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The Reachability and Joinability Problems
for Right-Ground Term-Rewriting Systems

MicHIo OYAMAGUCHI*

A term rewriting system is said to be a right-ground system if no variable occurs on the right-hand side of a
rewrite rule. This paper shows that both reachability and joinability are decidable for right-ground term

rewriting systems.

1. Introduction

The reachability problem for term-rewriting systems
(TRSs) is the problem of deciding, for a given TRS E
and two terms M and N, whether M can be reduced to
N by applying the rules of E (i.e., M—*N). It is known
that this problem is undecidable for general TRSs, but
decidable for ground TRSs [7] and for left-linear and
right-ground TRSs (4]. (See Deruyver and Gilleron [9]
for a related discussion.) Here, a TRS is left-linear if no
variable occurs more than once on the left-hand side of
a rule, and right-ground (resp., left-ground) if no
variable occurs on the right-hand (resp., left-hand)
side. A TRS is a ground system if it is both left-ground
and right-ground.

In this paper, we extend the above result by showing
that reachability is decidable for right-ground TRSs
(that is, that the left-linearity restriction can be
removed).

The joinability problem for TRSs is the problem of
deciding, for a TRS and a finite set of terms M,,- - -, M,
whether My, - -, M, can be reduced to some common
term (i.e., 4{My,---, M}). This paper shows that
joinability is also decidable for right-ground TRSs.
This result is an extension of the results on joinability
of left-linear and right-ground TRSs given by
Oyamaguchi [5] and Danchet et al. [8].

Reachability and joinability for non-linear TRSs are
closely related: if a term can be reduced to an instance
of the non-linear left-hand side of some rule, then the
subterms matching the occurences of a variable appear-
ing more than once on the left-hand side must be
joinable. Thus, to check reachability between two
terms, we need to check the joinability of a set of other
terms (since the reachability may be attained by using
rules with non-linear left-hand sides). Conversely, to
check joinability we obviously need to check the
reachability of pairs of terms. (Note that | {M, N} iff
3Q0: M—*Q AN—-*Q, so it is easy to show that the
reachability problem is reducible to the joinability prob-
lem.)
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In this paper, we investigate this close relationship
and show that each instance §=(M—*N) of the
reachability problem is determined by some other in-
stances 6, - -, 6; of the reachability problem and in-
stances 8,41, - -, 0, of the joinability problem. In other
words, deciding whether 0 is true (i.e., M—*N) is
equivalent to the problem of deciding whether all
6y, -+, 8, are true. A similar result holds for each in-
stance of the joinability problem. Using these results,
we show that for each instance 8 of reachability (and
also of joinability), the shortest length of reduction se-
quences ensuring reachability (and also joinability) is
bounded by some fixed constant depending only on the
sizes of TRS E and of M, N if =(M—*N) (and also of
M, -, M, if 6=1{M,,- - -, M}). It follows that both
reachability and joinability are decidable for right-
ground TRSs.

Reachability and joinability are also closely related to
the Church-Rosser property (i.e., confluence). For
ground TRSs and for left-linear and right-ground
TRSs, the decidability of the former problems
(reachability and joinability) was used to show the
decidability of the confluence problem [3,5]. We
therefore strongly conjecture that the results of this
paper will be also used to prove the decidability of the
Church-Rosser property for right-ground TRSs, which
remains open.

Termination for right-ground TRSs was shown to be
decidable by N. Dershowitz [1]. In view of these results,
right-ground TRSs seem to have many good properties.
However, some undecidable problems exist. The com-
mon ancestor problem is that of deciding, for a TRS
and two terms M and N, whether there is a term that
can be reduced to both M and N. This problem has been
shown to be undecidable for right-ground TRSs [6],
while it is decidable for ground TRSs [3] and also for
left-linear and right-ground TRSs. The word problem
(whether M(—U<)*N for two terms M and N) is also
undecidable for right-ground TRSs. These results show
a gap between right-ground TRSs and left-linear and
right-ground TRSs (and also a gap between non-left-
linear and left-linear TRSs).

The remaining part of this paper is organized as
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follows: Section 2 is devoted to the standard definitions
used in this paper. The close relationship between
reachability and joinability for right-ground TRSs is ex-
plained in Section 3. In Section 4, we show that both
reachability and joinability are decidable for right-
ground TRSs.

2. Preliminaries

We use ¢ to denote the empty string and ¢ to denote
the empty set. For a set Y, we let | Yl be the cardinality
of Y. We use A4 to denote the set of positive integers
and A to denote A4 U {0}.

The following definitions and notations are similar to
those in Huet [2] and Oyamaguchi [3]. Let X be a set of
variables and let F be a finite set of operation symbols
graded by an arity function a: F— 4. Let T be the set
of terms constructed from X and F.

For a term M in T, we use O(M) to denote the set of
occurrences (positions) of M, and M/u to denote the
subterm of M at occurrence u, and M[u+ N] to denote
the term obtained from M by replacing the subterm
M/u by N. Let sub(M) be the set of subterms of M,
that is, let sub(M)={M/ulue @(M)}. This definition
is naturally extended to that for subsets of 7: sub(I")
=Upye r Sub(M) for r'eT.

Example 1. Let M be a term f(g, x) where f, ge F
and xe X. Then, O(M)={g, 1, 2}, M/1=g, M/e=M,
sub(M)=1{M, g, x} and M[2-g]=1(g, 9).

