Inferring Parenthesis Linear Grammars
Based on Control Sets

Yuit TAKADA*

We provide a new grammatical inference method for a class of linear grammars, called parenthesis linear
grammars. We first show that any linear language can be generated by a fixed linear grammar together with a
regular control set. From this, it is shown that the inference problem for parenthesis linear grammars can be
reduced to the problem for regular sets. This implies that to infer parenthesis linear grammars, we can use any
inference algorithm for regular sets. An application of our results to the inference problem for generalized se-

quenctial machines is also discussed.

1. Introduction

Formal language theory is applied to the modeling
and description of various concepts in many areas, for
example, in artificial intelligence, in software engineer-
ing, and so on. The grammatical inference problem is a
central issue in these areas, because the study leads us to
basic methods for machine learning and automatic pro-
gram synthesis. However, as far as efficient and prac-
tical methods are concerned, they have been provided
only for the class of regular sets. In this paper, we con-
sider the grammatical inference problem for linear
grammars.

Biermann [4] and Tanatsugu [13] have presented in-
ference methods for linear languages, which construct a
linear grammar by finding self-embedding property of it
from given strings. Both of them use some given
parameters for bounding computation of finding the
self-embedding substrings in a linear language. The
greater values of parameters are, the less efficient pro-
cedures for finding self-embedding substrings are.
Thus, the methods based on the self-embedding prop-
erty of languages are not so efficient.

We provide a new grammatical inference method for
a class of linear grammars, called parenthesis linear
grammars. The class of parenthesis linear languages, in
principle, contains the class of regular sets and is prop-
erly contained in the class of linear languages. We first
show that there exists a fixed linear grammar over an
alphabet by which any linear language over the
alphabet is generated together with a regular control set
(Theorem 3.2). In this case, self-embedding variables of
a linear grammar correspond to the states on loops in
the transition diagram of the finite state automaton
which accepts the regular control set. From this, we

*International Institute for Advanced Study of Social Information
Science (IIAS-SIS) FUJITSU LIMITED, 140, Miyamoto, Numazu,
Shizuoka 410-03, Japan

Journal of Information Processing, Vol. 12, No. 1, 1988

next show that the inference problem for parenthesis
linear grammars can be reduced to the problem for
regular sets. This implies that, using any inference
algorithm for regular sets, we can construct an in-
ference algorithm for parenthesis linear grammars. Fur-
ther, the correctness and time complexity of the
algorithm are immediately obtained from the ones of an
algorithm for regular sets. It is well known (e.g.,
Angluin [1, 2], Biermann [5]) that any regular set is iden-
tified by some effective algorithms.

Finally, as an application of our results, the inference
problem for generalized sequential machines is dis-
cussed. It is shown that if structural information of the
input-output pairs are available, then the problem is
also reduced to the problem for regular sets.

2. Preliminaries

Let X denote an alphabet and X* denote the set of all
strings over X including the null string A. |u| denotes
the length of a string u.

We denote a nondeterministic finite automaton (ab-
breviated NFA) M by a 5-tuple (X, 2, J, qo, F), where
K is a finite nonempty set of states, 2 is a finite input
alphabet, d is a transition function from K x 2 to 2%, g,
in X is the initial state, and FSK is the set of final
states. The transition function ¢ can be extended to a
function from 2% x X* to 2% such that (g, 1)=1{¢} and
for all strings # and v in Z*, &(q, uv)={p| for some
state r in &(q, u), p is in &(r, v)} for all ge K, and 4(Q,
u)=\),(q, u) for Q<K. The set accepted by M,
denoted T(M), is the set T(M)={ue 2Z*|8(qo, F#d}.

A deterministic finite automaton (abbreviated DFA)
M is a 5-tuple (K, 2, &', qo, F), where K, %, go, and F
have the same meaning as for an NFA, but ¢’ is a func-
tion from Kx 2 to K.

It is well known that if a set R is accepted by an NFA
then there exists a DFA which accepts R.

28

A subset R of 2* is called regular if and only if R is ac-
cepted by an NFA. If R is regular, then there is a
minimum state DFA, unique up to isomorphism, which
accepts R. This is called the canonical finite automaton
for R.

