Five and Six Stage Runge-Kutta Type Formulas of
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New five- and six-stage Runge-Kutta type formulas of orders numerically five and six are proposed. It is well
known that five and six stage explicit Runge-Kutta methods cannot achieve five and six order of accuracy.
However, fifth- and sixth-order formulas are obtained when the distance between some pairs of abscissas tends
to zero. Such formulas are called limiting formulas and involve derivatives. In previous papers we presented
numerically fifth- and sixth-order formulas which require only five and six evaluations of the function.
However, the parameters of these formulas are numbers of many decimal digits.

Parameters of our new formulas are simple, though our formulas can achieve the same accuracy as the
limiting formulas. The values of derivatives in the limiting formulas do not require full significant digits carried
in the computation. So, we approximate derivatives by numerical differentiation and choose one of free
parameters of the limiting formula to minimize the error caused by approximation. As a result, the approxima-
tion errors in five- and six-stage formulas are reduced to O(h*r~%/%) and O(k*r~%/?) respectively with step size 4 in
g-digits of r decimal system. Thus, the approximation errors are not a significant part of the total error

throughout the computation.

1. Introduction

The system of ordinary differential equations con-
sidered has the form

(1.1 dy/dt=f(t,y), ¥({to)=yo

where y and f are vectors and the function fis assumed
to be differentiable many times if necessary. An explicit
s-stage p-th order Runge-Kutta method for numerical
solution at ¢,+,=t,+h is defined by

(1.2) Yar1=yath le.uifi

where

Ji=S(tn, ¥n)
ﬂ=f(t"+aih,yn+hl_zlﬂ[j_fj>, (i=2,...,s)
=

The parameters «;’s, 8;;’s and u;’s are determined so that
the Taylor series for y,+; and for y(¢,+ h) agree through
terms in A°.

It is well known that p<s—1 for s=5, 6, 7. But, five
and six stage formulas can achieve fifth and sixth order
of accuracy as limiting cases where the distance between
some pairs of «;’s approaches zero [8], [5]. Such for-
mulas are called the limiting formulas in which the
derivatives of f are involved as an inevitable result.

In two previous papers [9], [6]. We presented five and
six stage formulas without derivatives of orders
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numerically five and six respectively. However, the
coefficients of these formulas are fractional numbers of
which numerators and denominators are the numbers
of many decimal digits.

In this paper, new formulas of orders numerically
five and six are proposed. They make use of only five
and six evaluations of function and can achieve
numerically the same accuracy as the fifth- and sixth-
order limiting formulas respectively. Our new formulas
are obtained by replacing the derivative of finvolved in
the limiting formula by the simplest numerical differen-
tiation. Because, in the limiting formulas, the values of
derivatives do not require full significant digits carried
in the computation and two free parameters are left. So
we choose one of these free parameters so as to
minimize the error caused by numerical differentiation,
and choose the other one to minimize the local trunca-
tion error of the limiting formulas. The magnitudes of
local truncation error of our new formulas are no more
than 1.2 and 1.5 times as large as the best limiting for-
mulas from the aspect of minimization of the local trun-
cation error. The errors caused by the numerical
differentiation are not significant compared with the
truncation errors of our new formulas.

Our new formulas have three advantages. Their
parameters are relatively simple, so they can easily be
programmed. And they give the same accuracy as the
limiting formulas without any additional work for
evaluation of derivatives. Furthermore we can apply
these formulas in various precision arithmetic system by
changing the value used in the numerical differentia-
tion.
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2. The Limiting Formulas

First we will briefly review previous works on the
limiting formulas because our formulas are based on
them [5], [8].

2.1 Fifth-order Formulas

The equations of condition for the Runge-Kutta
coefficients, resulting from Taylor series expansion,
are given up to the eighth order by Butcher in the con-
densed form [2].