Let 0,(M) be the set of occurrences of variable xe X
in M, that is, let 0,(M)={ue O(M)IM/u=x}. Let
Ox(M)=U,c xO0.(M), the set of variable occurrences.
Let V(M) be the set of variables occurring on M. We
use h(M) to denote the height of M and |M| to denote
the size of M. We use root(M) to denote the operation
symbol of a term M at occurrence &, that is, the top sym-
bol.

Example 2. For the term M=f(g, x) of Example 1,
Ox(M)=0,(M)={2}, V(M)={x}, h(M)=2, IMi=3
and root(M)=f.

The set of occurrences O(M ), where Me T, is partial-
ly ordered by prefix ordering: u<v iff 3Iw: uw=v. If
u<v and uv, then u<wv.

A term M is said to be linear if no variable occurs
more than once in M, and a ground term if there is no
variable occurring in M, that is, if V(M )=4¢.

A rule a—f is a directed equation over terms where
a#fB, V(B)S V(a) and aé X. Rule a— S is said to be a
right-ground rule if £ is a ground term.

A term rewriting sytem (TRS) is a finite set of rules
E={a;—=p:|1<i<n} for some n>0, where a;, fic T. A
substitution is a mapping . X— T, and ¢ is extended to
a mapping from terms to terms: o (fM, - - - M)=fa(M,)
-+ -0(Mp) for fe F, where m=a(f). A term M is reduc-
ed to N at occurrence u iff M/ u=0o(a) and N=M[u+~oc
(B)] for some substitution ¢ and rule a—fe E. In this
case, M/ u is called the redex and u called the redex oc-
currence of this reduction. We denote this reduction by
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M —#> N. In this notation, ¥ and E may be omitted (i.e.,
M- N) and — is regarded as a relation over 7. Let =+
and —* be the transitive closure and the reflexive-tran-
sitive closure of —, respectively. Let —° be the identity
relation and let =*=—--—-%"! for k>0. A term M is
reachable from N iff N—*M.

A set on n terms M,,---, M, is joinable, denoted
HM,,- -+, M.}, if there exists a common term N such that
M—~*Nforall M;, 1si<n. We use {M,,---, M,} >*N
to denote M;—*N for all M, 1 <i<n.

Definition 1. Let y be a reduction sequence M, >
M- > M,. Then, y is called a k-step reduction se-
quence and the length of y is k, denoted lg(y)=k. If
there is no € in {u,,- - -u.}, then p is said to be rop-in-
variant. In this case, root(Mo)=root(M;). We use y:
M,—*M, to show that y is a reduction sequence from
M, to M;.

Notation. For a term M, let Y={u), ', up-y,
u,} SO(M), where u;£u; and u;£u; (i.e., u; and u; are
disjoint) for 1=i<j=<sn. We use Mu;<N,: -,
Un-1Ny-1, u,+<N,] to denote Mu<N, -,
Up-1 <Ny ))[u,<N,]. We also use Mfu;<N,, 1 =i=<n]
to denote this term.

Henceforth, we are dealing with a fixed right-ground
system E={q;~B:|1 <i=<no} such that every o;—f; is a
right-ground rule, 1<i=<n,. Let Lg={o;l1 <i<ne} and
Re={Bi|1<i<nq}. (Note that R is the set of ground
terms f;.) Let ar be the maximum number of occur-
rences of variables appearing in «o;e Lg, that is, let
ag=max{ll0,(a)ll ;e Lg, xe X }. We define the size of
system E by 2o s e(lail +18:1), denoted size(E).

Definition 2. Let A:(M)={o(a)lac L and o:
X—sub({M } URg)}, that is, let each element of 4(M)
be a redex obtained by a mapping ¢ from X to
sub({M } URp).

Notation. We denote an instance of the reachability
problem by (M, N )z, where M, Ne T, and an instance
of the joinability problem by {M,,---, M}, where
M,,- -, Mye T. (We will use M— *N to denote (M, N)z
and {{M,, - -, M,} to denote {M,,- - -, M,}, when con-
fusion does not occur.)

Definition 3. We denote the shortest length of
reduction sequences from a term M to N by ming(M,
N). That is,
if M-*N

otherwise

We will use min (M—*N) or min (M, N)z) to denote
ming(M, N). A reduction sequence y: M—-*N is
shortest if lg(y)=min (M—*N). Similarly, for a set of
terms M,,- - -, M (where k= 1), we define the minimum
of the sums of the lengths of k reduction sequences en-
suring the joinability by min,({M,, - -, Mi}):
min,({M,," - -, Mk})

. min {nIM—-"N}
ming (M, N)= (oo

k
min {3, min M—~*N)|{M,,- -, M} >*N}
i=1
if LMy, -, My}
o) otherwise
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Here, we allow M;=M,; for some i, j where i#j. Thus,
the set {M,,---, M,} is assumed to be a multi-set. We
will use min ({{M, - - -, M;}) or min {M,,- - -, Mi} ) to
denote min,({M,- - -, M}).

Definition 4. We use Set(R) and Set(J) to denote
the sets of instances of reachability and joinability, re-
spectively. That is,

Set(R)={(M, N)zx|M, Ne T and min (M—*N)< ©}
Set(J)={{M,, -, Mi},\k=1, Mie T, 1<i<k,
and min ({{M,," - -, M })< 0}

Let Set(R, J)=Set(R)USet(J). If (M, N)ze Set(R),
then (M, N)z is said to be true. Similarly, 6={M,,- - -,
M.}, is true if e Set(J).