A context-free grammar G over X' is a 4-tuple (N, %,
I1, S). N is a finite nonempty set and called variables.
We assume that N and X are disjoint, and denote NUX
by V. Il is a finite nonempty set of productions; each
production is of the form 4—x where A is a variable
and x is a string in V*. We distinguish each production
A—xin II by its label n;: A—x. S is a special variable
called the start symbol.

A linear grammar G is a context-free grammar such
that each production in IT is of the form

A—-uBv or A-u,

where A, Be N and u, ve 2*.

Let G=(N, 2,11, S) be a linear grammar. We define
the relation =;> between strings in V*. For x, ye V*,
X =;> yif and only if x=vAw, y=vuwand n;: A—uisa
production of I7 for some v, we Z*.

Let xo, X1, . . . , Xx be strings in V*, where k=1. If

n n; i
Xo 3 Xu, X1 2 Xoy . ooy Xie—y =T Xo

then we denote x; % Xk, where a=m 7w, . . . ni, which
is called a derivation from x, to x, with an associate
word o in G.

Let L(A,G) denote the set {weZ*I4A = w,
ae IT*}. The language generated by G, denoted L(G),
is the set L(S, G), i.e.,

L(G)={weZ*IS = w,acI"}.

A language L is said to be l/inear if and only if there ex-
ists a linear grammar G such that L =L(G) holds.

A linear grammar G=(N, X, I1, S) is called in linear
normal form (abbreviated as LNF) if and only if each
production is of the form

S—A, A—a, A—aB, or A—Ba, (*)

where A, Be N, aec 2. We say an LNF grammar for a
linear grammar in LNF.

Proposition 2.1 Any linear language is generated by
an LNF grammar G.

Proof. Without loss of generality, we may assume
that any linear language is generated by a linear gram-
mar G'=(N', Z, IT’, §) which has no production of the
form A—A4 or B—A, where Ae N’, Be N'—{S}.

We construct an LNF grammar G=(N, X, 11, S)
from G’ as follows; Every variable of G’ is in N and
each production of the form S—A1, A—aB, A—Ba or
A—a in IT’ is in II. If a production of the form

1. K=NU{gr} where gr¢ N.
2.

Y. TAKADA

A-aa; . .. a (k=2)is in IT’, then we introduce new
variables C), Cy, . . ., Ci_, into N and new produc-
tions A—=a,Cy, C\=a;Cs, . .., Cio1—ay into II. If a
production of the form A—aa, . . . a;Bb\b, . . . b, is
inIl’, wherei=2and j=0, or i=0and j=2, then we in-
troduce new variables Ci, C,, . . ., Ciy;—, into N and
new productions A—a,C,, C,—a,C,, . . ., Ci-1~a,C;,
C—=Cis1bi, Cirs=Ciiaby, . . ., Civj—,—Bb; into I1.

It is easily seen that S = w if and only if § = w.
Therefore, L(G')=L(G).D

In what follows, we assume that for some we L(G)
every variable A appears in some derivation S =;> w,
i.e., there exists a derivation S =Z-~ yAv =;> w, where
a=pfy.

3. Representation Theorems for Linear Languages

In this section, we show that there exists a fixed LNF
grammar G° over an alphabet = by which any linear

language L over X is generated with a regular control set
C.

Definition Let X={a, a5, . . ., a,} be an alphabet.
An LNF grammar G°=({S°}, 2, IT°, S9) is said to be
universal if and only if I'° consists of the following pro-
ductions,

§%—>a,S° $%=a,8, ..., §°>4q,S°,
= S°—>S°a1, S°—>S°a2, ey SO"’SOG,,,
S“—-’a., So—'az, ey S°—>a,,,

S%—2
Note that for a given alphabet X, the universal LNF
grammar G° is uniquely determined and L(G%)=2X*.

Definition Let G=(N, 2, I1, §) be a linear grammar.
Then, a subset C of IT* is called control set for G and

Lo(G)={weZ*|S = w, ac C}

is called the language generated by G with control set C.
Let G=(N, 2,11, S) be an LNF grammar, and

G°=({§°, 2, II°, 9 be the universal LNF grammar.