The equations for the five stage fourth-order formula
have the solution with seven free parameters. There are
nine equations of condition of O(#*). And it is proved
that all of these equations hold if and only if

fl=f(tmyn)
=9 9
DfZ_ a-hfla)f(tm yn)

H. Ono

Case 1) as=1 and «a; — 0 (free parameters: s, a.)
or
Case 2) as=1 and a4 — as(=1)
and (either a;=2/5 or 40aa3 — 15(c + a3) + 6=0)
(free parameter: a;).

Then the formulas are called limiting formulas, in
which some values of derivatives are used instead of
those of functions. The interval of absolute stability for
any fifth-order limiting formula is (—3.22, 0). This in-
terval is independent of the choice of free parameters.
So, it is desirable that the formula has the leading local
truncation error as small as possible. Such formula is
found in the Case 1) and is

2.1-1) Si=f(tatash, yot+h(by fi+bnhDf))
Jo=f(tatcsh, yat h(ba fi+bohDfy+ bas f3))
Ss=f(tath, yoth(bsi fi+bshDfo+ bs; f3+ bsa fa))
Yne1=Yn+h(my fi+mhDfs+m; f3+m, fo+ ms fs)
where

bil=li£r(l) (Bis+B2), biz=(lxi[{}) B, (i=3,4,5)

by=lim By, (i=4,j=3;i=5,j=3,4)

m=hlm (u+p:), me=lm u;a;

m,-=li£)})u,~, (1=3, 4, 5)

The parameters are expressed rationally in terms of o3 and a4 as follows:

_20&3(14— 15(a3+a4)+ 12

3_5(13

my

m =
T 60(1—as)(1—aw)
5(14 -3

T 600 (1 —a)(ae—ar)’
_ 10a3014—5((x3+a4)+3

ms m;=

T 6002 (1 —as)au—ar3) ’
my=1—my—m,—ms
by=a3, bp=a3?/2,
_ad(a—a3)
_0132(3 =5Sa3) ’
bou= (1 —a3)(1 —ad)(3—5a3)
ad(os—o3)(20as0s— 15(as+as) +12)°
1 Sas—3
" ms [ 60as* (o —ats)
bs,=1 /Z_bsaaa —bssas,

(2.1-2)

bo=as/2—bgas,

b

bs —mubay|,

bsi=1—bs3—bs4

60(13(!4

3

by=as—ba,

Many methods are obtained for various choice of free parameters [8], and two methods are especially important.
The first one corresponds to a;=1/2, as=5/9, and is given below. The magnitude of the leading local truncation er-

ror is minimized.
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fl =f(tm yn)
a i)
=|=—4f —
Df2 (at fl ay)f(’m)’n)

f=f (t,,+% h, yath (%fﬁ% thz))

5 305 125
f4_f(tn+ 9 h,y.+h (729fl+1458 hDf,+ 729f3))

359 2916
fs—f<1n+h Yath (775f| 310 hDf,— 31 fs 775 f4)>

_ 233 2187
Iner=ynth (750f’ 100"sz 15f3 2000f“+240f5>

[RKD53]

The second one corresponds to a3=(5— v'5)/10, as=(5+ v'5)/10, and has certain valuable property considered
later. It is

f1=f(fm}’n)
{a.,d
Dfi= (a—,+f. ;,;) Ftns v

5—-V5 5—-V5  3-4/5
f3=f ln+—‘——h,y,,+h 10 f1+ 20 th2>

10

5+45 5+3V5 _3+~/?hD +5+2\/? ))
10 0 "0 & 5
543V5  5—4V5 ))
Ja

2 T2

I P P

V5
fs=f(tn+h,y,,+h ((1+2ﬁ)f.+7 hDf,—

— 1..5..5.,1
Y1 =ynth (12f'+12f’+12f‘+12f’)

2.2 Sixth-order Formulas

The complete solutions of six stage fifth-order Runge-Kutta equations are given by Cassity [3]. He classified the
solutions into six cases. The value of a4 is 1 except in one case, so we restrict ourselves in the case where as=1.

