameter of $x2 is $d2, and
$d1 is greater than $d2,
then route $x1 is the higher rank than route $x2
for diameter condition.
If route $x1 belongs to system $sl,
system $sl is for facility $f1,
route $x2 belongs to system $s2,
system $s2 is for facility $f2, and $f1 is equal to $f2,
$£1 is equal to $f2,
then route $x1 is of equal rank to route $x2
for construction approval condition.
If the type of route $x1 is pipe,
the type of route $x2 is pipe,
route $x1 has start point $a, and
route $x2 has branching point $a,
then route $x2 is a parent pipe of route $x1.
If the fluid in route $x1 is steam, and
the fluid in route $x2 is steam-drain,
then route $x2 is of higher rank than route $x1
for fluid condition.
If the start point of route $x1 is $a, and
X, ¥, z coordinates of $a are given,
then the start point of route $x1 is fixed.
If route $x1 is not planned,
route $x2 is not planned, and
route $x1 is of higher rank than route $x2
for branching point condition,
then route $x1 is of higher priority than route $x2.
If route $x1 is not planned,
route $x2 is not planned,
route $x1 is of equal rank to route $x2,
for branching point condition, and
route $x1 is of higher rank than route $x2
for diameter condition,
then route $x1 is of higher priority than route $x2.

rule #2

rule #3

rule #4

rule #5

rule #6

rule #7

Fig. 8 Examples of rules for routing order.

4.2 Results of Case Study

The case study problem involves selecting a pipe
route to be planned with highest priority among 43 pipe
routes on the basis of 56 rules and about 500 facts in the
knowledge base. Typical examples of rules are shown in
Fig. 8 in slightly abstract expressions. They are used to
describe relative priorities between routes of different
types and terms for the characteristics of routes. Sym-
bol names which begin with § indicate unifiable
variables. Their rules and facts can be automatically
translated from the symbolic data form to the func-
tional form.

The reference inference program KRIT-PC is
adopted to maintain the knowledge base in which rules
and facts are written in symbolic data form. This con-
ventional inference program takes an average 42 CPU
seconds on an 8 mips computer to solve priority assign-
ment problems. The inference program with proposed
double compilation takes 0.8 CPU second to do the
same inference task. The developed inference program
can solve the problem more than 50 times efficiently
than the reference inference program using the logic pro-

190

gramming style. These results shows that the knowledge
compilation method is useful in the reduction of com-
putational efforts and, therefore in the mitigation of the
imbalance in efforts between symbolic and numerical
computations in the sample knowledge-based system.

S. Concluding Remarks

A practical knowledge compilation method was devel-
oped on the basis of the conversion of knowledge from
rules and facts in symbolic data form to those in func-
tional form through a semiautomatic translation pro-
cess. The characteristics of the proposed method are
summarized as follows.

(a) The inference process was accelerated through
compilation at the declarative/procedural level of
knowledge representation and at the Lisp/machine
code level of computer language.

(b) The semi-automatic translation of rules and
facts in symbolic data form to those in functional form.

The proposed knowledge compilation method was ap-
plied to a knowledge-based system for automatic pipe
route planning in plant layout design. The route priori-
ty assignment problem was solved by backward chain-
ing with 56 rules and about 500 facts by both the conven-
tional inference program and the developed inference
program. The rules and facts could be automatically
translated from the symbolic data form to the func-
tional form. The lattar inference program could solve
the problem more than 50 times efficiently than the
reference inference program in the logic programming
style.

These results suggested that the proposed knowledge

Y. KoBayvasHI, T. MITsuTA and Y. WADA

compilation method should be a useful tool, achieved
by coordinating requirements of inference efficiency in
system utilization and knowledge transparency in
system construction and maintenance.

Acknowledgements

The authors would like to express their thanks to Dr.
H. Motoda of Advanced Research Laboratory,
Hitachi, Ltd. for many helpful discussions of this
work.

References

1. BARR, A. and FEIGENBAUM, E. A. (eds.). The Handbook of Ar-
tificial Intelligence, William Kaufmann, Los Altos, Calif. (1981).

2. Mitsuta, T. ef al. A Knowledge-Based Approach to Routing
Problems in Industrial Plant Design, Proc. of the 6th Int. Workshop
on Expert Systems & Their Applications, Avignon, France (1986),
237-256.

3. YAaMADA, N. et al. A Diagnosis Method of Dynamic System using
the Knowledge on System Description, Proc. of 4th IJCAI,
Karlsruhe, West Germany, (1983), 225-229.

4. Kawanosg, K. Current Status and Future Plans of the Fifth
Generation Computer Systems Project, Proc. of Int. Conf. on Fifth
Generation Computer Systems, Tokyo, Japan (1984), 3-17.

S. HAYs-RoTH, R. ef al. (eds.) Building Expert Systems, Addison-
Wesley, Reading, Mass. (1983).

6. Forgy, C. L. Rete: A Fast Algorithm for the Many Pat-
tern/Many Object Pattern Match Problem, Artificial Intelligence, 19,
1, (1982), 17-37.

7. WINOGRAD, T. Frame Representations and the
Declarative/Procedural Controversy, D. G. Bobrow and A. Collins
(eds.): Representation and Understanding: Studies in Cognitive
Science, Academic Press, New York (1975).

8. RepDY, U. S. Transformation of Logic Programs into Functional
Programs, IEEE Proc. of Int Symp
(1984), 187-196.

9. Kary, D. D. and JUELL, P. L. TRC: An Expert System Com-
piler, ACM SIGPLAN Notice, 5, 5 (1986), 64-68.

on Logic Progr g,

(Received June 26, 1987)