3. Relation Between Reachability and Joinability

In this section, we will investigate the close relation-
ship between reachability and joinability. We will show
that each instance € of the reachability problem (and
also of the joinability problem) is determined by some
other instances 6, - - -, 6; of the reachability problem and
6.+1," - -, 6, of the joinability problem, namely, that 6 is
true iff all 6,,---, 6, are true (i.e., min (8) < o0 iff min
(6))< 00, -+, min (6,) < ). Using this result, we will
define a replacement function & such that @(6)
={8,,---, 6,}, that is, &: Set(R, J)—25% D In other
words, @ defines the replacements of instances of
reachability and of joinability. See Def. 4 for Set(R, J).

In the next section, this function @ will be used to
define a new reduction system (TRS) satisfying 6= 6’ iff
6’ € @(6). Our main result, the decidability of reachabil-
ity and of joinability, will be obtained by using the
noetherian property of =.

Let & and &, be subfunctions of & satisfying P(8)
=@(f) for fe Set(R) and &b,(6)=DP(H) for fe Set(J).
That is, @z (resp. @,) is the same function as ¢ when
the domain is restricted to Set(R) (resp. Set(J)). We con-
struct first @z and then @,.

To define the function &y for reachability, we start
with the following Lemma 1, which is a technical
lemma for Lemma 2 and deals with a special case of
reachability. Let y be a reduction sequence from a term
M to a redex N=0o(a) (Where ae Lgand 6: X—Tis a
mapping). Then, the reductions of y can be classified
into two parts, of which one corresponds to the con-
struction process of the non-variable part of «, and the
other corresponds to the construction processes of ¢ (x)
’s for variable xe V(a). Thus, we can rearrange the
order of the reductions of y so that the construction of
o(x)’s may follow the construction of the non-variable
part of a. Hence, the following lemma holds.

Lemma 1. Let y: M=M,—> M, -- > M,=N be
a k-step reduction sequence where N=g(«) for some
ae Lg and mapping : X—T. Let Ox(a)={uy, - -, Un}.
Then, there exists a k-step reduction sequence o:
M—*Q—*N such that

M a N
a a
—* —y*
Q a{xi)

Fig. 1 Reduction sequence & of Lemma 1.

(i) QO=caluy<Qi, -, u,—Q,, where Q,---,
Qe sub({M } URp), i.e., Qe Ax(M), and

(i) Q—*N/u=0c(a/u), 1<i<n

Proof. For each variable occurrence u;e Ox(cx),
1<i=<n, if there is a reduction in y properly including
the occurrence u;, that is, if 3v;: v;<u,, then let the last
reduction of y including u#; be the /-th reduction of
y, that is, let /=max {jlv;<u;, 1=<j=<k}. Then,
M, [ uije sub(Rg) holds, since TRS E is right-ground. In
this case, let

Q,-=M,‘/u,-e sub(RE)
Otherwise (if vo;: v; ¢ u;), let Q;=M/u;e sub(M). Thus,

Qicsub({M}URy), I1<i<n 3.1
By the definition of Q;, obviously
Q~*N/ui=a(a/u), 1<i<n 3.2)

holds if we choose the construction process of o(a/u)
from y. Hence, by altering the order of the reductions
of y so that the construction of a(a/u), 1 =i<n, may
follow the construction of the non-variable part of «,
we obtain a k-step reduction sequence

& M=*a[u, Q1 -, U= Q.—~*N

where N=a[u,;<N/u,, -+, u,~N/u,] (see Figure 1).
Let Q=calu;<Q, - -, u,—Qy]. Then, Q satisfies condi-
tion (i) of this lemma from Eq. (3.1) and condition (ii)
holds from Eq. (3.2), so this lemma holds. ©

We can use Lemma 1 to obtain the following Lemma
2, which is the key lemma for obtaining the replacement
function ®x. It shows how to compute min (M—*N)
(see Def. 3) by using the minimum values min (6)’s of
other instances 8’s of reachability and of joinability
when M—*N.

Lemma 2. Let y: M=M,—>M,---—>M,=N be a
reduction sequence from a term M to N, where /,(y)
=k>0 is shortest, that is, where min (M—*N)=k.
Then, the following conditions (i) and (ii) hold.

(i) If y is top-invariant, then

(@) min M—*N)=Z", min M~ *N)
where M=fM,- - -M, and N=fN,- - -N, for some fe F
and M;,, Ne T, 1<i=n.

(i) If y is not top-invariant, that is, if 3i(1 <i<k):
M:=0(a) and M;,,=f, where a—fe E and 0: X— T is
a mapping, then there exists a term Qe Az(M) satisfy-
ing the following conditions (b) and (c):

(b) min (M—*N)=min (M—*Q)+min (Q—*8)

+min (B—-*N)

(©) min(Q=*A=1+ > min({Q/ulue O(x)})

xe Via)



350

(Here, Q=a[u+Q/u, ue 0x()] holds.)
Proof.
(i) The proof is obvious.
@ii) Since the length of y is shortest,
min (M—*N)=min (M- *M))+min (M, M,.,)

+ min (M,‘J,]_’*N) (33)
holds. Consider the subsequence y: M=
My—M,---—>M;=a(a) of y. Then, by Lemma 1, there
exists a reduction sequence d,: M—*Q—*M, having the
same i steps such that

