A Graph Model for Probabilistic Computation

HiroTAaKA Kikyo* and SHINICHI YAMADA**

We construct the reflexive graph model Fw for probabilistic computation corresponding to Scott’s graph
model Pw and characterize the computable elements in Fw in terms of Scott’s language LAMBDA.

1. Introduction

Scott [2] constructed the graph model Pw for deter-
ministic computation and characterized the computable
functions in terms of the language LAMBDA. We shall
construct the corresponding model Fw for probabilistic
computation. Our model will be used in Denotational
semantics for probabilistic programs, and will be a
basis for the s-finite theory of probabilistic computa-
tion.

Probabilistic algorithms are extended algorithms
which incorporate random input data and random
choices. Let w be the set of natural numbers and Pw the
power set of w. Then probabilistic algorithms can be
considered as operators mapping a probability measure
on a o-field Pw defined on the space w to another
probability measure on Pw. In our construction, Fw is
a subset of the power set Pw and an element of Fw
represents a measure on Pw which can be thought of as
a point function from w to the extended reals. By this
identification, finite sets in Fw represent measures with
finite supports in w which form a basis of the space Mw
of measures on w with respect to the canonical order-
ing. Also, Mw and Fw have another ordering = de-
fined as follows: u= v if and only if Supp (1) C Supp (v)
and vlsypw=u. Now, for each partial computable
measurable function f: w—w, we can define the
operator 7;: Mw—Mw which maps u to u ° fo ' where
fois a strict extension of f defined as fy(x) =f(x) if f(x) is
defined and fo(x)= L otherwise. Also, we let u(x)=0 if
So(x)= 1. Then T is continuous with respect to the
Scott topology induced by the canonical ordering on
Mw. Moreover, if ue Fw is finite, then 7;(u)e Fw and
is finite. Let us denote the set of all continuous
operators of this type by [ Mw—Mw]. Define the
order = on [ Mw—Muw] by T,=E T, if and only if g is a
functional extension of f. Then we can isomorphically
embed ([ Mw—Mw], 5)into (Fw, ). Also, we can
characterize the computable operators using the
language LAMBDA of D. Scott.

An interesting fact is that our definition is quite
natural, faithfully reflecting the structure of practical
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spaces of measures compared with the Pw due to Scott.
Although most of the calculus of retracts in Scott’s Pw
can be carried out in our domain, some of the corre-
sponding properties becomes trivial since our domain is
not a lattice but an algebraic ccp.

2. Scott Topology

We shall define the Scott topology in terms of condi-
tionally complete posets and review some definitions
and theorems on the Scott topology. For the Scott
topology, see Barendregt [1].

Let us first make some notational conventions. If (D,
<) is a partially ordered set, then <-sup X denotes the
supremum of a subset X of D with respect to the order
<. In the case no confusion arises, we simply write sup
X instead of <-sup X.

Definition 2.1

A partially ordered set (D, <) is called a conditional-
ly complete poset (in short, ccp) if it satisfies:
(1) There is an element L e D, called the bottom,
such that L <x for every xe D;
(2) for every XCD, if X is a non-empty upwards
directed set and is bounded from above in D, then it has
the supremum in D.

Definition 2.2
(1) Let (D, <)beaccp. An element xe D is said to be
compact if for every non-empty upwards directed
subset ZC D such that sup Z exists, x<sup Z implies
x=<z for some ze Z.
(2) A ccp (D, <) is called algebraic if it satisfies:
(@) {y=xlyis compact} is upwards directed and
(b) x=sup {y=xlyis compact}
for each xe D.

Definition 2.3

Let (D, <) be a ccp and ECD. E is called a basis of
(D, =)if x=sup {elee E and e<x) for every xe D and
sup Fe E for every finite subset FCE bounded from
above.

If (D, <) is an algebraic ccp, then the set of compact
elements in D is a basis of (D, =).
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Definition 2.4

Let (D, <) be a ccp. The Scott topology on D is de-
fined as follows:

UCD is open if
(1) xe U and x<y implies ye U, and
(2) for every non-empty upwards directed subset
XCD, sup Xe U implies XN U ¢.

Fact 2.1

For a function T from a ccp (D, <) into a ccp (D',
<'), the following are equivalent:
(1) Tis continuous with respect to the Scott topology,
i.e., T~'(U’) is open for every open subset U’ CD’.
(2) T(sup X)=sup T(X)=sup {Txlxe X} for every
upwards directed subset XC D with sup X in D.

If (D, <) has a basis EC D, (1) and (2) are equivalent
to the following condition (3):
(3) T(sup Y)=sup T(Y) for every upwards directed
subset YCE with sup Y in D.

