S. BANDYOPADHYAY, S. GHOSH, C. MAZUMDAR and S. BHATTACHARYA

An Alternative Approach to
History Sensitive Computation in Dataflow Model

S. BANDYOPADHYAY*, S. GHOSH**, C. MAZUMDAR** and S. BHATTACHARYA**

Dataflow computation models generally discuss functional and a historic programs. This paper proposes a
model, based on the concept of state variables, to tackle history sensitive computations in dataflow. A few
history sensitive primitives are also proposed in which the concept of states are in-built. These primitives are not
pure dataflow primitives in the sense that they have internal memory to preserve states between executions. This
model is thus not free from side effects. However, an elegant modelling of some difficult history-sensitive com-

putations can be derived from this approach.

1. Introduction

A number of applicative programming systems have
been proposed in recent years to extract maximum
parallelism in programs and to avoid Von Neumann bot-
tleneck {1]. Most of these computation models general-
ly discuss functional programs which are ahistoric in
nature. However, history-sensitivity in computational
models is practical and unavoidable in many situations
like real-time problems, operating systems and DBMS.
One of the formal attempts to solve history-sensitive
problems is the Applicative State Transition system
based on FFP proposed by Backus [1].

Of the other parallel programming systems, dataflow
computation model is discussed in recent years [2, 3].
The functional and ahistoric nature of dataflow com-
putation model exhibits a remarkable shortcoming in
performing history-sensitive computation. In dataflow
models history-sensitive problems can be represented by
using the data type stream [4, 5] where the input history
is preserved in the data type itself. Programs that
manipulate streams can be written either in a recursive
style [6] or in an iterative style [7]. Unfortunately, the
handling of recursion is very inefficient in contemporary
dataflow machines [8]; and the iterative schemas are
difficult to prove and verify as the complexity increases
with the order of dependences between input tokens.

This note discusses another approach to the handling
of history-sensitivity in dataflow environment. This in-
volves the fitting of history-sensitive computations in an
automata-theoretic model, where a state-variable stores
the required data connected with the input history. For
the efficient application of this model, a few tiny
history-sensitive primitives are also proposed. It is
shown how these primitives may help a programmer in

*Dept. of Computer Sc. & Engg., Indian Institute of Technology,
Bombay 400 076, India

**Dept. of Electronics, Jadavpur University, Calcutta 700032,
India

Journal of Information Processing, Vol. 12, No. 1, 1988

synthesizing history-sensitive programs in an elegant
and compact manner.

2. A General Model

In this section a general model of history-sensitive
computation using two general functions with feedback
is given. The functions themselves do not contain feed-
backs and can be represented as acyclic dataflow
graphs. Here, however, those functions are represented
in FP [1] notations because it is more compact and
simpler than the corresponding dataflow graph represen-
tation. The FP notations used by Backus is given in the
appendix. It is to be remembered that FP, as proposed
by Backus, neither support a data structure of arbitrary
length like stream nor allow any lenient operator like f
by to be used; all the operators are strict and have their
arguments well defined when operating. However, even
with these differences, the proposed representation
scheme is useful even in the field of infinite structure.
Subsequently, this representation scheme will be used
to represent dataflow programs.

2.1 Automata Based Model

A history-sensitive computation is such that with a se-
quence of data objects as input, the current output
depends not only on the current input, but also on the
history of inputs.

Let us consider an example of continued sum of an in-
put sequence which is described as:

y Xis o .)
Output sequence={y;, ¥2, ¥3, . . . , Vi, . . .}

Input sequence= {xi, X2, X3, . . .

