296

Invited Paper

HiLISP—a Common Lisp with an
Optimizing Compiler on a Mainframe

MIcHIAKI YASUMURA*', KATSUHIKO YUURA*, MasaAKI Kurosu**,
TosHIHISA AosHIMA*, NoBuyukl TAKEICHI*' and YOSHIMITSU OsHIMA*

We have developed a Lisp system based on Common Lisp on a main-frame computer. It is called HiLISP,
which is the acronym of Hitachi’s interactive Lisp Processor or High speed Lisp. We have designed L-code as an
abstract Lisp machine code that is used both for the interpreter and the compiler. The HiLISP interpreter ex-
ecutes heavy Common Lisp features, such as lexical scope and multiple values efficiently. The HiLISP compiler
optimizes compiled code by employing several optimization techniques such as program transformations, type
inferences, and local optimizations. HILISP system also provides a full screen editor and a full-fledged debug-
ger. The most notable extension to Common Lisp is the Japanese character set handling feature. Based on our
prototype implementation, a software product called VOS3 Lisp was developed and delivered as the first com-
mercial Common Lisp system in Japan. HiLISP has been used for many applications, such as diagnostic expert
system for LSI process, logic design system, layout CAD, natural language processing system, and so on. Based
on the HiLISP system, an object oriented system and an interactive program transformation system have been

also developed.

1. Introduction

Lisp is the second oldest programming language and
has been widely used among Al researchers in academic
community. Lisp is suitable for prototyping and interac-
tive programming. It is also useful for symbolic
computations because of the powerful memory
management and metamorphism of data and functions.
Nevertheless, Lisp had many dialects which are not com-
patible with each other.

We have started designing our Lisp system for an Al
research tool in our laboratory. At the beginning, the
language specification was a kind of MacLisp family.
Just after our project started, we learned the Common
Lisp specification [21].

Common Lisp is different from the older Lisp’s in
several respects. In older Lisp’s, some problems exist:

(1) Semantics of most interpreters are usually
different from that of the compilers, since variables are
bounded dynamically in interpreters while in compilers
they are bounded statically, which is called static scope
rule.

(2) When a function is passed as an argument or
returned as a result, free variables of the function are
not treated correctly in some Lisp implementations.
This problem is called function argument problem or
fun-arg problem, in short.

*Central Research Lab., Hitachi Ltd.
**Design Center, Hitachi Ltd.

'Currently, Hitachi Information Systems, Ltd.
"Currently, Keio University at Shonan Fujisawa.

Journal of Information Processing, Vol. 13, No. 3, 1990

(3) Lisp is a functional language; It normally
returns single result and arguments cannot be altered
(call by value parameters). When a user wants to return
multiple results, he/she must make a list to combine
these results.

(4) In Lisp programs, variable names and/or func-
tion names may often conflict with each other due to the
single global name space for large applications.

(5) Recently many types are gradually introduced to
Lisp’s and the number of specific function names are
increasing.

Common Lisp has solved these problems as follows:

(1) Adopts static scope rule both for compiler and
for interpreter.

(2) Adopts static scope closure, which handles free
variables in a function argument correctly.

(3) Extends to allow multiple results, which are
called multiple values.

(4) Introduces packages, which are used to divide
the single global name space into many sub spaces.

(5) Introduces generic functions, which allows
polymorphism of types.

We decided to change our language specification to
Common Lisp. Though Common Lisp has several
desirable features described above, it is big and heavy
by nature. And it is a challenging subject for implemen-
tors to implement it efficiently and compactly.

2. Design Philosophy and Development Methods

We made our design goals for our Lisp-HiLISP

HiLISP—a Common Lisp with an Optimizing Compiler on a Mainframe

which is the acronym on Hitachi’s interactive List Proc-
essor or High speed Lisp. The latter one symbolizes our
ultimate goal.

Our design goals are as follows:

(1) To run efficiently—We would have liked to
make our Lisp processor as fast as other language proc-
essors, such as C or Pascal on stock hardware. Also we
wanted it to run faster than or at least not slower than
non-Common Lisp’s.

(2) To comply with Common Lisp—The language
specification must be conformed to that of Common
Lisp with slight extensions.

(3) To support Japanese character set—Japanese
characters and strings should be handled in the same
way as English alphabet.

(4) To provide user friendly programming en-
vironments—It should provide a full screen structure
editor and a full-fledged debugger which must provide
user friendly interfaces.

(5) To provide larger memory space—Older Lisp
processors on mainframes had memory of not more
than 16MB memory, but it is necessary to allow at least
2GB memory for newer Lisp processor.

