Parallel Poisson Solver FAGECR—Implementation
and Performance Evaluation on PAX Computer

TsuroMu HosHINO®, YosHIYUKI SATO*! and Yukiko AsamoTo**

Fast Poisson equation solver “FAGECR’’ was implemented on the PAX computer, a nearest-neighbor-mesh
connected parallel computer. The algorithm follows basically the FACR, Fourier-Analysis-Cyclic-Reduction
method, by R. W. Hockney. A special parallel algorithm was employed to solve the tridiagonal equations, that
combines Gaussian elimination in each processor and cyclic reduction over all processors.

Execution times were measured by the hardware timers. The computation speed is generally faster, by approx-
imately 10 times, than that observed for optimally accelerated SOR method with odd-even ordering.

The performance was analyzed to get ‘‘scaling law”’, expressing the time as a function of problem size and
number of processors. The scaling law can be used to predict the performances that would be obtained in cases

with larger number of processors and problem sizes.

1. Introduction

Poisson equation is a very basic equation used in
scientific calculations, whose quick solution is required
in the electro-magnetic problems, fluid dynamics, and
other major applications solving the potential prob-
lems. The Poisson equation often appears in the
deepest loop in the iterative schemes, so that many
quick schemes have so far been developed, among
which the FACR, Fourier-Analysis-Cyclic-Reduction
method [1] is one that gives O(NV log N) time complexi-
ty in solving 2-dimensional Poisson equations. The
FACR scheme consists of several numerical techniques,
such as cyclic-reduction, FFT, tridiagonal linear equa-
tion solver, inverse FFT, and cyclic-expansion in the
last stage. Parallelizing the FACR method was studied
[2] assuming the use of a vector processor as well as an
array of processors.

Although an algorithm itself is independent from a
machine on which the algorithm is implemented, the
performance finally realized on the machine is heavily
dependent on the method of mapping the variables and
schemes on the processors and memories. Since the in-
ter-processor communication overhead and idling loss
of processors are two major causes that degrade the per-
formance of implemented parallel algorithm, the best
mapping method should also be determined in relation
to the architecture of inter-processor and memory con-
nection.

*Institute of Engineering Mechanics, University of Tsukuba,
Tsukuba-shi, Ibaraki-ken 305, Japan

**Toshiba Corp., Fuchu Works, Toshiba-cho, Fuchu-shi, Tokyo
183, Japan

**Fuji Photofilm Co., Ltd. Development Center, Miyanodai,
Kaisei-machi, Ashigarakami-gun, Kanagawa 258, Japan

Journal of Information Processing, Vol. 12, No. 1, 1988

This paper reports how FACR method was im-
plemented on the PAX computer, a nearest-neighbor-
mesh connected processor array, and what were the
major factors that affected the performance obtained in
several mapping scheme. Although the algorithm
studied in this paper is essentially the same as the serial
algorithm FACR, (except that introduced in solving a
tridiagonal linear equations, already proposed in Ref.
[5]), interrelation between algorithm, machine architec-
ture, and the mapping scheme are an important topics
that should be studied to realize a fast implementation
of an algorithm, effectively used in scientific applica-
tions.

We implemented the algorithm on the PAX com-
puter [3], which is an NNM (nearest-neighbor-mesh)
connected array of processing units (PUs). The latest
version of PAX, PAX-64]J currently has 32 PUs [4] in-
stalled. Each PU consists of a 16-bit microprocessor,
local RAM, 4 communication shared memories, and
several registers to be used for controlling the array.
The whole PU array has a shape of torus, where both
sides are connected, and so do the top and bottom of
the array. Each row and column of the PU array can
work as a ring array of PUs.

The simplest mapping, frequently used in the PAX
applications, is the direct mapping, where each PU
works on the physical subregion (called PU-subregion,
hereafter) that is allocated to the PU by directly projec-
ting the whole physical space onto the PU array. If we
distribute the variables simply following this direct map-
ping and implements the FACR scheme as it is, the
tridiagonal equation must be solved by a set of ring
array of PUs, where inter-PU communication may take
a major portion of the execution time. Parallel im-
plementation and numerical scheme have to be one that

Parallel Poisson Solver FAGECR—Implementation and Performance Evaluation on PAX Computer 21

reduces the communication overhead in this tridiagonal
solver.