We define a homomorphism 4 from IT* to IT such that

n: A—aB,

nj where nj: $°>8%, if n: A—Ba,

0 0 .
n; where nj: $°—>aS°, if

h(n)=
ny where ng: §%—a, if 7: A—a,

n: S—A.

We construct the corresponding NFA M= (K, IT°, 8, S,
F) to G, where K, 8, F are defined as follows;

n® where 7% S°-4, if

. Inferring Parenthesis Linear Grammars Based on Control Sets

{gr}
. o _{
(S, n%)=

29

if #: S—A, n% §°>4, and ne A~'(7Y),

if 7% S°>Aand i~ '(n%=¢.

if n¥: $°—aS?,
if mj: §°->S%.
if me A—aell, n): $°>a, and nee h™'(n),

Bl ,':A B s T “Nn?
5(A,n}’)=[{ ni: A—aBell, nie h (n;)}
{Blni: A—Bae1l, m,e h~(n))}
{gr}
J(A,n?)={ e T
if n;: S®>aand A~ \(n])=0¢.
3. F={qF}

Now we have the following lemma.

Lemma 3.1 For any we Z* Ae Nand ac I1*, 4 =
w if and only if §° =5- w and J(A h(a))> gr.

Proof If w=A4, then clearly S = A if and only if §°
? A and &(S, %> gr, where n°=h(n), n: S—A and
n% §%°-A.

Suppose |wl>0. The argument is an mducuon on
the length of associate words o and o° If A ==- a,
where ae X, then n: A—a is in II, so S° ? a. By
definition of &, 8(A4, h(n))s gr. Conversely, if S° =§» a
and 6(A, %> gr, then by definition of J, there exists a
ne h™'(n%: A—aand A =;> a.

Inductively suppose that for any « in IT* and any «°
in IT” such that lal<n and |a®l <n the assertion
holds. If A => aB => aw, then §° %&» w and &(B,
h(a))> gr by the 1nduct1ve hypothesis. Since n: A—aB
is in II, we have &(A4, h(n))> B by definition of 4.
Therefore, S° = aS° =% aw and

9(d(A4, h(m)), h(a))=0(A4, h(m)h(a))=0d(A, h(na))> gr.

Conversely, suppose that S° ——;;» aS’ =Zugv aw, 6(A, n°%
2 B, and &(B, a°)> gr. Then B => w where ac h™'(a”)
by the inductive hypothesis. By definition of &, for n°:
$%—-aS%in IT° there exists ne h™'(n°: A—aB, therefore,
A= aw.O

The next theorem follows immediately from this lem-
ma by putting C=T(M).

Theorem 3.2 Let G° be the universal LNF grammar

over 2. Then, for any linear language L over X, there ex-

ists a regular control set C such that L=L(G") holds.
We can also prove the converse case.

Theorem 3.3 Let G° be the universal LNF grammar
over X and C be a regular control set for G°. Then,
L=Lc(G" is a linear language.
Proof. Let M=(K,II°, 4, S, F) be a DFA such that
C=T(M) holds. Without loss of generality, we assume
that if Ae Lo(G), the transition for the input 7% S°— A
is defined for the initial state S. We define an LNF gram-
mar G=(K, 2, II, §), to which M is corresponding, and
a homomorphism A from IT* to I as follows:

1. If6(4, n?)=Band n?is §°—>aS°, then n: A—aB
is in IT and A(m)=n?.

2. If8(A, n))=Band =) is S°—S, then n;: A—Ba
is in IT and A(x)=n}.

3. If 6(A, nd)e F and n? is S°—a, then m: A—ais
in IT and A(m)=n?.

4, If (S, n%e Fand n°is S°— A, then n: S— 1 is in
I1 and h(m)=n".)

By Lemma 3.1, for any we 2*, §° = wand &(S, a)
€ Fif and only if S = w, where ae h™'(a%.0

Thus, to infer a linear language, an inference
algorithm has only to identify a regular control set for a
universal LNF grammar. However, we have further
difficulties in identifying a regular control set from ex-
amples of L(G) because of the universal property of
GO That is, in general, even Jf wis in L(G), an
associate word «° such that §° = ? wis not always in C.