If (D, <) is an algebraic ccp, (1) and (2) are
equivalent to the following condition (4):
(4) Tx=sup {Tyly<x and ye E} for every xe D
where E is a basis of (D, <).

For proofs, we refer to [3].

Definition 2.5

Let D=(D, <), and D’=(D’, <’) be ccp’s. Then the
function space [D—D’] is the set of all Scott continuous
maps from D into D’ endowed with the ordering de-
fined by:

T<Sin [D—D’]if and only if for eachxe D, Tx<'Sx.

Fact 2.2

Let D and D’ be ccp’s. Then [D—D’] is a ccp in
which the supremum sup F of an upwards directed
FCI[D-—D’] is given by (sup F)(x)=supfer T(x).

For proofs, we refer to [3].

3. The Graph Model

In this section, we shall define a model on a subset of
Pw, the power set of natural numbers, in which we can
interpret the behaviour of all probabilistic calculations.

Definition 3.1
(1) o denotes the set of natural numbers.
Q) <m,n)=@m+n)(m+n+1)/2+n for
ne w.

By identifying set functions defined on Pw with point
functions on w, we define first a space which contains
all measures on w.

each m,

Definition 3.2
(1) Muw denotes the set of all functions from w to the
interval [0, 1] of real numbers, i.e., Mw=[0, 1]“.
(2) For each u, ve Mw, u=<v if and only if u(x) <v(x)
in the set of real numbers for every xe w. We call this
order the canonical order.
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(3) For each u, ve Mw, uEv if and only if Supp (u)
CSupp(v) and Vlsupw=u, where Supp (u)
= {xe dom (u)|u(x)=0}.
(4) For each ue Mw, define the norm llull of u by
lull= 33 ux)
XEW

if it exists.
(5) ueMow is called a subprobability measure if
lull=<1.

Each element ue Mw represents a measure on w
which can be viewed as a formal linear combination of
point masses 1,, xe w as follows:

u= Z Px’ lxy
where p,=u(x) and
_J1 ifm=x
L(m)= {0 otherwise

Definition 3.3

Let B be the set of binary rationals between 0 and 1.
Then B is an effectively given countable super order
dense set in [0, 1]. i.e., for all xe[0,1], x=
sup {ye Bly<x}. We will fix a coding b of B—{0}
onto w.

For each pe B and xe w, let

Ix, p1=<x, b(pP)>.
Now, we define the probabilistic graph model Fw.

Definition 3.4
(1) A subset A Cw is called single valued if for each x,
»y'ew, {x,y,<{x,y'>e A implies y=y’.
(2) We define the set Fw by

Fo={ACwlA is single valued}.

In other words, Fw is the subset of Pw consists of
elements each representing a single valued partial func-
tion.

We shall define two orders on Fw. Let u, ve Fw.
(3) wucvifandonlyif uCv as sets. In other words, the
function represented by v is a functional extension of
the function represented by u.

(4) up=vif and only if for every [x, ple u, there is [x,
p’le v such that p<p’ in B.

Definition 3.5
(1) For each ue Fw, we define:

Supp (u)={x1<x, y>e u for some y},
ran (u)={yI<x, y>e u for some x},
and
ulX={{x, y>e ulxe X} for each XCw.
(2) We define the finite function u, as follows:

n={<0,y0, . .., e Yl
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if and only if n=2% "4 2%k, o

(Fw, <) can be order isomorphically embedded into
(Mw, <) and (Fw, =) can be order isomorphically
embedded into (Mw, £) by the same map as follows:

Let une Fw and u= {<x’ yx>}xe Supp () —
{[x, px]}xeSupp(u) where px=b_'(}’x)e B. Since & is the
coding of positive elements in B, we have p, >0 for each
xe Supp (u). Now, let

A= Y, pelieMo.
xe Supp (4)

Then, g is a B-valued function and Supp (i)
={xe wlf(x)#0}=Supp (u). Therefore, for each u,
ve Fw, u<vifand onlyif <vin Mw and uCv in Fw
if and only if 2=V in Mw. Conversely, for each B-
valued element (e Mw, there is ue Fw such that g=¢.
So, we shall henceforth identify ue Fw with B-valued
element e Mw. We illustrate these by the following
proposition.

Proposition 3.1

Let Mpw be the set of all B-valued element of Mw.
Define the orders < and = on Msw by restricting the
orders < and © of Mw to Mpw respectively. Then,

Fw, <)=Msw, <) and (Fw, £)=Msw, ).
In particular,
Fow, =) = Mo, <), Fo, E)~Mw, E)

and Fw is order dense in Mw with respect to <.

Fw is the set of computable elements in Mw and the
elements of Mw is weak computable in the sense that it
can be represented as the supremum of a set of com-
putable elements.