The triadiagonal solver that we used in this study is
called GECR, Gaussian-Elimination-Cyclic-Reduction
{5] scheme, which was proved effective in solving the
tridiagonal equations by the PAX computer in the
Navier-Stokes equation solver using Beam-Warming Im-
plicit method [6]. The GECR removes this crucial prob-
lem; how we solve tridiagonal equations on the 1-dimen-
sional PU array of PAX, with a small communication
overhead.

The execution time was measured and condensed into
what we call “‘scaling law’’, a functional expression of
execution time with several parameters, such as size of
problem, size of PU array, and other important hard-
ware parameters, as well as the mapping schemes.
Based on this scaling law, the performance can be dis-
cussed for larger size of problems implemented on the
larger size of PU arrays.

For reader’s convenience, the meaning of abbrevia-
tions of algorithms used in this paper is summarized in
Table 1, together with associated explanations/com-
ments.

2. Poisson Equation and Solution by FACR Method
1l
Poisson equation in rectangular 2-dimensional space
with periodic boundary condition,
u
—t5=f 0=x=X,0=y=zY) (1)
ax* dy

u(0, y)=u(X, y),

BT ey By
ax(x—)—ax(x—) ay(y-‘)—ay()'—) 3

u(x, 0)=u(x, Y) ()]

Table 1 Summary of algorithms.

Abbreviations Explanations

FACR(L)

Serial algorithm for solving Poisson equation, with
L-stage CR(Cyclic-Reduction), proposed by R.
Hockney [1].

This consists of CR, FFT, a tridiagonal solver, in-
verse FFT, and expansion stage of CR.

Parallel version of FACR(L), implemented on
PAX. This consists of PARACR, FFT, GECR, in-
verse FFT, and expansion stage of PARACR.

FAGECR(L)

GECR Gaussian Elimination Cyclic Reduction method
for solving tridiagonal linear equations.
This consists of GE(Gaussian Elimination),

PARACR, and backward substitution of GE.

PARACR

FAGECRID(L) FAGECR(L) scheme mapped onto 1-dimensional
PU array of PAX computer.

Parallel version of CR, studied by R. Hockney [2].

FAGECR2D(1) FAGECR(1) scheme mapped onto 2-dimensional

PU array of PAX computer.

is discretized into 5-point formula, as follows,
Uiyttt jt - Y u o —du =1 4

assuming that

x=i, y=j, (i(=1,2,...,N), (j=1,2,...,N5), (5

which is further expressed in a vector form, as follows.

Uj-1+AU;+ U+ =F; 6)
Ui=(urj Uz jy o - - 5 Un) @)
Fi=(fi.5s fois - -+ s S 8)
r—4 1 17
1 -4 0
0 1 -4 1 0
A= L)
0
-4 1
o1 1 —4/

The FACR method consists of the following 5 stages.

Stage I. Applying L-times cyclic-reduction scheme in
y-direction (in direction of increasing j) to vector equa-
tion (6), we have a reduced set of tridiagonal vector
equation,

Uj-s. +APU;+ Ujs sy =F ¥ (10)
where,
AB=2I~ (AP, AO=4, an
FP=F) =AY FOY L (12)
FJ('O)= J

The functional notation $(X)=2% is used throughout

the paper, where $L=2', $(L—1)=2¢"Y and
0§L = lng Nz.
Stage II. Applying FFT in x-direction, i.e. increasing

direction of i, to Eq. (10), we obtain the following N,
tridiagonal systems, each of which is a set of N,/$L
equations in N,/$L variables and is decoupled with
respect to k, the transformed variable of x.

U jms @ Ukt e s =) (13)
where
a'=2—(a;""y, (14)
a¥=—4+2 cos (nk/N)), a5
and k=0,1,2,..., N—1,j=$L, 28L, 3$L, . ..,
N,.
Stage III. Solving the N, triadiagonal systems (13) by

any algorithm such as Gaussian-elimination or cyclic-

22

reduction method, we obtain the Fourier-transformed
solution U.

Stage IV. Applying inverse-FFT to U, we obtain
uij, i=1,2,...,N,j=$L,28L,3$L,...,N).
(16)

Stage V. Trancing backward the cyclic-reduction
scheme, from Eq. (10) to Eq. (12), we finally expand the
solution to all variables,

uij, (iI=1,2,...,N,j=1,2,...,Ny). 17)

Equation 10 is a set of vector forms of tridiagonal
systems, each of which is a set of tridiagonal equations
in the variables previously eliminated in the cyclic reduc-
tion scheme in stgage /, i.e.