Example 1 Consider a linear language L={a"ba"|n
=0}. Let G=(N, X, I1, S) be an LNF grammar, where
N={S, A}, Z={a, b}, and I1={n,: S—aA, n,: S—b,
713: A—=Sa}. Then, L=L(G). The universal LNF gram-
mar over X is G°=({S°, X, IT°, 8%, where IT°={n$:
S%—aS° n3: $°-bS°, 7Y $°—-S%, n3: S°—>S%, 7l
S%—a, nd: S°—=b, n%: S°—+1}. We define a homomor-
phism A from IT* to I1% such that h(m)=n$, h(n)=n.
h(n;)=n3, and also define the corresponding DFA
M=(,II° 8,5, F) to G such that K=1{S, A4, gr},
F={qr}, and the transition function & is defined as
(S, nh=A, &S, nd=gqr, 6(4, n)=S. Then, L=L(G)
=L~(G" holds. But, even if the string aba is m L(G),
the associate word a«®=n{n3n? such that S° =g aba is
not in C.

From these observations, if we get a unique associate
word in a universal LNF grammar and therefore, define
a unique regular control set, then we can reduce the in-
ference problem for linear languages to the problem for
regular sets.

4. Parenthesis Linear Grammars

In this section, we show that for any parenthesis
grammar [G] of LNF grammar G, we can get a unique
regular control set C such that for the parenthesis gram-
mar [G°] of a universal LNF grammar G° L([G])
=Lc([G?) holds. A parenthesis grammar of G
displaies derivations in G in corresponding strings from
L(G).

Let G=(N, 2,11, S) be an LNF grammar and
G°=({S§°}, 2, IT°, S be the universal LNF grammar.

30

Definition Let G=(N, X, I1, S) be a linear grammar.
The parenthesis grammar of G is denoted by [G]=(N,
2U{[, 1}, 11", S), where ““[’’ and ‘‘]” are special sym-
bols not in X and I’ is obtained from II by replacing
every production A—u by A—[u].

In what follows, we say the ‘‘parenthesis LNF gram-
mar’’ for the parenthesis grammar of an LNF gram-
mar, and the ‘‘universal parenthesis LNF grammar’’
for the parenthesis grammar of a universal LNF gram-
mar. Let 3, denote the augmented alphabet ZU{[,]}.

A parenthesis grammar [G] is backwards-deter-
ministic if and only if no two productions in [G] have
the same right side. Note that a backwards-deter-
ministic parenthesis grammar [G] is unambiguous, i.e.,
any string in L([G]) has the unique derivation. Clearly,
any universal parenthesis LNF grammar [G?] is
backwards-deterministic. Therefore, the next lemma
follows from Lemma 3.1.

Lemma 4.1 Let [G] be a parenthesis LNF grammar
over X, and [G] be the universal parenthesis LNF gram-
mar over Z,. Let C be a regular control set which the
corresponding NFA to [G] accepts. Then, for any
we 23, we L([G]) if and only if for the associate word
o such that §° = w, ae C.

Lemma 4.1 ensures that for any parenthesis LNF
grammar [G] the regular control set C={a’1S° = w,
we L([G])} is unique. Therefore, to infer a parenthesis
LNF grammar [G], we have only to construct a
canonical finite automaton which accepts C. In fact,
given a parenthesis LNF grammar [G], we can effec-
tively get a parenthesis LNF grammar [G’] such that
L([G])=L([G’]) holds and the corresponding NFA to
[G’] is canonical.

Definition A parenthesis LNF grammar [G]=(N, %,
I1, S) is canonical if and only if it satisfies the following
conditions:

1. There is no pair of productions A—[aB],
A—[aC] or A—[Ba], A—[Ca], where B=C.

2. For any distinct variables A, Be N, L(A, [G])
#=L(B, [G)).

Note that the equivalence problem for the class of
parenthesis grammars is solvable.