(6) Also—interfaces to other languages and to
Operating System are required.

The goals are listed in order of importance. These
goals may conflict with each other. For example, to com-
ply with Common Lisp, we have to support some heavy
features of Common Lisp, for example, key word
parameter, multiple values, generic functions, full
closures, and so on. In such cases, higher priority
precedes lower priority. And we implemented normal
case as efficient as possible while special case may run in
less efficient manner.

Before designing our HiLISP system, we defined our
design goals which have been described above. Among
them, runtime efficiency and Japanese character set
handling are notable, because we thought most Lisp
processors were very slow and few Lisp systems sup-
ported Japanese characters at that time. A few years
later when our first prototype was running, we learned
most Lisp users felt almost the same way as we had
thought. According to the JEIDA report [16], when
classified by the response of Lisp users to their Lisp
processors at that time, 15% of the responders were not
satisfied with runtime speed, 13% complained of incom-
patibilities and lack of capabilities 12% wanted
Japanese character supports, 8% wanted better pro-
gramming environments, and 8% wanted more
memory spaces. Also 13% of the responders felt
graphic system supports were poor and 9% wanted ob-
ject oriented capability. But 9% of the responders were
satisfied with their processors which were believed to be
built by themselves.

To develop HIiLISP, we first designed an abstract
Lisp machine, the code of which would be used both
for the interpreter and the intermediate code of the com-
piler. We call it L-code. L-code represents pseudo Lisp

297

Table I Summary of typical Lcode.

Lcode

Classification Remarks
1 Function YENTRY function entry
interfaces YPREPARE frame creation
YCALL function call
YRETURN function call

YEVAL eval call

2 variable accesses YVALUE value reference

YSETVALUE value setting
¥YINTERN interning
¥BIND binding
YUNBIND unbinding

3 stack operations ¥YPUSH push
YPOP pop
YARGREF argument reference
YARGSET argument setting

4 list operations ¥CAR car reference
¥CDR cdr reference
YCARSET car setting
YCDRSET cdr setting

5 memory ¥CONS cons

allocations YLIST list

6 data accesses YGETSYM set symbol in register
YGETSTR set string in register
YGETFIX set fixnum in register

7 branches ¥IFxxx XXX is a data type, t, nil
¥GOTO

unconditional branch

8 data definitions YEND end of function

YCONST constant definition
YSYMBOL symbol definition
9 utilities YKEY keyword param match

¥GET property list retrieval
YTYPERROR type error process

machine code and was implemented in macro
assembler. L-code is designed for three purposes:

(1) To minimize machine dependent features, as
few as possible.

(2) To obtain high productivity during the develop-
ment of our Lisp system.

(3) To describe efficient code which must be com-
parable to assembly code.

The first purpose is not only for portability but also
for integrity and security of HIiLISP system. The
development of HiLISP system was done by several peo-
ple and it is very important to have clear interface to
every module. We think the detail of implementation,
such as data structures, tag information, calling se-
quence and so on should be encapsulated from each im-
plementor as much as possible. Thus this first purpose
can go together with the second purpose. Because usu-
ally he or she can concentrate on what has to be im-
plemented. Generally speaking, an average program-
mer can use L-codes which can be expanded into best
code sequence that has been carefully implemented. But
this is not always the case. Therefore we made a
peephole optimizer for the intermediate code of the

298

M. YASUMURA, K. YUURA, M. KUrosu, T. AosHIMA, N. TAKEICHI and Y. OSHIMA

(let ((a 3) (b 5)) = (1)
(setq f #'(lambda () (1 + a)))- (2)
(setq 2 bi) B visible pointer , invisible pointer
(funcall f) - (4) - : Y :
S 1 J \
controlstack controlstack ,»° heap 'ul control stack J "‘
7] 7 "
’]
let let 7 closure \ funcall Sosure] r:‘abd 0
= lambda Y R - (la a
a |3 a ‘, function T 21 . g)) 0 p % function (1+a)
| / -)}
b |5 b |5 \ varbind 4 , var bind 4
pr— Ul e =) |
s o
process for (1) process for (2) & (3) process for (4)
Fig. 1 An implementation of variable access in stack and closure by invisible pointer.

compiler, which will be described later, and also added
some variations of L-code for implementing critical
part of interpreter and built-in functions. The summary
of L-code is shown in Table 1.

At the beginning we first designed L-code and wrote
the kernel of the interpreter in L-code. Then we devel-
oped the compiler and built-in functions. By using L-
code, program steps of interpreter and built-in func-
tions became much smaller than that of only assembly
coded ones, and we could rewrite the whole system with
little interface trouble.