U
such that y;=C+ Y] x.
k=1

It should be noted here that the relation between
ahistoric and history-sensitive dataflow model is similar
to the relation between combinational and sequential

An Alternative Approach to History Sensitive Computation in Dataflow Model 17

switching circuits. It is in the context of sequential cir-
cuits in classical switching theory that the concept of
state plays a vital role. The same applies to history-sen-
sitive computation in dataflow model also and therefore
an automata-theoretic model can be furnished as de-
scribed below:

Definition:

A history sensitive dataflow model is a 6-tuple (S, 7,
0, f, g, ¢), where
S=a nonempty set of states,

I=a nonempty set of inputs,
O=a nonempty set of outputs,
g: SxI-S

f: SxI-0

ce § is the initial state.

A special input symbol $ ($& 7) is used to terminate a
sequence of arbitrary length. Thus, when a $ input
comes, the output becomes $ and the state changes to in-
itial state (c) to make the program ready for the next set
of inputs. So in the model of history-sensitive computa-
tion, as shown in figure 1, the functions F and G not
only contain f and g, but also respond to $ input as ex-
plained above. They operate on the object {state, in-
put).

Thus F=eq ° [2, $]—8%; f

and G=eq-° [2, $]—¢; ¢

Any history-sensitive program modelled after this
will be represented as HIST (/, g, ¢) where functions f
and g have the list {state, input) as operand.
2.2 Examples

Using the above model, two history-sensitive prob-
lems are solved below.

With a sequence of inputs {x, xz, x3 . . .}

the sequence of outputs for the computation of moving
average of order 3 is shown in Table 1. The corre-
sponding states required for the preservation of history
are also tabulated there.

Formally, the problem can be defined as:

INPUT

STATE ¢ INPUT
1 G 2

STATE |INPUT
INITIAL 1)
TOKEN(C) F
COoPY
OUTPUT

Fig. 1 Dataflow Model for History Sensitive Computation,

Input stream={x;, x3, x3, . . .}

Output stream={y,, y,, y3, . . .}

such that yi=x/3, y,=(x,+x2)/3 and

for all i> =3, y;=(x;+xi-1+x-2)/3

Clearly the output can be obtained by adding the in-
put to the sum of the two components of the state and
dividing the result by three. Now, as f and g is applied
on the list {state, input), application of the selector
function 1 (select the first element) on the list will give
the state part and the selector function 2, the input part
(see appendix).

So, here f=(div3) o + o [2, + o 1]

where (div3)= + © [id, 3].

Again obviously the new state can be obtained by

composing the first element of the state to the input.
Hence g=(2, 12 1].

The initial state is the list <0, 0).

So, the solution to the problem is
MAV=HIST (div3 o + ¢ [2, + < 1], [2, 1 © 1], €O, O)

Example 2: Another example of history-sensitivity is
the selective transformation problem. It is defined as
follows:

Input stream={x,, x3, x3, . . .}

Output stream= { fi(x,), f2(x2), fi(xs), f(Xs), . . . ,}

where f, f; are any functions.

This leads to a solution where the output can be ob-
tained by applying f; to input if the state is ““true’’ and
applying f> to input if the state is ‘‘false’’. The new state
is complement of the old one. Initial state is ‘‘true’’ (T).
Thus the solution is

CONVERT=HIST(1=f;; f, not = 1, T).

Table 1 Trace of Example 1.

input state output
x| <0, 0> x/3
X {xy, 00 0 +x)/3
X3 (g, X0 e +x,+x3)/3
Xy Xy, X2) Ot +x,)/3
Xs {xgs X3) (6 +x+x5)/3
Table 2 Trace of Example 2.
input state output
X, T Siix
X, F Jiixy
X3 T Srixs
F

Xs Jfat x4

18

2.3 Discussions

a. The chief advantage of this approach is the
simplicity of the concept, which is in full conformity
with the classical automata-based models for tackling
history sensitivity as in sequential machines. No
difficult-to-handle data structures like streams are
necessary here. The computation model contains a
global loop but no recursion which is difficult to handle
in existing dataflow machines.

b. Once the trace of the problem is written down,
the problem of determining f and g is as difficult or as
simple as the problem of constructing a functional pro-
gram from examples. Also, the solutions in the
automata based model may sometimes turn out to be
much simpler than the corresponding stream oriented
solution.