A(S)Uj=F;s)—Uj_s;_Uj+s; for S=l, 2, ...,L,

(10)
and
$s
A®Y=—-T] B”, B"=(A-4.1),
r=1
B=2cos [2r—D=/$(r—1)], (18)

where the matrix A" is factorized by a sequence of
tridiagonal matrices B”. Therefore the expansion is
essentially to solve repeatedly the triadiagonal linear
equations with a form BYV,=V,_,.

3. Mapping Scheme and Optimum Cyclic Reductions

One of the crucial considerations in implementing the
parallel algorithms on a PAX computer is the PU-mapp-
ing: whether mapping of 2-dimensional physical space
should be made onto the 1-dimensional PU array or 2-
dimensional torus array as the PAX is originally design-
ed. Generally a 1-dimensional PU array has a drawback
that, when the problem size becomes large, each PU has
to install memory space proportional to the problem
size, and the data communication across the array takes
time proportional to the size of the array.

The 1-dimensional mapping, however, makes pro-
gram simpler, and, in this FACR scheme, the vector-
cyclic-reduction stage requires less inter-PU communica-
tion in deep reductions than that in the 2-dimensional
mapping.

These questions will be answered, though partly, in
this paper, where we implement the FACR scheme in
two ways: onto 1-dimensional PU array with optimum
number of cyclic-reduction levels, i.e. FAGECRI1D(L)
and onto 2-dimensional PU array with single reduction
stage, i.e. FAGECR2D(1).

Another interesting point to be studied is what the op-
timum number of levels of the vector-cyclic reduction
is. The number of unknown variables to be solved by
FFT and tridiagonal solvers is reduced to 1/2 as the vec-
tor cyclic-reduction proceeds by 1 level. Though the vec-

T. HosHINO, Y. SaTo and Y. AsaMoTO

tor cyclic-reduction saves time in FFT and tridiagonal
solutions, it costs extra-time in the cyclic-expansion
stage. An optimum level is determined by the trade-off
between the saving and the costing.

4. Parallel Implementation of FACR onto PAX

The mapping of the 2-dimensional physical space can
be made in two ways: FAGECR2D where the projec-
tion was made onto 2-dimensional PU array as shown
in Fig. 1(a), and FAGECRI1D where the projection was
made onto 1-dimensional PU array as shown in Fig.
1(b), both of which were tested. Fig. 2 illustrates how
the scheme eliminates the variables and links, and how
it expands the solution in two adjacent PU-subregions.

4.1 Parallelization of Vector Cyclic Reduction Stage 1

FAGECR2D scheme multiplies matrix A, L-times,
on vector U;, where inter-PU data transfer occurs in x-
and y-directions, because, at each multiplication of
matrix A, the data distributed over the space, single-
layer distant from each point, are involved, and, after
L-times multiplications, the data distant by L space
points from the boundary of the PU-subregion have to
be transferred.

In FAGECRID scheme, similar data transfer during
the multiplication of matrix A4 occurs, but only in y-
direction. By restricting the space size in y-direction in a
PU greater than or equal to $L, the data transfer is not
beyond the nearest-neighbor PU.

y-space point

0 1 No coordinate
; 1 2 3 .. Py PU coordinate
1
2
3
t.
P, Ny /Py
Ny ES -
Ny/P,
PU coordinate

X-space point
coordinate

y-space point

0 1 No coordinate

PU coordinate

Ny

- e
Np/
x~space point

coordinate

Fig. I Two methods of mapping of physical space onto the PU ar-
ray: (a) 2-dimensional, (b) 1-dimensional.

‘-

Parallel Poisson Solver FAGECR—Implementation and Performance Evaluation on PAX Computer 23

PU subregion

PU subregion

Stage I
Vector
Cyelic

Reduction

Stage II
FFT

Stage III

GE

PARACR
BS A A A A A

Stage IV
—A

»
»

Vector

» >

—A

»
L

Cyclic

rl» »

Expansion A

»

A
4

»

Fig. 2 lllustration of FAGECR scheme, where ®: unknown
variables, A: known variables, O: eliminated variables,
~=--: eliminated links ——: effective links.