Proposition 3.2

Mw, <) is a ccp.

Proof. Lex XCMw be a non-empty upwards
directed set bounded from above, say by uoe Mw. For
each me w, consider the set X,,= {p|v(m)=p for some
ve X'}. Then X, is a set of real numbers bounded by
uo(m). So, sup X, exists. Define ue Mw by u(m)=sup
Xm. Then, u=sup X. O

Proposition 3.3
(1) (Fw, E) is an algebraic complete poset (cpo) and
ue Fo is compact if and only if u is finite.
(2) For each u, ve Fw, uSv implies u<v.

Proof.
(1) It is easy to see that (Fw, =) is a complete poset
such that if XCFw is a non-empty upwards directed
set, then sup X=UX, and the set of finite elements
(elements with finite support) is a basis. If ue Fw is in-
finite, then X={u,lu,Cu} is upwards directed and
u=sup X. But, ué X. Conversely, suppose that u is
finite. Assume that XCFw is a non-empty upwards
directed set such that 4= sup X=UX. Then for each
xe u, xe & for some & X. Since X is upwards
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directed and u is finite, there is 4’ e X such that &Sy’
for each xe u. Therefore, uCu’.
(2) This is obvious. O

Proposition 3.4

The set of finite elements in Fw (i.e., the set of com-
pact elements in Fw) is a basis for Mw, <).

Proof. Because the set B is super oder dense in the
interval [0, 1] in the order topology of real num-
bers. O

Definition 3.6

For each partial map f: w—w, we define an operator
T;: Mw—Muw as follows:

Tr(w)=p o f ' =Zecou(x) 15 where f, is a strict
function such that fo(x)=f(x) if xe dom (f) and fo(x)
=1 if xédom(f) and 1,=0 (the zero function).
Thus, 7Ty is a linear operator such that T,(1,)=1;y is
xe dom (f) and T;(1,)=0 if x& dom (f). T(u) is de-
fined (i.e. T;(u)e Mw) if for each ye f(Supp (u)),
T(¥)=Zxe -y #(x)< 1. In particular, 7;is defined on
M’s such that llull<1.

[ Mw—>Mw] will denote the set of all 7’s.

For each Ty, Tye | Mw—Mw], T,= T, if and only if
g is a functional extension of f, i.e., dom (f)Cdom (g)
and gldom (f)=/.

Proposition 3.5
(I Mw—Mw], E) is an algebraic cpo where
Tre [ Mw—Mw] is compact if and only if fis a finite
function.
Proof. Same as Proposition 3.3 (1). ©
Proposition 3.6
Let Tyje [ Mw—Mw].
(1) If ue Mw and ue dom (7)), then for each u,<u,
Ume dom (7)) and T;(un)=u.c Fw for some n.
(2) dom (7)) is a ccp and Ty is Scott continuous with
respect to <. In particular,

Tf(”) =< -Sup, <u Tf(.um)~

Proof.

(1) Suppose that u,<p and T,(u) is defined. Then,
for each ye f(Supp (Um)), Zxcs-1» Un(X) is a binary ra-
tional and is less than Z,c -, u(x)=T;(y)<1. Hence,
Ty(um) is defined and Ty(um)e Fow.

Also, it is obvious that Supp T;(u) is finite.

(2) By the same argument as in (1), we can show that
if T,(u) is defined, then Ty(u’) is defined and T;(u’)
< Ty(u) for each u’ <u. Hence, dom (7)) is ccp and T is
monotone. Suppose that XCMw is upwards directed,
sup X=ue Mw and T;(u)=ve Mw. Then, T;(X)is up-
wards directed and bounded by v. Let me w and £€>0
be a real number. We shall show that 0<v(m)—T,(u’)
(m)< e for some u’' e X. As v(m)=Z,c s-1m (1), there
is a finite set of natural numbers Y Cf ~'(m) such that
O<v(m)—Z,cru(n)<e. Let k be the number of
elements in Y and &' =(¢— (v(m)—Z,c v u(n)))/ k. For
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each ne Y, choose &, X such that 0<u(n)—¢&(n)<e’.
Choose u’ € X such that &,<u’ for every ne Y. Then,
we have

v(m) = T;(u’)(m)
= > wm

neft(m)

z 3 &)

neY

> Zy(#(n)—e’)
=3 u(n)—ke'.

neY

Thus,
0=v(m)—Ty(u')(m)
<v(m)— >, u(n)+ke’
neY

=E.

Now let IC w be an arbitrary large finite set and £>0.
We can choose u” e X such that O0=su(m)—u”"(m)<e
for every me I since X is upwards directed. D

Since each Te [ Mw—Muw] is determined by its
values on finite measures which belong to Fw, we can
encode T as an element of Fw.