Lemma 4.2 Given an LNF grammar G, one can effec-
tively get an LNF grammar G’ such that L(G’)=L(G)
and G’ has no pair of productions A—aB, A—aC or
A—Ba, A—Ca, where B#C.

Proof. Given an LNF grammar G, by Theorem 3.2,
we can get an NFA M corresponding to G. Let M’ be
the DFA such that T(M)=T(M’) holds. By Theorem
3.3, we can get a linear grammar G’from M’. Then,
clearly, L(G)=L(G%=L(G’) holds. The construction
of G’ ensures that G’ has no pair of productions
A—aB, A—»aC or A~Ba, A—Ca.0

Lemma 4.3 Given a parenthesis LNF grammar [G],

Y. TAKADA

one can effectively get a parenthesis LNF grammar [G’]
such that L([G'])=L([G]) and for any distinct variables
A and B of [G'], L(A, [G')#L(B, [G']).
Proof. Let [G]=(N, Z,,I1, S) be a parenthesis LNF
grammar. For any variables 4, Be N, if L(A4, [G])
=L(B, [G]), then we remove B from N and replace all
occurrences of B in each production of [T by A. Let N’
be the new set of variables and I1’ be the new set of pro-
ductions. Then [G']=(N’, Z,,II’, §) is a parenthesis
LNF grammar. Clearly, S = w if and only if § = w.
Therefore, L(IG])=L([G’]). By repeating this pro-
cedure the proof is completed. O

From Lemmas 4.2 and 4.3, we get the following
result.

Proposition 4.4 Given a parenthesis LNF grammar
[G], one can effectively get a canonical parenthesis LNF
grammar [G’] such that L([G’])=L([G]) holds.

Proposition 4.5 Let [G] be a parenthesis LNF gram-
mar and M be an NFA corresponding to [G]. Then,
[G] is canonical if and only if M is canonical.

Proof. By lemma 4.2, [G] satisfies the condition 1 in
the definition of canonical parenthesis LNF grammar if
and only if M is a DFA. Since [G?] is unambiguous, for
any distinct variables A and B of [G], there exists a
string w in Z} such that we L(4, [G]) but w¢ L(B,
[G)) if and only if for any distinct states p and g of M,
there exists an associate word «° such that é(p, a%e F
and d(q, ") ¢ F, or vice versa. O

5. Inference for Parenthesis Linear Grammars

In this section, we consider the inference problem for
parenthesis LNF grammars.

As mentioned in the previous section, for any given
parenthesis LNF grammar [G], we can effectively get a
canonical finite automaton M which accepts a unique
regular control set C for a universal parenthesis LNF
grammar [G°] such that L([G])=Lc([G°) holds.
Therefore, we have the following main theorem.

Theorem 5.1 The problem of inferring an unknown
parenthesis LNF grammar is reduced to the problem of
identifying an unknown regular set.

This theorem implies that to infer parenthesis LNF
grammars, we can use any algorithm which identifies
regular sets. To constructs an inference algorithm for
parenthesis LNF grammars, we have only to add the
following auxiliary processes to an algorithm for
regular sets;

1. conversions from input strings to associate words
by parsing in [G].

2. conversions from associate words to output str-
ings by generating in [GY].

3. conversions from canonical finite automata to
parenthesis LNF grammars.

Note that the time complexity of the conversion be-

Inferring Parenthesis Linear Grammars Based on Control Sets

tween a string and an associate word is O(n?), where n is
the length of an input string (parsing an input string in
[G] takes n* steps by Earley’s algorithm [6] because
[G" is unambiguous). Also note that the time complex-
ity of the conversion from a canonial finite automaton
to a canonical parenthesis LNF grammar is O(m?),
where m is the number of states of the automaton.
Many inference althorithms for regular sets have
been presented. Angluin [1] has presented an effective
algorithm of identifying a regular set from a ‘‘represen-
tative sample”” and membership queries. We can con-
struct an inference algorithm for parenthesis LNF gram-
mars with her algorithm. Then, a representative sample
for a parenthesis LNF grammar [G] is defined as
follows;
Definition The representative sample for [G] is a finite
subset R, of L([G]) such that for every production 7 of
[G] there exists a string w in R, such that n appears in
the derivation S = w, i.e., a=pny for some B, ye IT*.
A finite subset R, of I1% is said to be the associate
representative sample for C with respect to R, if and
only if it is satisfies

u(\
R.={a"18° = W we R.}.