There are 20 equations of condition for sixth-order formula. It is well known that no choice of the parameters with
distinct abscissas «;’s can satisfy all of these equations. But when as=1, if a; = 0 and as = as(=1), all of them hold

and we have two parameters «; and a4 at our disposal [5].
Similar to (2.1-1) and (2.1-2), the limiting formula of order six is written using derivatives as follows:

flzf(tmyn)
_|9 9
Df,= (E"—fl 5)f(tm Yn)
Si=f(tntash, yot h(bs fi+ by hDf2))
f4=f(tn+a4hs yn+h(b41fl+b42th2+b43f3))

(2.2-1) Yo=Ynth(be fi+behDf,+ bes f3+ bes fa)
Je=f(tath,y,)

-9 9
DfS_atf(tn+hs yp)+ayf(tn+hs Yo)
X (bse1f1+ bsahDfy + bses f3+ bsea fo+ bses f)
] y,,+1=y,,+h(m|f1+m2th2+m3f3+m4f4+msth5+m6f(,)

where the parameters b; (i=3, 4, 6; j=1,2,...,i—1)and m; (i=1, 2, 3, 4) are the same as those of the five stage
method and

ms= “EI_}})#S(I —as), m6=5§}, (us+use),

as=1 as—1
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be;—bs; b
bey=lim———, (j=1,2,3,4); bss=lim—o
"1"(11 1—as "1”?1‘(15
as— as—

The parameters are expressed rationally in terms of a3 and a4 as follows:

by=as, bu=0/2,
(o —a3) s
43=W—_2%5 , bo=al/2—byos, bu=as—ba,
_ (1 —a3)(1 —as)(1 —2a3)
20l (@—a)(Sasas—3(as+ i) +2)°
—(1 —a;)(6a42—7a4—2a3+3)
60 (s — a3) Sz — (st aq) +2)
b52= 1/2—b63a3—bua4, bsl =1 —'b63—ba,
_a3a4(30a3a4—4(0:;+a4)+4)—2(a3+a4)2+a3+a4

b=

m

2.2-2) 6003’ s’ ’
Sazas—2(astagd+1 204—1
m,= N = Y
2 60030ty s 60cts? (s — as)(1 — or3)?
—2a3+1 —Sazast+3(astas)—2
my= 2 5 Ms=
60cts’ (s — as)(1 — oxq) 60(1 —as)(1 — )
1
meg X [a3a4(30a3a¢ - 56(&3 +as— 1)) + 24(&3 + a4)2 - 45((!3 +(!4) + 20]

~ 60(1 — (1 — ae)?
bsea=(my(1—as) —mebes) / ms,
bsss=(ms(1—as)—mybs—mebes)/ ms,

bsex=2—bssys— bseara, bset=2—bsss—bses, bses=—1

We choose free parameters so that the leading local truncation error term is minimized, since the interval of ab-
solute stability is independent of the values of free parameters and is (—3.55, 0). The most recommendable formula
corresponds to a3=3/7, as=4/7, and is given as follows [5]:

Si=S(tns yn)
pri=(24 i)
)= Py f'ay S(tn, yn)

f3=f(tn+%h1yn+h (%f:“"% thz))

_ 4 4 40 16
f4—f(tn+7 hyy.th ('@fx—m thz+ﬁfs))
[RKDS6]

op (22,25, 0 490 . 147
Yo=Ynth (2376f'+99 hDf, 297f3+ 38 f4)

Je=f(tat+h, Yp)

_ d a 317489 7817 51401 63847
_ 1919 11 2401 2401 . 11 1919
Yne1=Ynth <_8 S +720 th2+__——8640f3+_8640f4 720 th5+——8640f6)
Another choice of free parameters will be considered later.
3. New Methods Based on Limiting Formulas formulas [RKD53] and [RKD6] respectively. However,

their coefficients are the fractional numbers with

In two previous papers [9], [6], five and six stage numerators and denominators of many digits. So it is
Runge-Kutta type formulas, without using the values of troublesome to input these coefficients. The new for-
derivatives, were presented. They achieve numerically mulas in this paper are more recommendable because of
the same accuracy as the fifth- and sixth-order limiting their simple coefficients which are the same as those of



~

Five and Six Stage Runge-Kutta Type Formulas of Orders Numerically Five and Six 255

the limiting formulas.