Definition 3.7
(1) Foreach Te [ Mw—Mw], let
graph (T)={<{m, )| T(un)=p., T({x})#¢ for every
XE HUm}.
(2) For each (e Fw, let
fun ()(u)= <-sup { sl um=p and <{m, n)e ¢&}.

If T=T,e [ Mw—Mw], then graph (T)={{m, n)
| T(ttm) =ttn, Supp () Cdom (f)}.

Proposition 3.7
(1) graph: ([ Mw—Mw], =)—(Fw, =) is Scott con-
tinuous.
(2) For each Te [ Mw—Mw], fun(graph (T))=T.
Proof. (1) First of all, we show that graph is
monotone. Suppose that 7, Tye [ Mw—Mw], and T}
ET,. If {m, n>e graph (T)), then Supp (u») Cdom (f)
and T/(um)=u,. As dom (f)Cdom (g) and gldom (f)
=f, Ty(um)=u, also. Hence, graph (Ty) = graph (Ty).
Now, let Tye [ Mw—Mw] and consider the set F={T,
ETylg is finite}. Then, the set graph (F)={graph (T)
| Te F} is upwards directed and bounded by graph (7))
in (Fw, Z). Now, suppose that {m, n)>e graph (7).
Then, T;(um)=u, and hence, T1supp (u,)(Mm)=pn. Thus,
{m, n)e graph (Tyisupp (u, )€ graph (f). So, we have
graph (77 =sup graph (F).
(2) Let Tye [ Mwo—Mw] and ue Fw.

fun(graph (7))(u)
= <-sup { 4mlu,=<u and {n, md>e graph (7}
= =<-sup {TH(un) |, <pt and Supp (u,)Cdom (f)}
=Ty(u). ©
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Theorem 1

((Mw—Mw], £) is isomorphically embedded into
(Fw, ©) by graph and the inverse is given by fun.

Proof. By Proposition 3.7, graph preserves the
order and fun(graph (7))=T for each Te
[ Mw—Mw]. To finish the proof, assume that graph
(T Sgraph (T;). We shall show that g is a function ex-
tension of f. Suppose that xe dom (f). Consider the
singleton set {<{x, y>}=pum. Then Ty(u,)={{f(x), »>}
and thus T;(4m)=u. for some n. Hence, {(m, n)
€ graph (7)) Cgraph (7;) and we have T,(u.)=u, also.
Thus, {{g(x), >} =To(tm)=Ty(um)={{f(x), »>} and
g(x)=f(x). We can conclude that g is an extension of
f o

(Fw, <) is the computable graph model (see Figure
1). Note that we cannot restrict our model (Fw, <) to
(Fw, ©) since we need the order < for the definition of
graph and fun.

Fow, &) < (Fo, <)
(I Mw~Mow], £) <= Mw, 5) — Mo, <)
4. Probabilistic LAMBDA

Recall that the language LAMBDA has one primitive
constant symbol 0, two unary function symbols (x+ 1)
and (x—1), one binary function symbol (#(x)), and one
ternary function symbol (zDx, y), and has one variable
binding operator (Ax.7) [2]. The formation of the terms
is defined in the obvious way. The semantics of LAMB-
DA in (Fw, <) is defined as follows.

m[ 0] ={[0, 1]}.
m n+11={x+1, I, y>e m[ n]}.
ml E-1]1={x, pI<x+1,y>em[ n]}.
ml EDn, 6] ={<{n, m>| ¢ #u,=e:(u,),
{n,m>e mf n]}
U{n, m)l ¢ =, =e_¢(u,),
{n,my>e m{ 6]}.
Here,
e;=Aue Fo {lx, ple ullx, 1le m[ £]}
and
e_.=Aue Fw.{x, ple ulxé Supp m[ £]}.
m{ n(u)l =fun (m[ nl)m[ ul).
ml Ap.c]={n, m>Im{ tlua/u)] =pm}.

In the definition of m[ ¢>#n, 8], we omit the case
¢=u, because it is easier to see that the definition is
well-defined. But it does not matter since the image of
the empty set by a function must be the empty set (see
Theorem 2).

Definition 4.1
An operator T: Mw—Muw is computable if there is a
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partial recursive function f such that T(uw)y=ue°f".

Every computable operator Mw—Mw belongs to
[ Mwo—Mw]. Now, we can assert the following
definability theorem in the same way as the proof by
Scott.

Theorem 2 (LAMBDA Definability)

An operator Te [ Mw—Mw] is computable if and
only if graph (T) is LAMBDA-definable.

Further discussions on LAMBDA proceed in parallel
with Scott [2].
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