) Q=calu-Q), 1=j=snle 4¢(M)
where {ui," -, u,}=0x(x) and Qe sub({M} URy),
1<j<n, and

an Q—*M/u=c(a/u), 1<j<n
Note that y, is shortest, since y is shortest. Thus, 9, is
also shortest, so

min (M—*M)=min (M—*Q)+min (Q—*M) (3.4)
From Egs. (3.3) and (3.4), we have
min (M—*N)=min (M- *Q)+ min (Q—*M))
+min (M,— M. \)+min (M;+,—*N)
(3.5
Note that
min (Q—*M,,,)=min (Q—*M)+min (M~ M., )(3.6)

since obviously the left-hand side <the right-hand side,
and if the left-hand side < the right-hand side, then we
would have a reduction sequence from M to N of
length < min (M—*N) from Eq. (3.5), a contradiction.
Hence

min (M- *N)=min (M—*Q)+min (Q—*M..,)
+min (Mi+1—*N)
holds, from Eqs. (3.5) and (3.6). Thus, condition (b) of

this lemma holds, since M;,,=8.
To show that condition (c) of this lemma holds, let

= >, min ({{Q/ulue 0.(x)}) 3.7

xe V(a)
Then,
min (Q—*M) =1 (3.8)
holds, since the subsequence ¢’ from Q to M;=a(«) of
J, is shortest and ensures joinability {{Q/ulue 0.(c)}

for all xe V() by the above condition (I7). Thus, from
Eqgs. (3.6) and (3.8) and since min (M,=>M,,)=1,

min (Q—’*Mi+1)21+ 1

Conversely, from Eq. (3.7), there exists an /-step reduc-
tion sequence from Q to o’(«) for some mapping o”:
X—T. Hence, we have

min (Q—*M;;\)<min (Q—*a’'(@))+1=</+1

(Note that M,,,=f and «a—fBecE.) Thus, min
(Q—*M,,)=I+1, that is, condition (c¢) of this lemma
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holds. O

Using lemma 2, we can now define the replacement
function @g: Set(R)—254%-/) a5 follows:

Replacement Function ®x.

Let (M, N)ze Set(R), that is, let min (M—*N)< o0:
N be reachable from M. Then, @z((M, N)g) is defined
iff M##N. Let M= N. If there exists a shortest reduction
sequence y: M—*N such that y is top-invariant, then

Dr(M, N)R)={(M;, N)z|ll<isn, M=fM,---M,,
N=fN, - -N, for some fe F}
where condition (@) of Lemma 2 holds. Otherwise,

Bp((M, N)r)={M, Q)r, (B, N)r}
U U V(zx){{Q/u lue mx(a)}l})

where a—fe E and Q satisfy conditions (b) and (c) of
Lemma 2. (Here, Q=ca[u<Q/u, uec Ox(c)le Ar(M)
where Q/ue sub({M } URg).)

Then, the following Lemma 3 holds for &;.

Lemma 3. Let 6=(M, N)ze Set(R), that is, let min
(f)< oo. Then, the follgwing conditions (i) and (ii)
hold:

(i) If min (8)>0, then ®(6) is defined and Pr(0)
#¢. Further,

min () <1+

&€ Pr(6)

IPR(O) <l

min (8’)

where ly=max {/, L}, lL=max {a(f)lfe F} and
L=2+max {IIV(a)lllae Lg}.

(i) If min (8)=0, then ®x(6) is undefined.

Proof: Obvious from Lemma 2 and the definition of
dr. D

Note that we do not explain how to inplement ®g.
However, our arguments require only the existence of
the function @, which is ensured by Lemma 2.

Next, to define the other replacement function @, for
joinability, we need the following Lemma 4.

Lemma 4. Let min ({{M,,- - -, Mi})< 0, that is, let
{M,,- -, M} be joinable where k>1 and M;#M; for
some i, j (1<i<j=k). Let the k shortest reduction se-
quences to some common term N be y;: Mi=*N,- -,
Yi: Mi—*N, where min ({{M,, - - -, M=k, lg(y).

If all y; is top-invariant, 1 <i<k, then

(d) min(l{M,,---,Mk})=2}'=|min(l{M./j,~“,
M, /j}) where n is the arity of root(M,)= - - - =root(M,).

If some p; is not top-invariant, 1<i<k, then there
exists fe R such that

(¢) min ({{M,, -, M})

=min (M;~*g)+min (W {M\, -, Mi_\, B, Mi+,, -,
M}

where min ({{M, - -, M,})=min (M,—*B)>0 (so that
min ({{M}, -+, M,})>min ({{M,, -, Mi_, B,
My, -, Mk}))

Proof. If all y; are top-invariant, 1 <i<k, then ob-
viously (d) holds. If some y; is not top-invariant,
1<i<k, then some fe Rr appears in y;, that is, y;
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M;—*B—*N, since TRS E is right-ground. Hence,
min ({{M,,- - -, M})

=min (M~ *f)+min ({{M\, -+, Mi_\, B, Misy, -,
M}

where min (M~ *8)>0. Thus, condition (¢) holds. ©

Using Lemma 4, we now define the replacement func-
tion @,: Set(J)—25® /) a5 follows:

Replacement Function &,.