3. Interpreter

Common Lisp is different from older Lisp’s since it is
a compiler oriented Lisp. For example, Common Lisp
adopts static scope rule, and it contains generic func-
tions. The consequence is that a Common Lisp inter-
preter would be slower than those of older Lisp’s in
general.

We tried to make our HiLISP interpreter not much
slower than the older Lisp interpreters. Here we
describe how we have implemented some heavy Com-
mon Lisp features.

(1) Stack frame

We have decided that HiLISP should have two
stacks, one for control and parameter passing and the
other for binding stack and that it should pass
parameters on the stack and return the result on the
registers.

(2) Variable access

For variable access, a shallow binding technique is
usually used for older Lisp interpreters, since it is faster
than deep binding technique using a-list. But with a
shallow binding technique it is difficult to handle static
scope rule and fun-args properly.

In HiLISP interpreter [32], we put deep binding struc-

ture in array form on a stack which is faster than that in
list form in heap. When it encounters a function
closure, it moves the binding structure into heap and
changes access pointers into invisible pointers (Fig. 1).

(3) Multiple values

A naive implementation of multiple value is to put a
result or results always in a stack and to keep the
number of result(s) in a register.

In HIiLISP we prefer to put single result in a register,
and put only multiple results in a stack. Therefore we
develop multi-path method for this problem [32]. This
method is based on the idea of changing return address
for different numbers of result(s). One might be worried
about the increase of combination of paths, but this is
not the case. Because there are only two states, single
value state and multiple value state, and the combina-
tion of multiple paths can be merged into confluent of
paths.

In a single result case there is no time loss compared
to the older Lisp’s implementation and in multiple
result case it has a little time loss. Since the latter case is
rare, the overall increase in overhead is small.

(4) Built-in functions

Overall interpreter speed depends on not only the
kernel part, but also built-in functions. Because in Lisp,
a large part of the execution time is usally spent in built-
in functions.

We designed and coded most built-in functions to be
fast and some important built-in functions to be as fast
as possible. For this purpose, the L-code approach was
useful.

(5) Memory management

In HIiLISP each cell consists of two words, one for
tag and the other for pointer to allow full address
capability.

HiLISP was implemented on a mainframe with vir-

HiLISP—a Common Lisp with an Optimizing Compiler on a Mainframe

tual memory and we adopted copying garbage collec-
tion method to keep locality. Later on when the VOS3
Lisp was built based on HiLISP, this garbage collection
method was changed into a mixture of mark and sweep
method for cons and copying method for other data
types on behalf of the memory efficiency.

4. Compiler

4.1 Structure of the Compiler

The HILISP compiler compiles Lisp programs in
there phases and generates two intermediate codes, L-
code and LAP. L-code is an abstract machine code and
LAP is a Lisp Assembly Program which is a machine
dependent assembly code.

The first stage of the HIiLISP compiler analyzes
source code and generates L-code. At this stage, closure
is analyzed and some program transformations are
done (this will be explained in the next sub section).
Then the next stage of the compiler generates LAP
from L-code and final stage generates machine code.

4.2 Optimizations

Before starting the design of HiLISP compiler, we
analyzed several Lisp programs. Firstly, we learned that
function calls in Lisp are much more frequent than
those in other languages, say, C, Pascal, or Fortran and
that it is not unusual for only function calling to spend
more than half of the overall runtime. Secondly, Com-
mon Lisp language adopts generic functions which
yield lots of runtime type checks. Finally, since we im-
plement our HiLISP compiler on a mainframe, which is
a highly pipelined machine, the HiLISP compiler
should generates codes which utilizes the pipeline
mechanism.

Therefore in order to design optimizations of the
HiLISP compiler, we concentrated the following three
points:

(1) Function call optimization

(2) Type check optimization

(3) Local optimization to boost pipeline.

(1) Function call optimizations

Two approaches are possible to attain function call
optimizations; one is (a) reduction of calling time, the
other is (b) reduction of number of calls.

In order to reduce function call time, the preparation
time of the stack frame for function call and unframe

299

process time for function return must be shortened as
much as possible. We designed the function call instruc-
tion sequence and its machine cycle to be as_short as
possible under the assumption that the interface with in-
terpreter must be preserved. We also partitioned single
type of calling sequence into several types of short pat-
terns depending on the callee’s conditions such as the
self call, machine code call, and/or fixed number
parameters. Therefore ¥call instruction of L-code has
several variations.