In our new formulas the derivative of f is replaced
by the simplest numerical differentiation. Two free
parameters in the limiting formulas are chosen so that
the error caused by the numerical differentiation is
small enough compared with the local truncation error
and does not affect the accuracy of the limiting for-
mulas. Thus the new formulas can achieve numerically
the same accuracy as the limiting formulas.

3.1 Five Stage Method
3.1.1 Derivation of the Method
Computing
fi=f(t,+eh, y,+ehf)

with some small value of &, which will be determined
later, we use
3.1-1) =Ll

€
instead of the derivative ADf; in the limiting formula
(2.1-1). This is because

o - h? h
F2=f2£f'—th2+£— 2f2+4l: — D, +0(e’hY)

where
D"f—(—a—+ ) ra
=\ 3, fnay S(tn, yn)

The truncation error and roundoff error in
E=F,—hDf, are estimated as follows:

h2
truncation error: Er(e)=¢ ;\D’le

1l
L4

(3.1-2)

3.1-3) roundoff error: Egr(g)=2r717

(g-digit to the base r)
From (3.1-2) and (3.1-3) we get the optimum ¢ and E as

follows:

2 N
1-4 o= -q/2 \/__
G-1-4) eon=3 r T

3.1-5) E,x=h [Zr"’“\/llezle

+% r“’l—i{ll%‘}?—l+0(r'3"”)
By using (3.1-5), approximate values fk, (k=3, 4, 5) of
fvand P,4; of y,4, are written as follows:
H=ftatash, ot h(byfi+bnF)
=fi+hbyuEop fy,+ O(hY)
ﬁt=f(tn+0uh, ynth(ba fi +baFo+ ba f3))
=fathboEop [yt hbubuEop fy. fr.+ O(hY)
Fs=f(tatash, yot+h(bsi fr+bs:Fa+ bsy fy+ bsa f2)
=fs+ hbsa Eopify,+ h*(bs3bsy fy,+ bsaba f,,)
X Eopi fy,+O(h*)

where f),, f,. and f,, denote

ad

5;/(fn+ash, Ynth(b3 fi+buhDf)),

a

5f(tn+a4h, Ynt+h(ba fi+bahDfa+ b f3)),

a
af(’n"'ash, Ynth(bsi fi+bs2:hDf s+ bss f3+ bsa f4))

respectively. Since f,,, f,, and f,, will have nearly the
same magnitude as f,, so setting them equal to f,, we get

Prer1=yath(my i+ my Byt ms fy+ mo fo+ ms f5)
=yne1 My Eop+ h2(m3 b+ mybg+ msbs,)
X Eopi fy+ B (mabas b+ ms(bs; by + bssbiz))
X Eop /2 + O(R®)
From (2.1-2) we get

10(13(!4— 5(0[3 + Cu) + 3

m3byn+mybyt+msbs,=m,=

60(130!4

(3.1-6) w2

mibyaby+ms(bs3;by+ b54b4z)———
12003

Since as#1 (=as), we cannot choose o3 and a4 SO
that both of the equations in (3.1-6) hold. So, we will
choose a; and a4 so as to satisfy m,=0, then the error in-
volved in $,+, caused by the numerical differentiation
becomes O(h*) and can be estimated as

Ey—lﬁn+l—yn+l‘
|5a3

=ht— (1200, [Zr“’“vlfl Ml [P0

On the accumulated error of our five stage formula,
we must consider the following three factors:
i) accumulated leading local truncation error of the
formula:

(3.1-7) Er=E¢h* (Es depends on the function f)
ii) accumulated roundoff error incurred in numerical
differentiation:
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ISos—21