An associate representative sample corresponds to a
representative sample of a regular set. We note that for
every variable A of (G], A appears in a derivations S
= w for some we R.

The time which Angluin’s algorithm takes is bounded
by a polynomial of the size of an alphabet and the size
of a given representative sample. Therefore, using her
algorithm, any parenthesis LNF grammar can be infer-
red in a polynomial time of the size of an alphabet and
the size of a representative sample.

Example 2 We illustrate a process of the inference
algorithm for parenthesis LNF grammars with
Angluin’s algorithm.

Consider a parenthesis LNF grammar [G]=(N, 2,
I1, S), where N={S, A}, Z={a, b}, N={S—[aA],
S—[b], A—[Sal}. Clearly, [G]is canonical. The univer-
sal parenthesis LNF grammar over X, is [G%=({S°},
2, I S, where I°={n?: §°-[aS], n$: S°~[bS,
7% $°—[S%], n%: S°—[S°b), nd: S°~[a], 7L S°—[b],
7% S°>[1}. A representative sample R, for [G] is
{[al[blal]}. Then, the associate representative sample
R, with respect to R, is {ndnin?}.

First, the inference algorithm constructs R, from a
given R,, then using Angluin’s algorithm, constructs a
canonijcal finite automaton. In the process, her
algorithm outputs associate words to ask whether they
are in the unknown regular control set or not. Then, the
inference algorithm converts them to strings and ask
whether the strings are generated by the unknown paren-
thesis LNF grammar or not.

Angluin’s algorithm outputs the canonical finite
automaton M’ =(K, I°, 4, qo, F) as follows;

31

1. K={qo, q, q>, q;}, where
£I0=U-, "?”g},
a={n}, aininl},
q:={n§, Minine},
qs=1{do, n3, m3, n, 73, mim!, nin3, mims, m37S,

0.0 .0.0.0 000 000 _0 0 0
TITg, MMM, MY\MIT, T\ M3 Mgy MY AIS S

2. F={q, 1,
3. the transition function é: K x II°=~K is defined as
follows

5(qo, 1) =q1,
8(qo, m8)=q>,
d(q1, 13)=qo,
4(g, n®)=gq; for all other n° IT° and ge K.

Regarding states of M’ as variables, the inference
algorithm get a grammar [G']=(N’, Z,, IT’, S’), where
N'={§',A'}and S’ =q;, A'=q,,and I1'={S'—[aAd’],
S’—[b}, A’ —[S’a]}. Clearly, L(IG])=L([G']).

Angluin [2] has also presented another inference
algorithm for regular sets. It is related to the method
used by Gold [8] to show that the problem of finding a
canonical finite automaton compatible with a given
finite set of positive and negative examples is NP-hard.
The time which her second algorithm takes is bounded
by a polynomial of theé number of states of the
canonical finite automaton and the maximum length of
any counter-example. If we construct an inference
algorithm for parenthesis LNF grammars with her sec-
ond algorithm, then the time which our algorithm takes
is also bounded by a polynomial of the number of
variables of the canonical parenthesis LNF grammar
and the maximum length of any counter-example.

6. Inference for Generalized Sequential Machines

In this section, we consider an inference method for
generalized sequential machines. It will be used to infer
a transducer from tokens in one programming language
to tokens in another programming language.

A generalized sequential machine (GSM) is a 6-tuple
S,=(K, 2, 4,96, qo, F), where K, >, and A4 are the
states, input alphabet, and output alphabet, respec-
tively, J is a mapping from K x X to finite subsets of
KX A*, qo is the initial state, and F is the set of final
states.

We extend J to a function from KxX* to Kx A*
such that for all ge K, d(q,))={(q, 1)} and d(q, ua)
={(p, w)|w=w,w, and for some b, (p', w)isin d(gq,
u) and (p, w,) is in 8(p’, a)} for all string e Z* and all
ae 2.