4.2 Parallelization of FFT and Inverse FFT in Stages
II and IV

Conventional Cooley-Tukey’s algorithm was used.
Fourier transform is made in x-direction. In
FAGECR2D, the right-hand-side vector f has to be but-
terfly-transfered among PUs, while in FAGECRI1D, all
computation is kept within each PU and no data is
transfered among PUs.

4.3 Parallelization of Solving Tridiagonal Equation in
Stage III

As mentioned in the introduction, one of the crucial
point in the parallel implementation of the FACR
scheme exists in stage 111, where N, tridiagonal systems,
each of which is a set of N, equations in variables
allocated in y-direction, are to be solved by a single set
of ring array of P PUs in FAGECRI1D, and by P, sets
of ring arrays of P, PUs in FAGECR2D.

The GECR method [5] has been developed for this
purpose, where:

i) A set of tridiagonal equations in M (=N,) unknown
variables, (u,, 4y, . .., uy), are partitioned into P
blocks by P PUs, as shown in Fig. 3, and the variables
in each block, such as s, us, . .., Ump, are Gaus-
sian—eliminated to get a reduced set of tridiagonal
equations in P variables, (R}, R», . . . , Rp), allocated
to the P boundaries of the PU-subregions, where the
periodic boundary condition is imposed. The time com-
plexity of calculation in this phase I is O(M/ P) with no
data transfer.

ii) This set of triadiagonal equations in P variables is
solved by the PARACR, the parallel cyclic reduction
scheme [2] with the time complexity O(log P) of calcula-

1 2 3 e P
I , : : -
upm uq u2 "U(H/P) u(H/P)«'I UH u1
Ry Ry Ry Rp Ry
! 1 L ! 1

Fig. 3 Partitioning of physical space into PU-subregions in the
GECR method solving tridiagonal equations.

tion and the complexity O(P) of the data transfer be-
tween adjacent PUs.

ili) The backward substitution of the boundary
variables to the interior variables are completed with
the time complexity O(M/ P) with no data transfer.

It must be noted that the GECR scheme is ‘‘consis-
tent’’ [7] in the sense that the time complexity of GECR
O(M) with respect to the problem size M is equal to that
of the serial counterpart, the Gaussian elimination.
This assures that the GECR is no slower than the serial
scheme in the limit of very large values of M.

4.4 Parallelization of Vector Cyclic-Expansion in
Stage V'

Solution is expanded to the N*(N,/P)+«(1—1/$L)
unknown variables, once eliminated during the vector
cyclic reduction, by solving the (N,/P)x(1—1/$L)
tridiagonal systems, each of which is a set of N, equa-
tions. This process is executed in parallel in each PU in
FAGECRID scheme. At the beginning of the stage,
variables located in single layer from the boundary
must be transferred between the adjacent PUs. While in
FAGECR2D scheme, the tridiagonal systems are solved
by applying the GECR scheme in x-direction, with the
time complexity already mentioned, and with the same
data transfer as that in FAGECRID, at the beginning
of this stage.

5. Performance Measurement and its Scaling

The FAGECRI1D and FAGECR2D schemes were ac-
tually implemented on a PAX-64J computer, and the
performance was measured to determine if one can ex-
tend the present performance to the cases with greater
problem sizes and PU arrays.

5.1 Measured Timing and Scaling Law

A Poisson equation was solved in a rectangular
region with the sizes N, and N, and with two point
sources of intensities +1 and —1, respectively, at the
symmetrical points on a diagonal line of the rectangular
region, as shown in Fig. 4. The boundary condition is
periodic in both x- and y-directions.

Execution times are listed in Table 2 and Table 3.
Because of the limitation of memory space in a single
PU for both data and program, only the single cyclic-
reduction (i.e. FAGECR2D(1)) was programmed. The
FAGECRI1D(L) schemes was also tested only for those
cases that have at least one reduced variable per PU
after the vector-cyclic reduction.

24

Nz

Ny

Fig. 4 Rectangular physical space with periodic boundary condi-
tion, and two point sources, in which Poisson equation is
solved.

Table 2 Measured execution times (in seconds) of FAGECRID(L)
scheme with using P=8 PUs.

T. HosHINO, Y. SATO and Y. ASAMOTO

Table 4 Scaling law of execution times in FAGECR1D(L). Only the
leading terms are shown.