Let {M,,---, M},eSet(J), that is, let min
(M., -, My})< ©: {M,,- - -, M,} be joinable. Then,
&,({M,,- - -, Mi})) is defined iff M;=M; for some i, j
where 1 <i<j=<k. If there exist shortest reduction seq-
uences y;: Mi—*N, -, yi: My—*N (to some common
term N) such that min (1 {M,,- - -, M, })=Z%, lg(y)) and
all y/’s are top-invariant, 1 <i<k, then

&,({M\,- -+, Mi}))

={{M\/j,- -, Mi/jt,I1<j=n,
n is the arity of root(M))}

where condition (d) of Lemma 4 holds. Otherwise,

S,({My, -+, Mi})
={(M, ﬁ)k} U {{Ml" Moy, By My, Mi}s}

for some i (1 <i=<k), where S R satisfies condition (e)
of Lemma 4.

Then, the following Lemma 5 holds for @,.

Lemma 5. Let 8={M,,-- -, M}, Set(J), that is,
let min (0) < . Then, the following conditions (i) and
(ii) hold:

(i) If min (8)>0, then &,(0) is defined and ®,(6)
#¢. Further,

min ()= Y, min (8)
8'e DD

Il d,(0)ll < max {h,2}<h

where /; and /, are the constants defined in Lemma 3.
(ii)) If min (6)=0, then &,(6) is undefined.
Proof: Obvious from Lemma 4 and the definition of
&,. O

4. Decision Procedure
In the previous section, we introduced the replace-
ment function @: Set(R, J)—25'® ) such that
Dr(0) if O Set(R)
@,(6) if 8 Set(J)

In this section, by using this function &, we introduce a
reduction system (i.e., a ground TRS)=over Set(R, J)
as follows:

D(O)= (

iff 026 ¢(01)

We first show that this system = is noetherian, that is,
that no infinite sequences of =exist. Next, we use this
noetherian property of = to show that both reachability
and joinability are decidable for right-ground TRSs.

01=‘-’02

For this purpose, we define the sizes of the instances
of reachability and of joinability as follows:

Definition 5. For fe Set(R, J), size(f) in A ¢X Ao
is defined as follows:

size((M, N)g)=(min (M—*N), |IM})

size({M,," - -, Mi} y=(min({{M,," - -, Mi}), IM\1+---
+ M)

Definition 6. An ordering>on 44X A is defined
by (n, k)>(n’, k') <> (n>n’)V(n=n'Ak>k’)

Note that the ordering >is noetherian [2-4]. We are
now ready to show that the above system=is
noetherian, that is, that for any 6e Set(R, J), if
8’ e ®(60), then size(#)>size(6’) holds. This means that
all sequences of replacements=(induced by @) from
any instance of reachability or of joinability will even-
tually be reduced to the elements of form (M, M)z or
{M,---, M},. (Note that @ (M, M)g) and ®({M,- - -,
M })) are undefined by the definitions of &% and of &,,
so further replacements are impossible.)

Lemma 6. Let 0, 6’ e Set(R, J) where 8’ e &(6).
Then, size(d)>size(8’) holds.

Proof. either (i) e Set(R) or (ii) fe Set(J) holds.

(i) The case where §=(M, N)re Set(R):

If 9’ =(M/i, N/i)re ®(6) for some ie A, then by con-
dition (a) of Lemma 2,

min (f)=min (§’) and IMI>IM/il

hold, so size(8) > size(8’), as claimed.

The remaining cases are §’=(M, Q)r, (B, N)r and
{Q/ulue 0.(x)},; where xe V(). Here, a—fe E and
Q satisfy conditions (b) and (c) of Lemma 2. Conditions
(b) and (c) ensure that

min (M—*N)>min (M—*Q),
min (M—*N)>min (f—*N),
min (M- *N)>min ({Q/ulue ¥ .(c)})
Thus, min (8)>min (') holds, so size(8) > size(6’).
(ii) The case where 8={M,,---, M},e Set(J),

where k=2: If 9 ={M,/j,- - -, Mi/j },€ ®&(B) for some
je A, then by condition (d) of lemma 4 we have

k k
min (§)=min (§') and 3 IM;1>3] IM/jI
i=1 i=1

Thus, size(6) > size(#’), as claimed. The remaining case
is either 8’=(M;, B)r for some i (1<i<k) or §'=

{My, -, Mi_\, B, M1\, - -, M}, where condition (e)
of Lemma 4 holds. Condition (e) ensures that
min (4{M,,- - -, Mi})=min (M,~*p) 4.1

min ({{M,," - -, My})

>min (UM, -+, Mic1, B, Misy,- -+, Mid) (4.2)
If @' =(M,, B)r, then size(0)>size(8’), from Eq. (4.1)
and since ZX, IM;| > M. If 0'={M,, -, M, B,
M.\, -+, M}, then obviously size(6) >size(6’), from
Eq. (4.2). Thus, this lemma holds. ©



352

From Lemma 6, =is noetherian. (Note that 8= ¢’ iff
6’e @(0).) We now explain what this noetherian proper-
ty means. Let fe Set(R, J), where 0<min ()< 0.
Then, &(0) is defined and &(6) # ¢, from the definition
of &. (Note that min (6)=0 iff 6=(M, M)z or
0={M,---, M}, for some term M.) Note that min (8’)
< oo holds for any 8’ @&(6), since min (') <min (6)
holds because size(8’)<size(d). If min (8’)>0, then
@(0’) is also defined and @(6’) # ¢. Thus, any sequence
of = from 6 eventually goes to an element 8” e Set (R,
J) such that min (8”)=0, since=is noetherian.