Any string in the set {ue Z*|(p, v)e 6(qo,) and
pe F} is called an input of GSM S,, and any string in
the set {ve 4*|(p, v)e d(qo, u) and pe F} called an out-
put of S,.

32

We first show a relation between a GSM and an LNF
grammar. If u is a string, then we denote by u” the mir-
ror image of u. For example, abcd 7 is dcba.

Proposition 6.1 For any strings w,e 2* and w;e 4*,
there exists a GSM S,=(K, Z, 4, d, qo, F) such that (p,
wy)e d(qo, wi) and pe F if and only if there exists an
LNF grammar G over XUAU{#} such that
wi#twle L(G), where “‘#”’ is a new symbol not in ZUA.
Proof. Let S,=(K, 2, 4,9, S, F) be a GSM. We con-
struct an LNF grammar G=(N, 2UAU{#},11, S) as
follows; All states in S, are variables in G. If d(A4, a)
3 (B, A), then we introduce the production A—aB into
II. If 6(A4, a)> (B, w) and w=bb, . . . b, (n>0) where
by, by, . .., b,e 4, then we introduce new variables
A’, By, By, . . ., B,into N, and productions A—aA’,
A’'—-Bb,, B.—B;)b,, ..., B,~Bb, into II. For any
state A4 is in F, we introduce the production A—§ into
I1.

Conversely, given an LNF grammar G=(N,
ZUAU{#},11, S), then we construct a GSM S=(K, X,
4, 6, S, F) as follows; For any production of the form
A—aB in T1, if there exists a derivation B => Cw such
that we 4* — {1}, ae IT* and there is no production of
the form C— Db, and C does not appear in the deriva-
tion, then we introduce 4 and C into K and define 6(A,
a)s (C,w7). If such a derivation does not exist, then we
introduce 4 and B into K and define §(A, a)s (B, 4). If
a production of the form A—# is in I, then A is in F.

In both case, by the obvious induction, it is easy to
verify that for any w e 2* and w,e 4%, (S, w)s (4,
w,) and Ae F if and only if S = wi#w].0

A GSM S, is said to be a parenthesis GSM if and only
if an LNF grammar constructed from S, by Proposition
6.1 is a parenthesis LNF grammar.

About the inference problem for parenthesis GSMs,
we have the following theorem by Theorem 5.1 and Pro-
position 6.1.

Theorem 6.2 The inference problem for parenthesis
GSMs is reduced to the problem for regular sets.

We note that constructing a GSM S, from an LNF
grammar G in the obvious way takes time polynomial in
the size of productions of G.

Example 3 We consider the following GSM S;; Sup-
pose that £={a, b, ¢, &} and 4={0,1}. A GSM 5§,
receives as input any string from =* and converts sym-
bols a, b, ¢ to 00, 01, 11, respectively, from left to right
as long as & does not appear. If & appears, then the rest
of input is deleted from the output. For example, if S,
receives as input abcb&abc, then it outputs 00011101.

Such a GSM may be needed when a first legal part
may be taken as a token in a programming language
from any string in *. In the above example, if we con-
sider & as an illegal character to construct tokens, then
abcb is the legal part of abcb&abc as a token.

GSM S;=(K,2,4,38,q0,F) can be defined as

Y. TAKADA
follows;
1. K={qo q:},
2.

4(qo, a)=1(go, 00)}, 6(go, b)={(q0, O1)},
d(go, ©)=1{(qo, 11)},

d(q0, &)={(q:, 1)},

5(q1, x)=1{(g1, A)} for all xe X,

3. F=K.

From GSM S,, we can construct an LNF grammar
G=(N, ZUAU{#},11, S), where N={S,A,A’, B, B’,
C,C’,D} and

n={S—aA, S—bB, S—cC, S—=&D, S— #,

A—A4'0,4’—80,B—B'0,B'—S51,C~C’l,
Cc’'—S1,

D—aD, D—bD, D~cD, D—~&D, D— #}.