For reducing the number of calls, we applied the tail
recursion removal method, which is common in many
Lisp compilers, enforced the inline expansion of built-
in functions, and developed an automatic expansion
method for self recursive functions and user functions
calls (Fig. 2). Automatic expansion is carefully done by
checking side effects and by preparing temporaries (if
necessary) to prevent increase of function calls. The
detail of the method was explained in [27].

(2) Type check optimization

In order to optimize runtime type check in Lisp, there
are two methods; one is (a) the reduction of type check
time at runtime, and the other is (b) the compile time
type check.

Type check time at runtime is sped up by performing
more frequent tag check earlier and by reordering in-
struction sequence to minimize the branch time after
checking. The latter was implemented as a part of local
optimizations.

The compile-time type check reduces runtime type
check by identifying the types of data or operations

Table 2 Performance comparison of HiLisp with Pascal.

Benchmark HiLISP

Pascal 8000 (rpa;lf)
1 Tak 4. ™ 69.™ 1.68
2 Flo-tarai-4 22. 20. 0.91
3 Qsort-100 37. 66. 1.8
(list version)
4 Bubble-50 5.3 2.6 0.49
(array version)
5 Nqueen-8 95. 304. 3.2
(list version)
6 Nqueen-8 53. 25. 0.47
(array version)
Geometric Mean — — 1.15
Mé680H

(defuln SO (PN G(fx)(fx). . Ngx)

(defun f(x)

Gf (px)(g Gf (px)(gUxy x=x) (o1 x=x)). . Ngx))
f ()pr)(g(fxlIX*-Xz)(IXZIx‘-XZ). -)(gxy))

(gx))

Fig. 2 Scheme of Self-inline expansion (x,|x+x, means the substitution of x in x, by x,.).

300 M. YasuMurA, K. YUURA, M. KuRrosu, T. AosHIMA, N. TAKEICH! and Y. OSHIVA

move object

specify object

specify location

on
target?

'f move cursor f shift + PF

indication

NNTS model condition
action

timing

specify desination execute move

on
target?

shift + PF

—

f move cursor

t(Sx + Sy) 2t

t(Sx + Sy) 2ty

Fig. 3 NNTS model and a simple example.

based on the users’ declaration and other available in-
formation. The detail of the method was explained in
[271.

(3) Local optimization

The local optimization of HIiLISP is classified into
the optimization in L-code level (Local-optl) and the
optimization in LAP level (Local-opt2).

Local-optl optimizes L-code locally in machine in-
dependent way. The main optimizations are as follows:

» Removal of unnecessary codes.

¢ Optimization of branch codes.

+ Removal of stack limit chekcs.

Local-opt2 optimizes LAP code locally in machine
dependent way. The main optimizations are as follows:

* Removal of unnecessary instructions.

* Reordering of instruction sequences.

Mainframe computers have powerful pipeline control
mechanism which executes most operations in one cycle
effectively. But when the pipeline is disturbed, the execu-
tion time becomes slower than one cycle. The following
cases are the sources which disturb pipeline:

¢ Condition code set and its use (conditional

branch).

+ Index register/base register set and their uses.

+ Value set and use in one location in memory.

Local-opt2 checks above cases and reorders instruc-
tion sequence so that conflicting instructions are laid
apart. Notice that branch optimization done in Local-
optl is also useful to enhance pipeline capability,
because it reduces the number of branches.

4.3 Performance Evaluation

It is widely believed that Lisp programs are slower
than Pascal or C programs. After evaluating several
benchmark programs, we found this is not true. If the
Lisp compiler and its built-in functions are carefully
designed and implemented to generate efficient codes.

Lisp programs can run no slower than programs written
in C or Pascal. Table 2 shows some results of the com-
parison between the performance of Lisp programs and
Pascal programs. For each program, each algorithm for
Lisp and corresponding algorithm for Pascal are the
same. Ratio is the execution time in Pascal divided by
that in Lisp. In geometric mean, the ratio of perfor-
mance is almost the same. Lisp is faster in tak which has
many self recursion and in which tail recursion removal
and self recursion expansion are effective. As the data
for Qsort and Nqueen indicate, Lisp is faster in list ver-
sion and Pascal is faster in array version in general. Usu-
ally users tend to write prototype programs in Lisp with
list structure then rewrite them in Pascal or C with array
structure, and they misunderstand Lisp is slower than
Pascal or C. But the truth is that programs written with
lists are slower than those with arraies.

5. Programming Environments

HiLISP was built on a mainframe computer which
has half-duplex terminals with local screen editing
capabilities. We tried to utilize this local screen editing
capabilities to enhance usability of Lisp programming
environments. Under this consideration, we developed
a structural editor, which we internally called HiEditor
and a full debugger called HiDebugger.

