Invited Paper

MIMD Execution by SIMD Computers

MARTIN NiLssoN* and HIDEHIKO TANAKA**

SIMD computers cannot directly execute an MIMD language, but can interpret it by an SIMD interpreter.
Such an interpreter circumvents the SIMD restriction of only allowing a single instruction stream, by taking the
MIMD processes as its data (the MD of SIMD), while the interpreter itself is a single instruction stream. The
speed of an SIMD interpreter for MIMD programs will depend on the organization of interpreter loop, and the
optimal organization will depend on the MIMD program to be executed. We present a Markov chain
mathematical model of primitive instruction execution in the interpreter loop. We describe an adaptive
algorithm, based on this model, for dynamically optimizing the ordering of primitive operations of the inter-
preter loop. We also verify the adequacy of the model by experiments on a Flat GHC implementation.

1. Introduction

Parallel programming languages can be divided into
MIMD languages and SIMD languages. SIMD
languages are languages which allow only a single se-
quence of instructions, although each instruction may
operate on vectors of data. Examples of such languages
are Fortran 8x [1], with its array extensions, and *Lisp
[5]. MIMD languages, on the other hand, allow multi-
ple simultaneously executing processes, with indepen-
dent control flows, such as GHC [6, 2].

MIMD languages are easier to use than SIMD
languages, but SIMD computers are easier to build than
MIMD computers. One way out of this dilemma is to ex-
ecute MIMD programs on an SIMD computer by inter-
pretation: The SIMD interpreter executes a series of in-
structions, and every process waits for its next instruc-
tion to be executed. The interpreter could be expressed
as:

loop {

for all processes waiting for operation A, do A;
for all processes waiting for operation B, do B;
for all processes waiting for operation C, do C;

This code will efficiently execute processes which have
their instructions in this order, e.g. A, B, C, or A, C.
However, if a process would like to execute instructions
in the order C, B, A, the relative performance will not
be as good.

*Swedish Institute of Computer Science, Box 1263, S-164 28
KISTA, Sweden

**Department of Electrical Engineering, The University of Tokyo,
Hongo 7-3-1, Bunkyo-ku, 113 Tokyo

Journal of Information Processing, Vol. 13, No. 1, 1990

In this paper, we will analyse the effects of ordering
the instructions in the interpreter loop on worst case
and average performance. We introduce a Markov
chain model for instruction execution, and based on
this model, we will present an adaptive method for
dynamically optimizing instruction ordering. We will
also give some results for the algorithm applied to an ex-
perimental implementation of Flat GHC.

2. The Worst Case

As the goal of our optimization, we will try to
minimise the number of instructions executed. We do
not distinguish between fast and slow instructions; slow
instructions can be viewed as several fast instructions
always occurring in a sequence.

One of the first questions is: Can performance be im-
proved if some instruction occurs more than once in the
loop? If we want to minimise the worst case perfor-
mance, the answer must be no, as we can see from the
following ‘‘diagonal’’ argument: Consider the sequence
A, B, C, ... of instructions executed by this inter-
preter.

We will try to construct a process which runs as
slowly as possible: As the process’ first instruction,
choose any instruction, X. As the process’ next instruc-
tion, choose the instruction Y in the sequence A, B, C, . .
which occurs as far after X as possible. Since there are
N different instructions, this distance must be at least N,
and greater than N if and only if there are more than
one occurrence of some instruction between X and Y.
Repeating this argument shows that there can be at
most N—1 different instructions in the interpreter in-
struction stream between two instructions of the con-
structed process, for the process not to run slower than
1/N the speed of the interpreter.

The optimization problem is thereby reduced to
finding a permutation of the interpreter instructions

MIMD Execution by SIMD Computers

such that the expected delay is minimised.

3. A Markov Chain Model of Instruction Execution
As a first approximation, let us assume that instruc-

tions are executed with independent probabilities pi.

The expected delay of an instruction in some process is
the sum

D=3, pipd; M
if
where dj; is the distance between instruction i/ and j:
N if i=j
dy= j—i if i<j ?)
N—i+j if i>j
Unfortunately,
2. Pipidi= 2, pIN+ 3 pipjd;+d;)
i i i<j
=2 piIN+ Y, pipiN=N 3 pp; (€)
i i<j ij

which is independent of the order between instructions.

A more meaningful model must take into account the
correlation between instructions. We will use the follow-
ing Markov chain model: Let g;; be the probability that
the next instruction is j, given that the current instruc-
tion is i, and assume that g; depends only on i and j.
0=(q;) then becomes the transition matrix for a
Markov chain, for which the following three useful
identities should hold:

=1, @
J

which says that every instruction is followed by some
other instruction. This is true in our case, if we think of
a process terminating instruction as followed by the first
instruction of some other, new process.