E‘N=h3 E— "_q/2 v If|D2fzi f}z
I60¢13|
iii) accumulated roundoff error included in the com-
putation of one step:
(3.1-9) E.=crn!,
As h decreases, Er and Ey decrease but E, increases. So,
if Ex< EF for the values of A such that Er> E,, then the
formula can achieve numerically fifth order accuracy.
Though the magnitudes of vIfi.D*f;1f,? and c vary ac-
cording to the function f, we assume they are nearly the
same magnitude as unity. Setting Er=E,, we get

h=E6—l/6’.—q/6

3.1-8)

(c is some constant)

For this value of h, solving Ex<Ef for Es, we get
(3.1-10) Es> |(503—2)/ 603132~/

The most preferable choice of a3 and a4, provided

2—25h—l

=8 ,-an_
G1-1D) e=gron=p L

H. Ono

m;=0, is a;=(5— ¥5)/10 and as=(5+ v5)/10 [8]. In
this case, (3.1-10) becomes

E¢>4.4,,—7 (for 14 hexadecimal digits arithmetic)
Es>1.1,0—4 (for 6 hexadecimal digits arithmetic)

Next, we will determine the value of &, (3.1-4) as a
constant independent of the function f because we can-
not know a priori the magnitude of vIf,/D?f,]. The
truncation error of numerical differentiation Er(¢) (3.1-
2) is small for well conditioned f and is large for ill con-
ditioned f. So &, for well conditioned f is larger than
that for ill conditioned f. We determine &, on the
larger side so that Ey (3.1-8) should not dominate over
Er (3.1-7) when fis well conditioned. This is because
the accumulated truncation error Er of well conditioned
S is also smaller than that of ill conditioned f. So,
Y1£i/D?f,] is taken to be 4 on the bases of numerical ex-
perience. Then &,y becomes

(for 14 hexadecimal digits arithmetic)
(for 6 hexadecimal digits arithmetic)

Now, we get a five stage method of numerically fifth order. It will work well except for the special case where E¢= 0.

3.1.2 The Five Stage Formula of Numerically Fifth Order
The five stage formula of numerically fifth order is as follows, which we denote by [RKNS] [5].

fl=f(truyn)
Sr=f(ta+eh, y.+ hef), Fz=f2;fl
- STS a5 35
Si=flt+ 10 s Ynt Tfl _20 2
[RKNS] _ +5+J?h N _5+3Y5 345 +5+2J?
fd_f(tn 10 )yn+ 10 1 20 2 5 f3 )
V5 S+3Y5  5—5
fs:f(t,,+h,y,,+h ((1+2J‘5‘)f.+7p2_ 2 ﬂ))
— 1 5 5 1
Yne1=ynth (ﬁfl"‘ﬁf:"‘ﬁfrl'ﬁfs)
where

E=—
h 1

512h

3.2 Six Stage Method

3.2.1 Derivation of the Method
We evaluate F; in the same way as in the five stage
method, and Fs, which is used instead of the derivative

1 . . . . .
8 an_ 335544328 (for 14 hexadecimal digits arithmetic)

(for 6 hexadecimal digits arithmetic)

Dfs in the limiting formula (2.2-1), as follows.

Computing

Fs=f (st h=06h, yo+h(be fi +be Fy+ bey s+ beu £1)
—Oh(bss fi+ bsay Fa+ bses fot bsuﬁ‘*'bsssfs))
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we use oh?
- om =fy— OhDfs+—— D*fs+O(5°h%)
. fo—fs 2
F5=——
o then we get
instead of ADfs with some small value of 8. So—fs - s
Next we will consider the error included in Fs. Letting _6__=th6—5 5 Dfs+0(6°h)
J=bse fi+ bshDfy+ bses f+ bsea fa+ bsss fs In similar way as in 3.1.1, we get the optimum J and
and A=(fs—fs)/ 6—hDfs as follows:
d ¥ 2 J | fel
kf=|—4f— 3.2-1) Oop=—r"9?
D'fs (3t+fay) Sfath, ) ( ) P r | Dl
we can write fs as (3.2-2) Aop=—h2r 9| fcD¥fsl +O(r~9)]