Next, we will give an upper bound on the maximum
length of the possible sequences of=from a given
fe Set (R, J). To show this, we need the following
definitions.

Definition 7. For (M, N)ge Set (R), we
Sr((M, N)g) and S,((M, N)g) as follows:

Sr((M, N)R)={(P, P )| Pc sub({M} URp),
P’e sub(ds(M) U {N} UR)}
SUM, N))={{Q,, -, @} 10<k=as,
Qie sub({M} URy), I1<i<k}

(Here, ag=max {l0,(c)lllce Lg, xe X }. See Def. 2 for
Ag(M).) Note that both Sz((M, N)r) and S,((M, N)z)
are finite sets.

Definition 8. Let ;e Set(J), where I'={M,, - -,
M,}. Then we define Sx(I7) and S,(I") as follows:

Se(I)={(P, Q)& Pe sub(I” URy)},
Qe SUb(UM,e rde(M) U Rp)}
S,(I)={0.,- -, Q.},10<n<=max (as, k),
Qie sub(I" URg), 1<i<n}

Note that both Sk(I)) and S,(I')) are finite sets.

We now prove the following Lemma 7, which says
that for any 8 Set(R, J), if 8’ is reachable from 6 (i.e.,
if = *0’), then 8’ € Sz(6) U S,(8) holds. (It follows that
the length of any sequence from 6 to 8’ is bounded by
ISR USOI for each Oe Set(R, J), since=is
noetherian.)

Lemma 7.

(i) Let 6=(M, N)ze Set(R). If 8" is reachable from
0 (i.e., if 6=*"), then 6’ Sx(6) U S,(f) holds.

(i) Let I,e Set(J) where I'={M,,---, M} for
some M;e T, 1 <i<k. If 8’ is reachable from I (i.e., if
I;=*¢’), then 8’ e Sx(/)) U S,(I')) holds.

Proof. The proof is straightforward (see Appendix).

From this lemma, the maximum length of the possi-
ble sequences of = from a given e Set(R, J) is bounded
by a fixed constant, namely, IISg(8) U S,(8)Il, because
the noetherian property of = ensures that for any reduc-
tion sequence of = from 6, each element in Sg(8) U S,(6)
appears at most once. Thus, we have the following
corollary.

Corollary 1. Let fe Set(R, J). Then, if §="6" for
some 6'e Set(R, J), then n<m, holds. Here, my
=lISx(HUS,OI. O

define
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We are now ready to give an upper bound of min (6)
for a given fe Set(R, J). We define a tree J () con-
structed from 6 as follows:

(i) The root of  (8) is labelled 6.

(ii) Each node in 7 (0) is labelled with some 6’ in
Sr(6) U S,(0) and has children with labels 6{,- - -, 6; iff
@(¢’) is defined and ®(8')=1{6], -, 6i}.

For example, if &(8)=1{0,, 6,}, ®(6,)=1{6;} and min
(6:)=min (6;)=0, then J (6) is given as follows:

7N\
~7(‘9)=9|1 0,

0

(Note that every leaf of 7 (6) has a label §’ such that
min (0')=0.) We call 7 (0) the min-tree of 6, which
satisfies the following Lemma 8.

Lemma 8. Let fe Set(R, J) and let J(6) be the
min-tree of . Then, the following conditions (i)-(iii)
hold.

(i) The height of J(8)<ms, where m, is the con-
stant of Corollary 1.

(ii) Each node in  (0) has at most /, children, where
Iy is the constant of Lemmas 3 and 5 (i.e., D&l </).

(iii) If a node in 7 () wl}g{sellabel is 8’ has height k
(1 =k <myg), then min (0’)5;;) 1y

Proof. The proofs of conditions (i) and (ii) are ob-
vious from Corollary 1 and Lemmas 3 and 5.

The proof of condition (iii). We prove this by induc-
tion on k. If k=1, then the node with ¢’ is a leaf node,
so that min (6')=0 by the definition of 7 (6). Thus, con-
dition (iii) holds.

Consider the case where k>1. Let &' )={6{, -,
6n} #¢. Then, n<l/, holds, from the condition (ii). By
the induction hypothesis,

k=2
min (6))< > I, 1=<j=n, 4.3)
i=0

holds (since the node whose label is 6/ has height k —1).
From Lemmas 3. (i) and 5. (i), we have

min (6’)< 1+ >, min (6})
j=1

k=2 .
sl+n~21£,

i=0

(from (4.3))

(from (ii))

o=

k=1
=>1
i=0

Thus, condition (iii) holds. ©

Lemma 8 ensures that min (6) < T ! Ii(=1/,) holds
for 6 Set(R, J). Hence, we can compute an upper
bound of min (6), since it is obvious that m, and /, are
computable. Thus, it follows that whether 8 Set(R, J),
that is, whether min () < (i.e., whether @ is true), is
decidable both for §=(M, N)z and for 8={M,, -,
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M,},. (Note that we can check whether M—'N for I</,
when 8=(M, N); and also check for 6={M,, -,
M},

Therefore, we obtain the following main result.

Theorem 1.

(i) The reachability problem for right-ground TRSs
is decidable.