c. The presence of global loop (see fig. 1) is in
general deterrent to pipelining [9] and hence to
parallelism. Moreover, an acyclic graph is easier to con-
ceive. An interesting alternative here would be to split
up a large history sensitive program into an acyclic net-
work of a number of smaller programs, some of which
may be history-sensitive, others functional. This also
points to the necessity of devising history sensitive
primitive building blocks to tackle general history sen-
sitive problems in closed form for dataflow models.
Such an approach is described in the next section.

d. Moreover, the state here is defined by the con-
tents of arc II in figure 1. So the state is totally consum-
ed by the functions fand g and a completely new state is
generated by g. Thus this model, while allowing history-
sensitive computations, does not have a complex and
distributed state and does not allow modifications of
small portions of state conceptually. This is a distinct
advantage over von Neumann type machines [8].

The $ symbol, if properly used, prevents one set of
computation affecting the results of the next set.

3. History Sensitive Computation in the Closed Form

3.1 Motivation

This section shows how a few tiny history-sensitive
primitives may help in the development of history-sen-
sitive programs without any global loop or any explicit
feedback. Analogy may again be drawn here with the
synthesis of sequential circuits, where the designer free-
ly makes use of history-sensitive blocks like flip-flops,
shift registers, counters etc.

3.2 A Few History-Sensitive Primitives

To illustrate the concept, a few history sensitive
primitive blocks are described below:

a. SR,(c): Shift Right Register of order n
For this block, the state S is a current list

S. BANDYOPADHYAY, S. GHOSH, C. MAZUMDAR and S. BHATTACHARYA

$81,82, 83, « o+, 5w

With the application of an input /, the output is the
state itself and the new state becomes

81,82, 0y Snm1)

Def SR.(c)=HIST (1, apndl ° [2, tlrol], c¢)
In a similar manner, Shift Left register of order n
(SL,(c)) can be defined.

b. Tag n: Tag of the n" order
This block generates the serial number of the input
data tokens from 1 to # in the modulo-~ field.

Thus, Def Tag n=HIST (1, eq ° [1, n]—1; addl ° 1,
1.

c. ACC (op, ¢): Accumulator

The block start with an initial state ¢ and performs a
primitive binary operation ‘op’, on its state and input
pair <s, i) to generate the next state. The output is
always the next state itself.

Thus Def ACC (op, ¢)=HIST (op, op, c),

where ‘op’ is a primitive binary operation.)

3.3 Examples

Using the blocks mentioned in sec. 3.2, the previous
examples are again programmed. The elegance of the
solutions would be obvious.

Example 1. The Moving Average Problem (MAYV)
This has a solution shown in Fig. 2. SR, with initial
state <0, 0) is used to preserve the previous two states.
If we are allowed to write the tiny history-sensitive
blocks like SR2(0, 0) as functions, we can write the solu-
tion in the following form:

MAV=div3 ¢ + o [id, + ° SR2(0, 0)]
where div3= + o [id, 3].

+3

ouTPUT

Note: HEAD, TAIL is used to extract the first and
second component of the output list <s1,sz>from SR2

Fig. 2 Moving Average Problem.

An Alternative Approach to History Sensitive Computation in Dataflow Model

INPUT

OUTPUT

Fig. 3 Selective Transformation.

Example 2. Selective Transformation (CONVERT)
The solution is shown in Fig. 3.
This solution may be written as

CONVERT =eq ° [Tag3, 1]—-f1; £2.

3.4 Discussions

The distinct elegance of the solutions in section 3.3
over those of section 2.2 is mainly due to the fact that
there is no explicit feedback in these solutions using tiny
history-sensitive blocks. The history-sensitivity is
achieved here by implicit feed-backs within the tiny
history-sensitive blocks. This makes the programs easy
to understand.

A more interesting study in this field may be that of
designing a sufficient and powerful set of history sen-
sitive primitives which can be used as the basic building
blocks of any history-sensitive computation in data
flow environment.