fs=f(t,+h—35h, y,—hf) Since

fs=Fo+ b6 Eop fr+ h(basbs [+ besbar f) Eop S+ O(hY)
Fs=f(ta+h—03h, y,+ hbe Eop+ k(e bsa fy,+ besbar f1.) Eop— Shf — Shbse: Eop:
— R (bsss b fu+ bsssbar S+ bsssbe fr) Eopt O(h*))
=fs—O0hDfs+hbeEop [y, + R (bes b fy,+ besbar f1) Eoptfy,— Ohbse: Eopif e
—Oh¥(bsssba fy,+ bssabar fr,+ bsss ber fr) Eope Syt O(h*)
we get
o) f"_f’ 2 2 4
F5= =th6+Aopt+hb562E0plf)‘+ h (bss; b32+b564b42+ bSGSbGZ)Eaplfy+ O(h )
opt
From these values, we obtain
)7,,+|=y,,+h(m|f1+m2ﬁ2+m3ﬂ+m4f4+m5ﬁ5+m6f6)
=Ype1+Hh(myEqpt+msA opl)+h2(m2b32+m4b42+m5b562+m6b62)Eaplfy+O(h‘)
=y,a1+h2r " (m, V1 fiD¥ | —ms V1 fe D)+ h(mybp+maba+ms bssa+ meber) Eopi fr+ O(B*)

In this case, we can not choose o and a4 so that both of m, and ms vanish, because the numerator of ms is the fac-
tor of the denominator of bg’s. However, if we choose s and a4 so as to satisfy m;—ms=0, assuming both of the
magnitudes of VIf;D?f;] and V1 fsDf| are nearly equal, then the leading error term caused by numerical differentia-
tion will become O(h%). From (2.2-2) we get

_(10(132— 10a3+2)a42—(100z32-— 12a3+3)a4+2a32—3a3+ 1

(3.2-3) my = s 60c; s (1 —as)(1 — aws)
Sasaa—2(0stag) +1
(3.2-4) myby+msbo+msbsg+meba=m=
60&304

The leading truncation error of the limiting formula consists of the sum of 48 terms. Their coefficients 7, ; are divid-

ed into five classes as follows:
the multiples of

—Tas+as)+4
) _lasas (s + o) (13 terms)
302400
7a4—4
" _ 121
i) = 15120 {1z termo
7(13 - 3
_ 10t
it ¢=T5120 otems
. 1
iv) w

= 30240(1 — 2005) Sevscts — (e + aa) +2)°
X [(30Sats — 296as + T2)ats" + (17501’ — 4660 + 3400 — T6)cts”
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+(— 2100, + 395042 — 24804 + 52) a3 + 634> — 1200t + 76004 — 16) (3 terms)

_ 1
V) K =3040 (10 terms)
The magnitudes of vZ t3,/48, max|t,;| and {m;| (coefficient of leading error term of numerical differentiation)
are shown in Fig. 1, where oy varies so as to satisfy m,—ms=0. In consideration of magnitude of local truncation
error, we determine a;=(5— v10)/10, a,= v10/5 so that the parameters are comparatively simple numbers of
quadratic field. Then all of the parameters (2.2-2) are determined.

1.0¢-3
90-3
7] mnxld,fl;"
B10-3
T10-3 ]
Gg-3
Il
S10-3 20
40-3
Bo 3]
4 58y
e Sl
20-3 ]
4
203 ]
_ 5-)/10
/10
ot——T"TTT T T T T T T T %
0.1 015 02 025

Fig. 1 magnitudes of the coefficient of leading truncation error
term and approximation error

3.2.2 The Six Stage Formula of Numerically Sixth Order
Substituting a;=(5— v10)/10 and ay= v10/5 into (2.2-2) and setting 5 =¢, we get six-stage formula of numerical-
ly sixth order [RKN6] [5].