Stages Net Calculation Overhead
Vector Cyclic-Reduction anL b N\ L
FFT a,(n/$L) log N, 0
GECR:
Gaussian-Elimination a, (n/$L) b,N,
Cyclic-Reduction a,N, log P by;N\P
Backward-Subsitution as (n/$L) byN,

Inverse FFT ag(n/$L)log N, 0

Vector Cyclic-Expansion a;nL bsN,

a,=107, a,=65, a;=340, a,=323, a;=190, a;= 115, a,=25, b,=14,
b,=122, b,=206, b,= 106, b;=38 (in unit of usec)

Number of Region Sizes N,*N, . . .
Stage L 16+128 32432 32+64 32128 64+64 Table 5 Scaling law of execution times in FAGECR2D(1). Only the
leading terms are shown.

0 — 0.3132 — — —

1 0.3449 0.3004 0.4410 0.7468 0.9456 Stages Net Calculation Overhead

2 0.3460 — 0.4378 0.7226 0.9083

3 0.3934 - — 0.7852 _ Vector Cyclic-Reduction ayn byn,+byn,
FFT a,n log N, bynP,
GECR:

Table 3 Measured execution times (in seconds) of FAGECR2D Gaussian-Elimination asn b.n,
scheme with using P=4s8 PUs, in comparison with Cyclic-Reduction a,n, log P, bsP,
methods of double FFT, odd-even SOR. Backward-Substitution asn ben,

Schemes Region Sizes N,*N, Inverse FFT a;nlog N, bynP,
32432 64+64 128128
Vector Cyclic-Expansion by
FAGECR2D(0) 0.136 0.431 — GECR:
FAGECR2D(1) 0.113 0.318 1.021 Gaussian-Elimination an by,
Double FFT 0.172 0.667 2.779 Cyclic Reduction a,n, log p, byP;
Odd-even SOR 0.366 2.501 17.776 Backward-Substitution agn byn,

Execution times are also measured by implementing
the other representative methods, such as FAGECR(0)
with no vector reduction, double FFT method applying
1-dimensional FFT in both x- and y-directions, odd-
even SOR method with optimum accerelation. The
FAGECR(0) and the double FFT methods were chosen
to identify the effect of vector-cyclic reduction in
FAGECR(L). The odd-even SOR method was chosen
because it is best-fitted algorithm with PAX’s nearest-
neighbor-mesh architecture and the comparison would
indicate the architectural preference of FAGECR. The
double FFT and SOR methods are simpler in implemen-
tation than FAGECR(L), and the comparison may in-
dicate the gain in performance of FAGECR over the
complexity paid in its implementation. Moreover these
methods are representative in the sense that they are fre-
quently used in many scientific applications, though the
comparison does not exhaust all the algorithms
proposed for Poisson solving, especially the one with
lower complexity such as the multigrid method [8].

In our method of evaluating the performance, the tim-
ing expression, what we call “‘scaling law’’, is derived
from these measurements, and performance with
different size parameters is discussed by applying those

a,=27, a,=64, a,=155, a,=291, a;=95,a,=53, a,=43, a;=60,
b,=16, b,=20, by=27, b,=103, bs=247, bs=39, b,=46, by=67,
by=22 (in unit of usec)

parameters to the scaling law expression. For the
FAGECRID scheme, the scaling law is given as shown
in Table 4. Note that only the leading terms with the
highest order complexity are shown, which do not
regenerate the measured times in Tables 2 and 3.

The following symbols are used in the scaling law ex-
pression.

nm=N,/P,, n,=N,/P;: problem sizes per PU in x- and
y-directions,

n=n,n,=(N;N,)/ P: problem size in a PU,
All logarithms are binary, i.e. log X=Ilog, X.

5.2 Optimum Reduction in FAGECR1D

The optimum number of reduction L* is derived by
differentiating the scaling law expression given in Table
4, and solving the equation: the differentiated expres-
sion=0 with respect to L.

The value of L* thus obtained is shown in Table 6,
where the continuous value of L is permitted. Though
the true optimum L** would be the nearest integer

N

Parallel Poisson Solver FAGECR—Implementation and Performance Evaluation on PAX Computer 25

Table 6 Optimum (continuous) value L* for the level of vector

cyclic reductions

Problem P, Number of PUs used
Size, N;*N, 8 16
32« 32 2.06 1.93 1.73
32« 64 2.13 2.06 1.94
32+128 2.16 2.13 2.06
64+ 64 2.38 2.33 2.22
128+128 2.63 2.60 2.55
256256 2.84 2.83 2.80

values of L*, the trend observed in the measured execu-
tion times in Table 2 is consistent with these L** ob-
tained for P=8.