To infer GSM S, we first infer the parenthesis LNF
grammar of G. For example, from a representative
sample {[4[[[#]01011, [bI[[#11101], Ic[Ii#]111]], [&lalblc
[#11111} and membership queries, we can get the
canonical parenthesis LNF grammar [G]. Then, paren-
thesis GSM [S,] and therefore, GSM S, can be easily
constructed from [G].

7. Concluding Remarks

Angluin [3] has presented an inference algorithm for
k-bounded context-free grammars, where a context-free
grammar is k-bounded if no production has more than
k occurrences of variables in its right-hand side (Note
that a linear grammar is a 1-bounded context-free gram-
mar). Her algorithm assumes that the set of variables of
an unknown grammar are known, and identifies the pro-
ductions of the grammar. On the other hand, our
method only requires structural informations (paren-
theses) of an unknown grammar, then identifies
variables of the grammar (Our method assumes that the
grammar is in LNF, but this is not critical because for
any linear grammar, one can effectively get an LNF
grammar).

In general, the inference problem for linear languages
can not be reduced to the problem for regular control
sets for universal LNF grammars. Otherwise, the
equivalence problem for linear languages could be
solvable. However, representation theorems for linear
languages we have shown suggests that, to infer linear
languages, inference methods similar to the ones for
regular sets are promising. This will be discussed else-
where.

Linear grammars are closely related to two-tape
automata and a-transducers, as well as generalized se-
quential machines. Therefore, our method can be the
first step towards the study of inductive inference
methods for more general transducers.

Inferring Parenthesis Linear Grammars Based on Control Sets
Acknowledgements

The author is indebted to Dr. Toshio Kitagawa, the
president of IIAS-SIS, Dr. Hajime Enomoto, the direc-
tor of IIAS-SIS, for their useful suggestion and warm
encouragement. He is also grateful to his colleagues,
Dr. T. Yokomori, Y. Sakakibara, H. Ishizaka and Dr.
T. Nishida who worked through an earlier draft of the
paper and gave many suggestions.

This is a part of the work in the major R&D of the
Fifth Generation Computer Project, conducted under a
program set up by MITI.

References

1. ANGLUIN, D. A Note on the Number of Queries Needed to Iden-
tify Regular Languages, Information and Control 51 (1981), 76-87.
2. ANGLUIN, D. Learning Regular Sets from Queries and Counter-
example, Information and Computation 15 (1987), 87-106.

3. ANGLUIN, D. Learning k-bounded context-free grammars,
Technical Report, Yale University Computer Science Dept., RR-557
(1987).

33

4. BIERMANN, A. W. A Grammatical Inference Program for Linear
Languages, Proc. of Forth Hawaii International Conference on
System Sciences (1971), 12-14.

5. BIERMANN, A. W. An Interactive Finite-state Language Learner,
Proc. of First USA-JAPAN Computer Conference (1972), 13-20.
6. EARLEY, J. An Efficient Context-Free Parsing Algorithm,
Comm. of the ACM 13 (1970), 94-102.

7. GINSBURG, S. and SpaNIER, E. H. Control Sets on Grammars,
Math. Systems Theory 2 (1968), 159-177.

8. Gorp, E. M. Complexity of Automaton ldentification from
Given Data, Information and Control 37 (1978), 302-320.

9. HARRISON, M. A. Introduction to Formal Language Theory, Ad-
dison-Wesley, Reading, Mass. (1978).

10. Horcrort, J. E. and ULLMAN, J. D. Introduction to Automata
Theory, Languages and Computation, Addison-Wesley, Reading,
Mass. (1979).

11. MCNAUGHTON, R. Parenthesis Grammars, J. of the ACM 14,
(1967), 490-500.

12. TAKADA, Y. A Constructive Method for Grammatical Inference
of Linear Languages Based on Control Sets, IIAS-SIS Research
Report 18, FUJITSU LIMITED (1987).

13. Tanatsucu, K. A Grammatical Inference for Context-free
Languages based on Self-embedding, Bulletin of Informatics and
Cybernetics 22 (1987), 149-163.

(Received November 27, 1987; revised June 20, 1988)