Si=f(tn, 1)
fo=f(t.+eh, y.+hef), F L ;f‘
f3=f<tn+5_——mh,y"+h(S_Wf.+7_2ml~"z)>

10 10 40
f4=f(tn+@h, Yath (—220-’;§§ﬂ6—f.—“-;;/Tan+44+;(7)mf3))
Yo=Ynt+h (Wﬁ_’_ﬁﬂ-i;sz_7240+3252164~/416f3+50+;21/T6 4)

RKN6
[ ] f6=f(tn+hyyp)

fs=f(t,,+h—sh, yp—¢h (

3198+1006mf +464+l46m

1

9 9
_ 45060414296 V10 | 1240+406 10 ))

F,

10
117 fit 39 Jo—ts

=f6_‘fs

€

F;s
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100—37v10 5—2v10 280—4010
a1 =Yt
Yn1=Y 540 Sfit+ 180 2+ 351 fs
310+95v10 , , 5—-2V10 —55+31/10
T a0s S0 Bt S

where

8
e=—r 2=

h 1
512h

4. Numerical Example and Conclusion

To illustrate that our formulas achieve numerically
the same accuracy as the limiting formulas, we present
the results of an example [7] in Fig. 2 and Fig. 3.

Example 1. Integrate

dy/dr=€(y’(t+1)+ 1)/ 3y*(6—te"), y(0)=1

over the range [0, 1]. The computations were perform-
ed in double and quadruple precision arithmetic using &
(3.1-11) for double precision arithmetic.

Observations of figure 2 are as follows:

(1) For the values of step size 4 larger than 275, the
accumulated local truncation error Er (3.1-7) of the for-

22 2 210 2-u
! 1 ! 1 ] L1k

—— RKNs

-=0 --RKDs1
--3¢--RKNs
«=©=-~-RKDs1

doudle
precision

guadruple

precision

~-12 -

—16 XY '3

b &,

~20 N

o

1og  ervor|

Fig. 2 Accumulated relative error of numerical solution of exam-
ple 1) using [RKNS]

m (for 14 hexadecimal digits arithmetic)

(for 6 hexadecimal digits arithmetic)

mula [RKNS] is the significant part of the total error
and is of O(#°).

(2) For the values of A smaller than 278, the ac-
cumulated roundoff error E, (3.1-9) dominates and is of
o(r~h™h.

(3) The accumulated error Ey (3.1-8) caused by the

numerical differentiation is insignificant in double preci-
sion arithmetic for all values of 4 and is of O(h*r~9%) as
shown by the results using quadruple precision
arithmetic.
Thus, our new formula [RKNS] can achieve numerical-
ly the same accuracy as the fifth-order limiting formula
[RKD51].

On the formula [RKN6], the same situation is ob-

-2 -6 -10 - M
2 2 2 7
! ] 1h

—¥—— REN6
- -~ ~ RKDs
== X---REN®  yadrupis
-8 — eeEr-=REDS  precision

double

precizion

-12-4

-6

a

tog,glerror|

Fig. 3 Accumulated relative error of numerical solution of exam-
ple 1) using [RKN6]
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Fig. 4 Results of computation of Euler’s equation

served in Fig. 3. However, in this case, Ey is slightly
larger than Er for A=27% and 277, because Ey is of
O(r~??h?) while Ey in [RKNS] is of O(r~%/?h’).

To compare the efficiency of our formula with other
methods, we use the example in Bulirsch and Stoer [1]
and in Hairer [4].

Example 2. Integrate Euler’s equation of motion
for a rigid body without external forces

»(0)=0
»(0)=1
»(0)=1,

dy;/dt=yzy3,
dy)/dt=—yys,
dyy/dt=—k*y y,,

over the range [0, 60).

Figure 4 is the graph of the relation between the max-
imum error in the last step and the number of function
evaluations. From this figure we see that our formula
[RKNS] can achieve almost the same accuracy as
Adams-Moulton-Bashforth’s six step method, and the
formula [RKN6] as Bulirsch-Stoer’s polynomial ex-
trapolation formula.

In conclusion, we are able to say that the formulas
[RKNS] and [RKN6] are numerically of orders five and
six respectively. Furthermore, since the leading trunca-
tion errors are minimized, they are the most accurate
formulas with five and six evaluations of function.

k*=0.51
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