It can be observed, in Table 6, that L* increases as
the problem size per PU increases. Also the execution
times become more insensitive to the change of L value,
as the problem size per PU increases. Though the single
level vector reduction is effective over no reduction
scheme, the gain in the execution times by optimizing L
is not great.

5.3 Extended Discussion on Performance

The performance scaling law is useful to predict the
performance with larger sizes of PU arrays and prob-
lems. The performance is represented by the efficiency
of parallel processing, that is defined by the ratio of the
net calculation over the total execution including
overhead and idling.

The realistic assumption in the performance predic-
tion will be that both sizes N, and N, in x- and y-direc-
tions are equally expanded, proportional to P, that is
n=(N,N,)/ P is proportional to P. Fig. 5 illustrates the
performance of FAGECRID(L) predicted for those
cases with the combination of L=1, 2, and 3 and
N\=N,=8P, 4P, and 2P. The asymptotic efficiency
with very large P can be interpreted as the ratio of the
net over the total complexities in the infinite limit of P.
In this simulation case, the overhead term in the cyclic
reduction in GECR has the order O(P?), higher than
that in the net calculation O(P log P), so that the curves
decline toward the infinite limit of P value. The
dependence of the efficiency on L value is not so great as
in the measured execution times.

Careful setup of the simulation cases is necessary for
the comparison between the two mappings,
FAGECRI1D and FAGECR2D, both with a single reduc-
tion L=1. Here we assume that we are given a problem
with the sizes N; and N;, and a 2-dimensional PU-array
with the sizes P, and P;.

Further assumptions were made as follows:

1) P=2*, where p is a positive integer.

2) P=P|P2, where P1=P2 or P1=2P2.

3) Ni=n P\, N;=n,P,, where n, and n, are indepen-
dent parameters.

In 2-dimensional FAGECR2D mapping, each PU
works on the subregion nn,=(N,/P)(N,/P,), as
shown in Fig. 1(a). In 1-dimensional FAGECR 1D map-

(%)

100 - j
Ny=Ny= 8P
8o |
Ny=Np= Up
60[Ny=N,= 2P L=1 L=2 L=3]
L=1,2,3
sof |
L=1
L=2,3
201 1
N L R L \ . " .

0
2V 22 23 b 25 o6 T o8 9 10 11 L2

Fig. 5 Efficiency versus number of PUs, with changing the region
sizes both in x- and y-directions, in proportional to number

of PUs.
%)
100 SR T T =
.
~\~\ ~ Sao

L . e —— FAGECR2D(1)]

80 AN N ny=np=512
\ \ N nyzn5=64
“ \ \Y ny=nz =

- ~ . -

60 N N Ay
________ N AN N
N
FAGECRID(1) N N AN

- “

40 . . \
LIPS 87\ b
\\\ ‘\
20 n,=ny=64 e \\\
— N

2V 22 23 4 5 6 T 8 9

Fig. 6 Efficiency versus number of PUs, with changing the region
sizes both in x- and y-directions. Poisson equation in
physical space of the same sizes is solved by two mapping
methods, FAGECRID(1) and FAGECR2D(1), with the
same number of PUs.

ping, the same rectangular region with sizes N,;*N; is
sliced by P PUs, as shown in Fig. 1(b), where each PU
calculates the region with the size N, in x-direction and
(N:/ P) in y-direction.

The performances are compared in Fig. 6, as p in-
creases from 1 to 13, with 3 sets of parameters for n,
and n,. We can see that there is a range of p, 1=p=7,
where the efficiencies are higher in 1-dimensional
FAGECRID than 2-dimensional FAGECR2D for cases
with large problem sizes, such as the case with 512512
space points per PU. Otherwise, the efficiencies are
higher in 2-dimensional FAGECR2D than in 1-dimen-
sional FAGECRI1D.

6. Conclusions

The parallel implementation of FACR scheme solv-
ing Poisson equation in 2-dimensional rectangular
region was made on the PAX-64] parallel computer.
Two mapping methods, i.e. 1-dimensional FAGECR1D
and 2-dimensional FAGECR2D mappings were tested.
In the 1-dimensional mapping, the effect of the number
of vector cyclic-reduction L on the execution times was

26

also studied. Though it was not possible to test all the
combinations of parameters due to memory limitations,
several conclusions were obtained as follows.