(ii) The joinability problem for right-ground TRSs
is decidable. O

As a corollary, the word problem is decidable for con-
fluent and right-ground TRSs, since the word problem
can be reduced to the joinability problem for confluent
TRSs. This result is compared with the undecidability
of the word problem for right-ground TRSs [6].

Corollary 2. The word problem is decidable for con-
fluent and right-ground TRSs. O

We have shown that both reachability and joinability
are decidable for right-ground TRSs. However, we have
not explicitly shown how to construct such an
algorithm. We now explain how to do so.

To obtain our main result, Theorem 1, we have
shown that for any fe Set(R, J), that is, min (f)< o,
we can construct the min-tree 7 (6) of 6 by using the
replacement function &. (Here, the height of J(6)
<my, from Lemma 8.) Note that the existence of @ is
ensured by Lemmas 2 and 4. Therefore, our algorithm
can be constructed by using these results. That is, when
0 is given as an input, this algorithm first guesses a can-
didate of @, attempts to construct 7 (6) from 6 by using
this candidate of & and then produces as output ‘True:
min (@) < o’ iff 7 (6) satisfies the required condition.
More precisely, this algorithm, called Proc, is given as
follows:

Proc(f){where §=(M, N)z or 8={M,,- -+, M,},};
(1) if min (8)=0 then return (‘True: min () < ©’);
(2) for each candidate &, of @ do

begin
(2.1) construct  (6) where if the height of 7 (6) exceeds
my, then stop this construction (that is, this candidate
@, has failed to construct 7 (6));
(2.2) if the construction of J (6) succeeds, then return
(‘True: min (f) < ©’)

end;
(3) return (‘False’);

Here, we require that if J(6) is constructed, then
every leaf of 7 (0) has a label 8’ such that min (6’)=0.
Further, any candidate &, of @ is required to satisfy
the following conditions (A) and (B):

(A) The domain of @, is restricted to Sg(6) U S,(6)
for a given input 6. (This sufficiency is ensured by
Lemma 7.)

(B) For each 6’ e Sg(0) U S,(0), the value ®.(0’)
must be chosen from the possible values as @(8’). For
example, if §’=(P, P’)p, then &,(0’) must be either
{P/i, P'/hrll<i<m, m is the arity of root(P)} or
{(P, Q)r, (B, PIr}U(Use v 1{Q/ulue 0(a)},}) for
some a—fe E and Qe A:(P).

Note that I|Sz(6) U S;(6)l is finite, from Definitions 7

and 8. Thus, the number of possible candidates @, of
@ is also finite. Hence, Proc(6) always terminates. The
proof of the correctness of Proc is easily obtained, and
is therefore omitted. (Note that the correctness of line
(2.1) of Proc is verified by Lemma 8, which states that
the height of  (6) = ms, so we can conclude that if the
height of 7 (6) exceeds mygin line (2.1), then the guess of
@ is incorrect. The correctness of line (3) is obvious,
because if all possible candidates of & fail to construct
7 (6), then 8 is false, that is, min (§)= o0, since if min
(6) < o, then the existence of & is ensured by Lemmas 2
and 4.)

Appendix:

The proof of condition (i) of Lemma 7:

Let 8=*6’, where §=(M, N)z. We prove 6’ e Sg(6) U
S,(6) by induction on k. When k=0 the proof is trivial.
We therefore consider the case in which k>0. Then,
there esists 8” such that =*"'6” = §’. By the induction
hypothesis, 8” € Sz(8) U S,(6) holds (that is, 8” € Sr(6)
or 8” e S,(6)).

(a) The case where 8” e Sr(6), that is, 8” =(P, P’)
for some P, P’ where

Pe sub({M }URE) (A.1)
P’'e sub(d:(MYU{N}URp) (A.2)
Since 8” = 6’, the definition of = ensures that ' € &(6").
Thus, from the definition of & (i.e., of ®z), either

6’=(P/i, P'/i)s for some ic & or ' € {(P, O, (B,
P'), {Q/ulue 0()},}, where

a—>fecE (A.3)
O=calu—Q/u, ue 0.(ax)le Ae(P) (A4)
Q/ue sub({P} URy) (A.5)

If 8’ =(P/i, P’ [i)r, then obviously 8’ € Sg(6) holds,
since P/ie sub(P) and P’ /ie sub(P’). (Note that sub is
idempotent: sub(sub(U))=sub(U) for any UST.)

If 6’ =(pB, P')&, where B Re from Eq. (A.3), then ob-
viously 8’ € Sg(6) holds, from Eq. (A.2).

If ={Q/ulue 0.(x)},, then from Egs. (A.5) and
(A.1), we have

Q/ue sub({P} UR)Ssub({M} URg)

Thus, 8’ e S,(0) holds.

The remaining case is 8’ =(P, Q). In this case, since
Ae(P)S Ag(M) holds from Definition 2 of A and Eq.
(A.6), we have

(A.6)

Qe A(P)S Ax(M)

from Eq. (A.4). Thus, §'=(P, Q)zc Sk(f) holds.
(b) The case where §” =S,(0), that is, 8" ={Q,, " - -,
Q,}, for some Q,, 1 =i<n, where

Q. sub({M} URy)

By 6” =6’, the definition of =ensures that 8’ ®(6”).
Thus, from the definition of @, either 6’={Q,/j, - -,

(A.7)
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Q./j}, for some je N or 8’ e {(Qi, Br, {Q1," ", Qi-1,
B, Qir1,++, Quts}t for some i (1<i=<n) and Be R:.