Zpi:ls (5)

which says that instructions 1 to N comprises the full in-
struction set.

Z DPiqi;=Dj, ©)

which says that the probability that the next instruction
is j, equals the sum of probabilities of instructions i,
times their respective transition probabilities g;;.

A useful property is that the vector of instruction pro-
babilities P=(p;) is an eigenvector of Q, QP=P.
Another useful property of ergodic Markov chains is
that the rows of the matrix Q* converges to P as k ap-
proaches infinity.

The average delay can now be expressed

D= Z Diqijdij. ™
ij

How does this ordering compare with exactly the
reverse order? Let D, be the delay of the reverse order-

59
ing. Then
D+D,= Zj] pigi(dy+d;)
= ; piqyN+ Z’J pigiN=N+N 2 i ®)

which is independent of the permutation of the instruc-
tions.

This is a very useful result: First of all it tells us that if
a certain ordering produces the best expected delay,
then the reverse ordering produces the worst. The
delays of an ordering and its reverse ordering are sym-
metric around

N
3 (1 + E piqii))

Since we showed in section 2 that the worst case cannot
be worse than N, the best case cannot be better than

DbcstSN(1+Zpiqii) =N=N 3 pqi (10)

The sum expresses the probability that an instruction is
followed by itself. We can see that if this value ap-
proaches one, the delay worsens quickly towards the
worst case, N.

We can illustrate this result through an example of a
sequence where instructions are followed by themselves
with high probabilities: The sequence A, A, A, A, B, B,
B, B cannot be executed in less than seven cycles,
regardless of the ordering of interpreter instructions. If
this sequence is changed into A, B, A, B, A, B, A, B, it
can be executed in four interpreter cycles.

Let us now see what happens if we switch the order of
two adjacent instructions a, b in the interpreter. The ex-
pected delay is

D= Z Piqid;
if

=3 Piqudiat+ Y Pigudn

i#ab izab

+ 3} Paqodyt _Zb D6y
J#a,

i#ab
+PaGualoat Poqoodos
+ PaQas8at Doqbalsat Z p,-Qijdij a1
b

ij#a,
The expected delay for the interpreter with instructions
a and b interchanged is

D’=’Zj}piqud& (12)
where, for i, j#a, b,
di,=dp, diy=di, dyy=d,, diy;=d,; (13)
and
di' =d;=N (14)
$O

D-D'= Z Piqi(d;—di)
i

= PiGia(dia— dis) + qin(din— d}))
b

i*a,

+ > PuGuldy—di)+ 3 Po@ri(dy—dy)

j#ab jzap
+ DaGub(das — da) + PrGva(dpa— dia) (15)
Using the fact that
die—di,=dip—dp=—1 (16)
and, similarly,
dp—djp=1, dip—di=1, dpj—dp;=—1 a7
equation (15) becomes

D—-D'= 3} pigiv—4qi)
b

i#a,

+) (PaGej=—Psqs)

j#ab
+DuGar(2—N)+Ppqsa(N—2) 18)

By the identities (4)-(6) for p;, and gy, (18) can be
simplified to

D—D’=N(Pvqsa=—Paqav) 19)

This expression depends solely on the difference be-
tween the probabilities of instruction @ following in-
struction b, and instruction b following a. This impor-
tant property is the theoretical basis of our algorithm.

4. An Adaptive Ordering Algorithm

Equation (19) is so important because it enables us to
devise a very simple rule for improving the instruction
ordering: We can switch adjacent instructions if the cor-
responding probability difference becomes negative, so
that the expected delay monotonically decreases.

It is easy to show that this method will always con-
verge: If we cannot find any two elements to switch, we
obviously already have a minimum. If we can find two
such elements, the expected delay will decrease. Since
there are only a finite number of permutations, we must
reach a minimum within this number of exchanges,
since no permutation will be repeated during the search.
Note that any permutation can be produced by a
number of exchanges of adjacent elements.

Given p; and g, an algorithm for optimizing the in-
struction ordering is the following:

Algorithm 1—Static Optimisation

« Start with a random permutation. Compare the ex-
pected delay with the reverse order permutation, and
select the permutation with minimum expected delay.
« Iterate through all elements, comparing adjacent
elements, and exchanging them if this lowers the ex-
pected delay.

The first step of the algorithm ensures that the ex-
pected delay is always better than (Dyors + Does) / 2.

The assumption that p; and g; are known in advance
is excessively strong. These probabilities will in any case

M. NiLssoN and H. TANAKA

vary as the executed program changes. However, we
can estimate probabilities dynamically as we execute the
program: If we keep a table f; which contains the
number of transitions from instruction i to j, and is up-
dated on every instruction execution the expected value
of f;, after n instructions, will be

Ji=npiq; (20)
Thus, the expected value of the difference
Si=Fi 21

is proportional to D—D’, and immediately tells us
whether instructions / and j should be exchanged.