Appendix

Backus’s Notations [1}:
Application (f:x)=If fis a function and x is an ob-
ject, fix is an application denoting the object f(x).

Functions:

Selector Function (s:x)=If s is any integer, n> =s and
x=<x, X2, . . . , Xa» then s:x=x;; else undefined.

Tail (t/:x)=If x=<x;) then t/:x=null; if x={x1, x5, . . . ,
x,) and n>=2 then tl:ix={x, ..., x.; else unde-

fined.

Identity (id:x)=x.

Equals (eq:x)=If x=<{y, z> then if y=z then eq:x-
=true else false; else undefined.

Rotate left (rotl:x) = If x=¢, then rotl:x=¢; if x=<{x,>,
then rotl:x=<{x); if x={x,x2, ..., X, and n>=2,
rotl:x=<xs, . . . , Xn, X1; €lse undefined.

Rotate right (rotr:x) is similar.

Append left (apndl:x)=If x=<y, ¢>, then apndl:x-
={;ifx={»,4<z1, . . . , Z»»> then apndl:x=<y, z,, . .
., Zny; else undefined.

Append right (apndr:x) is similar.

Right tail (tIr:x) =If x=<x,), then tlr:x=¢; if x=<{x, . .
L xp and n>=2, tlr: x=<x1, . . . , X,—1; else unde-
fined.

Functional Forms:

Composition (f ° g)=If fand g are any functions, then
feg is a functional form such that for any object x,
(f° g):x=f(g(x)).

Construction ([fi,...,f-)=If fi,...,f, are any
function, then [f;, . . ., filix={Ai®), . . ., [r(x).>
Condition (P-f; g)=If p(x) is true, then f(x) else g(x)
else undefined.

Constant (¥)=If x is an object parameter, then for a de-
fined y, X:y=x, else undefined.

References

1. Backus, J. Can Programming Be Liberated From The Von
Neumann Style? A Functional Style and Its Algebra Of Programs,
Communication ACM, 21, 8 (Aug. 1978).

2. TRELEAVAN, P. C., Hopkins, R. P. and BROWNBRIDGE, D. R. Da-
ta Driven And Demand Driven Computer Architecture, ACM Com-
puting Surveys, 14, 1 (March 1982).

3. DenNIs, J. B. First Version of A Dataflow Procedure Language,
Lecture Note in Computer Sc., 19, Springer Verlag, New York.

4. WENG, K. An Abstract Implementation For A Generalized
Dataflow Language, Tech. Rep.TR-228, Lab. for Computer Sc.,
MIT, Cambridge, Mass. (May 1979).

5. ARVIND and THOMAS, R. I-Structure: An Efficient Data Structure
for Functional Languages, Tech. Rep. (Revised), MIT/LCS/TM-
178, Lab. for Computer Sc., MIT, Cambridge, Mass. (Octo. 1981).
6. DENNIS, J. B. and WENG, K. An Abstract Implementation For
Concurrent Computation with Streams, Proc. of the 1979 Int’s Conf.
on Parallel Processing (Aug. 1979).

7. ARrvIND, GosTELOW, K. P. and PLOUFFE, W. An Asynchronous
Programming Language And computing Machine, Tech. Rep.114a,
Dept. of Information and Computer Sc., Univ. of Californis, Irvine,
California (Dec. 1978).

8. Gaiskl, D. D., Pabua, D. A, Kuck, D. J. and KunN, R. H. A
Second Opinion On Dataflor Machines And Languages, Computer,
15, 2 (Feb. 1982).

9. Davis, A. L. Data Driven Nets: A Maximally Concurrent, Pro-
cedural, Parallel Process Representation For Distributed Control
Systems, Tech. Rep. UUCS-78-108, Dept. of Computer Sc., Univ. of
Utah, Utah (July 1978).

(Received June 26, 1987; revised September 19, 1988)