If ={Q:/j, -, Oulj}, then obviously ¢ e S;(6)
holds, since Q;/jesub({M}URg) from Eq. (A.7),
I<i<n.

If & =(Q, P&, then obviously 6’ e Sg(6) holds, from
Eq. (A.7) and since fe Rk.

If ={Q, -, Qi-1, B, Qi+1," ", QOn}s then
8’ e S,(6) also holds, from Eq. (A.7) and since fe Rg.
Thus, in either case, 8’ Sr(6) U S,(6).

Hence, if 8=%0’, then 8’ € Sk (8) U SAH). Thus, (i) of
Lemma 7 holds. O

The proof of condition (ii) of Lemma 7.

Let =T, where '={M,,---, M,}, and let 6="6".
We prove 8’ e Sr(6) U S,(6) by induction on n. When
n=0, the proof is trivial. We therefore consider the case
in which n>0. Then, there exists 6” such that
#=""16" = §’. By the induction hypothesis, 8” € Sz(6) U
S;(0) holds (i.e., 8” € Sk(8) or 8" € S,(6)).

The case in which 6” € Sz(6), that is 8” = (P, P’)g for
some P, P’, where

Pe sub(I” U Rg) (A.8)
P’ e sub(Up e rde(M)) U Rg) (A.9)
Since 8” = 0’ the definition of = ensures that 8’ e @(6”).
Thus, from the definition of @, 6’ satisfies one of the
following conditions (c) and (d):
(c) 6 =(P/i, P'/i)x for some ic ¥
d) e {(P, Q) (B, P')r, {Q/ulue 0.(x)}s},

where

a—fecE (A.10)
QO=cau+Q/u, ue Oa)le As(P) (A.11)
Q/ue sub({P} URy) (A.12)

If 6’ satisfies condition (c), then obviously 8’ e Sz(6)
holds, since P/ic sub(P) and P’ /ie sub(P’).

Let us therefore, consider the case where condition
(d) holds.

If 6’ =(B, P’)z, then obviously 8’ e Sz(0) holds, since
Be Rg, from Eq. (A.10).

If ={Q/ulue 0,(x)},, then from Egs. (A.8) and
(A.12) we have

Q/ue sub({P} U Re) Ssub({M;} URg)
for some Mel’

Thus, 6’ S;(6) holds.
The remaining case is 8’ =(P, Q). In this case, since
Ag(P)S Ae(M)) holds from the definition of 4 and

(A.13)
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from Eq. (A.13), we have
Qe 4:(P)S4:(M))

from Eq. (A.11). Thus, 6’ =(P, Q)re Skz(6) holds.
The case where 8” € S,(8), that is, 8" ={Q," - -, O},
for some Q;, 1 <i<m, where

Qie sub(I" URy) (A.14)

Since §” = @', the definition of = ensures that 8’ € &(6”).
Thus, from the definition of &, either 6’ ={Q.\/j, - -,
Qnlj}, for some je A or 8’ e {(Q:, B, (O, » Qi-1s
By Qi+1, 5 Om}s} for some i (1<i<m) and fe R:.

If @={Q:\/j," -, Om/Jj},, then obviously & e S,(6)
holds, since Q:/jesub(l” URg) from Eq. (A.14),
l<ism.

If 8’ =(Qi, B)r, then obviously 6 Sr(6) holds, from
Eq. (A.14) and since fe Re.

If ={Q:,---, Qi-1, B, Qi+1," ", Om}s, then 0’
S,;(6) also holds from Eq. (A.14) and since fe Re.
Thus, in either case, 8’ e Sz(6) U S,(6).

Hence, if §=*6’ then @' € Sg(8) U S,(6). Thus, (ii) of
Lemma 7 holds. O

Acknowledgments

The author is grateful to the referees for their helpful
comments.

References

1. DErsHOwWITZ, N. Termination of linear rewriting systems, in S.
Even and O. Kariv, eds., Lecture Notes in Computer Science 115, Spr-
inger, New York (1981), 448-458.

2. Huer, G. Confluent reductions: abstract properties and applica-
tions to term rewriting systems, J. ACM 27 (1980), 797-821.

3. OYAMAGUCHI, M. The Church-Rosser property for ground term-
rewriting systems is decidable, Theoret. Comput. Sci. 49 (1987), 43—
79.

4. OYAMAGUCHI, M. The reachability problem for quasi-ground
term rewriting systems, J. Inf. Process. 9 (1986), 232-236.

5. OYAMAGUCHI1, M. The Church-Rosser property for quasi-ground
term-rewriting systems, unpublished manuscript.

6. OYAMAGUCHI, M. On the word problem for right-ground term-
rewriting systems, Trans. IEICE Japan E713 (1990), 718-723.

7. TocGasHI, A. and NOGUCHI, S. Some decision problems and their
time complexity for term rewriting systems, Trans. IECE Japan 166-
D (1983), 1177-1184.

8. DAUCHET, M., TisoN, S., HEUILLARD, T. and LESCANNE, P.
Decidability of the confluence of ground term rewriting systems,
LICS87, Ithaca, New York (1987), 353-359.

9. DERUYVER, A. and GILLERON, R. The reachability problem for
ground TRS and some extensions, in J. Diaz and F. Orejas, eds., Lec-
ture Notes in Computer Science 351, Springer, New York (1989), 227-
243.

(Received May 11, 1989; revised January 16, 1990)