1) The FAGECR schemes developed here is faster by
approximately 2 to 3 times than the double FFT
method, and by approximately 10 times than odd-even
SOR method.

2) The optimum value was observed in the number of
reduction L* in FAGECR1D(L), as it is in the serial or
other vector implementation of FACR[2].

3) The gain in execution time and efficiency by optimiz-
ing L is not so great, though the single level reduction
saves time by approximately 1/3 over no reduction
scheme.

4) By differentiating the scaling law expression for the
execution timing, we can derive the optimum L value,
which is near to the optimum number of reductions ob-
served in the execution time measurement.

S) The optimum L value becomes large as the problem
size per PU increases.

6) Assuming a linear expansion of the problem sizes in
both x- and y-directions, FAGECRID(L) displays a
sharp decline of efficiency. Two-dimensional
FAGECR2D(1) is generally superior to 1-dimensional
FAGECRI1D(1), except for cases with large number of
space point per PU and processed with small number of
PUs; for example the case with 512 x 512 space points
per PU and processed with number of PUs less than
128.

Though the 2-dimensional mapping is generally bet-
ter in performance than 1l-dimensional mapping of
FAGECR scheme, the 2-dimensional mapping has its
own disadvantage, i.e. the programming of
FAGECR2D(L), L=2 needs more effort than that of
FAGECRID(L). The 1-dimensional FAGECR1D(L)
has also its own disadvantage: the local memory size per
PU should be expanded in proportion to P, that will
not be possible for a very large P, given a fixed memory

T. HosHINO, Y. SATO and Y. AsAMOTO

capacity per PU.

The FAGECR is the fastest Poisson solver im-
plemented on PAX at a moment. However, it does not
exclude the needs for other methods with lower order of
complexity, such as the multigrid method [8], to be com-
pared in the performance as well as in the practical
applicability, and to define the best solver or solvers for
NNM machines. The practical solution would be to
prepare several implementations of Poisson solvers, in-
cluding SOR, multigrid, etc, and to assess before use,
with the user’s own parameters and conditions, where
the scaling laws derived in this paper would be useful
guidelines for the optimum choice of the algorithms.

References

1. HockNEY, R. W., RAPID ELLIPTIC SOLVERS, in ‘‘Numerical
Method in Applied Fluid Dynamics”, edited by B. Hunt (Academic
Press, 1980), 1-48.

2. Hockney, R. W. and JessHope, C. R., Parallel Computers,
(Adam Hilger, Bristol, 1981).

3. HosHiNo, T., KAwAl, T., SHIRAKAWA, T., HiGasHiNO, J.,
YAMAOKA, A, IT0, H., SATO, T. and SAWADA, K., PACS, A Parallel
Microprocessor Array for Scientific Calculations, ACM Trans. Com-
put. Systems, 1 (1983), 195-221.

4. HosHINo, T., SHIRAKAWA, T. and Tsusol, K., Mesh-connected
parallel computer PAX for scientific applications, Parallel Com-
puting, 5 (1987), 363-371.

S. HosHiNo, T., KaMIMURA, T., lipa, T. and SHIRAKAWA T.,
Parallelized ADI Scheme using GECR (Gauss-Elimination-Cyclic-
Reduction) Method and Implementation of Navier-Stokes Equation
in the PAX Computer, Proc. 1985 International Conference on
Parallel Processing, IEEE Computer Society (1985), 426-433.

6. HosHiNo, T., Highly Parallel Computer PAX for Scientific Ap-
plications, in ‘*‘Numerical Methods in Fluid Mechanics II’’ edited by
K. Oshima, Proc. International Symposium on Computational Fluid
Dynamics-Tokyo (Japan Society of Computational Fluid Dynamics,
Tokyo, 1985), 183-194.

7. LAMBIOTTE, Jr. J. J. and VoicT R., The Solution of Linear
Systems on the CDC STAR-100 Computer, ACM Trans. Math. Soft-
ware, 1 (1975), 308-329.

8. StuBeNn, K. and TROTTENBERG, U., Multigrid Methods: Fun-
damental algorithms, model problem analysis and applications, Proc.
1981 Conference on multigrid Method, Lecture Notes in Mathematics
960, Springer, Berlin, (1982).

(Received November 2, 1987; revised April 18, 1988)