Thanks to this simple form of the ordering test, it can
be implemented costing the interpreter very little
overhead.

Unfortunately, we cannot keep the first step of
algorithm 1, since it is impossible to find out which is
the better of an ordering and its reverse, without fre-
quency data. However, according to our experience, the
algorithm normally converges quickly to a good order-
ing, regardless of the initial ordering, so it seems that
the first step is not so important.

For an adaptive version of the algorithm, we should
reset the frequency table to zero at regular intervals, so
as to make sure that changes of the program are
reflected more quickly in the frequency table.

There is one important problem we have not dealt
with: What if f;;—f;=07? This happens often initially in
the algorithm, when fis zero everywhere, and can trap
us into a cycle of local minima far from the optimal
ordering: If we exchange instructions i and j, it can hap-
pen that we will only exchange one particular instruc-
tion with all the other instructions in turn. If we don’t
exchange, it can happen that no instructions are ever ex-
changed.

In order to avoid such problems, we exchange / and j
with probability 1/2, if f;;~f;=0. This rule turns out to
work very well in practice. Our final version of the
algorithm is the following:

Algorithm 2—Adaptive Optimization

« Start with a random permutation. Keep a two-dimen-
sional table of frequences of instruction transitions, f;;,
initially zero.

+ During execution, increment fj; for every / to j transi-
tion.

« After an instruction in the interpreter loop has been
executed, check whether that instruction should be ex-
changed with the instruction preceding it, by checking
the sign of f;;—f;. If this difference is zero, exchange the
elements with probability 1/2.

5. Results and Discussion

We have applied the adaptive algorithm on a small
pseudo-parallel SIMD interpreter for Flat GHC, ex-

MIMD Execution by SIMD Computers

ecuted on a conventional computer. We first compile
Flat GHC programs down in stages, in the same way as
in [3, 4], into a low-level intermediate language con-
sisting of 14 different instructions, which is sufficient
for executing all of Flat GHC and allows fairly accurate
testing of the algorithm.

For two traditional benchmarks, concatenate and 4-
queens, we measured a distinct speed-up by adaptive
reordering: The worst and best number of interpreter
cycles for concatenate differed by a factor of about 2,
while the number of cycles for 4-queens differed by
about 20%. Instruction orderings seem to converge rap-
idly towards a good ordering, even if the initial ordering
is not very good.

We have not solved the problem of the ordering get-
ting stuck in a local minimum. So far our tests indicate
that this is not a serious problem. However, it may be a
good idea to stop execution at regular intervals and
reshuffle the instructions.

6. Conclusions

Assuming best worst case, and a Markov chain model
of instruction execution, we have deduced some in-
teresting properties of SIMD interpreters for MIMD
languages:

» The expected instruction delay D for an ordering,
and for its reverse, D,, satisfy D+D,=N+N %, p;qii
and N 2, p,gs<D<N.

+ A good heuristic for reducing the delay is to exchange
two adjacent elements ¢ and b if the frequency
difference of the transitions of @ to b and b to a is
negative.

61

Based on these results we have constructed an adap-
tive algorithm for optimizing the instruction order.

7. Acknowledgments

Discussions with members of the Special Interest
Group of the Inference Engine at the university, and
with members of the Parallel Programming Systems
Working Group at ICOT have been helpful and
stimulating. We are grateful to Takeshi Shimizu of
Tokyo University, who was very helpful in preparing
this manuscript.

This work was supported by the Japanese Ministry of
Education, and the Swedish National Board for
Technical Development.

References

1. American National Standards Institute: American National Stan-
dard for Information Systems. Programming Language Fortran. S8
(X3.9-198x). Revision of X3.9-1978. Draft S8, Version 99. New
York, April (1986).

2. Furukawa, K. and MizocGucHi, F. (Eds.). The Parallel Program-
ming Language GHC and its Applications. Kyoritsu Publishing Co.
Tokyo, 1987. (In Japanese).

3. NiLssoN, M. and TANAKA, H. Massively Parallel Implementation
of Flat GHC on the Connection Machine. In Proc. Fifth Generation
Computer Systems, ICOT, Tokyo, Japan. November, 3 (1988), 1031-
1040.

4. NILSSON, M. Parallel Logic Programming for SIMD Supercom-
puters and Massively Parallel Computers. Doctorate Thesis in Infor-
mation Engineering, University of Tokyo, Japan. March (1989).

5. Connection Machine Model CM-2 Technical Summary. Thinking
Machines Corporation, Technical Report 87-7. April (1987).

6. UEDA, K. Guarded Horn Clauses. Doctorate Thesis in Informa-
tion Engineering, University of Tokyo, Japan. March (1986).

(Received June 2, 1989)