(1) HiEditor

HiEditor is an amalgamation of screen editor and syn-
tax (or structure) editor [12). To be edited by HiEditor
is not only programs/data in files but also pro-
grams/data in heap. The specification of the screen
editing capabilities is compatible with the ASPEN
which is a general purpose editor for Hitachi’s main-
frames [38].

For syntax editing, we have introduced the concept of
structural cursor which represents any level of S-expres-
sion visually. The S-expression specified by the
structural cursor can be deleted, moved, and copied. In
addition to the structural cursor, correspondence of

HiLISP—a Common Lisp with an Optimizing Compiler on a Mainframe

parentheses can be checked simply by pushing a func-
tion key.

In order to evaluate editing operations, we have devel-
oped the NNTS (Node Network with Time Specifica-
tion) model (Fig. 3). This NNTS model is an augmented
extension to GTN (Generalized Transition Network)
model proposed by Kieras [11]. Compared to GTN,
NNTS model has time description capability and men-
tal process description capability. The time description
capability of NNTS model is influenced by KLM model
by Card [4]. By using NNTS model, we found the speed
of HiEditor is 2.0 times faster than that of simple screen
editor [17].

We have developed HiEditor all written in HILISP ex-
cept screen control part.

(2) HiDebugger

HiDebugger contains backtracer, stepper, break
kernel, tracer, inspector, and so on. One unique feature
of HiDebugger is the ‘“where’” command which shows
erroneous function and location in source to the user.

At the beginning of our development of the HiLISP
system, we made a very small debugger, which included
only backtracer and inspector for stack frame. But it
was very helpful to have a debugger at the very beginn-
ing for our development. Gradually our debugger
became larger with the growth of the HiLISP system.

6. Some Extensions

At early stage, HiLISP was a subset of Common
Lisp, though we extended its specification. The most im-
portant extension is Japanese character set handling.
The Japanese character set handling was an important
extension to our purpose, because one of our
presumable applications was natural language proc-
essing. In Lisp, if we could extend character set in
character type and in string type, it would be used not
only string and character data but also function and
variable names.

To support Japanese character set in Lisp, both
character type and string type should be extended to
allow Japanese characters which have double byte
length. There are three ways to implement Japanese
character set:

(1) Mix string approach (three string approach)—
two byte character set coexists with one byte character
set.

(2) Fat string approach (one string approach)—
every one byte character is converted internally into two
byte character.

(3) Independent string approach (two string ap-
proach)—one byte character strings and two byte
character strings do not interfere with each other.

The second and third approaches are easier to imple-
ment than first one, but second one needs more memory
space and third one lacks the capability of handling
Japanese-English mixed texts. Therefore we first

301

adopted mix string approach. Originally we made three
string types, one for English only strings, another for
Japanese only strings, and the other for mixed type in
order to use memory space more efficiently. For im-
plementing mixed string, we actually mixed one byte
characters with two byte characters and case shift
characters were used to separate them. But this im-
plementation was hard to complete, because the string
functions for mixed string needed very complicated
coding. And we switched to fourth approach, which is
the modified approach of third one. Form the im-
plementor’s view point, this new approach is an exten-
sion of two string approach; one for thin string, the
other for fat string which may contain both English
characters and Japanese characters in double byte
boundary. From the user’s point view, fat string is the
only normal string and thin string can only be used by a
special declaration.

Other extensions of HIiLISP to Common Lisp are
display manipulating functions, interfaces to TSS, inter-
faces to other languages, and so on.

7. Applications and Evolutions

Based on our HILISP prototype built in our
laboratory, engineers in Software Works built a soft-
ware product called VOS3 Lisp, which was shipped on
April 1987 as the first commercial Common Lisp made
in Japan.

HiLISP has been used for many Al applications in
our laboratory; The examples are layout CAD system,
Processor Architecture Simulator called PASIM [13],
LSI process diagnostic system [7], natural language in-
terface routine, Knowledge based tutor system, and so
on.

VOS3 Lisp has been used in many universities and
companies. The Symbolic Algebra system, Reduce, is
running on VOS3 Lisp at the Computer Centre of Uni-
versity of Tokyo. The Syusin, which is a Japanese text
manipulation language designed by S. Mizutani [15],
runs on VOS3 Lisp at Tokyo Woman’s Christian Uni-
versity. Another example is a design verification system
for closed sequential control circuits of power supplies
[35] developed by the collaboration of TEPCO (Tokyo
Electric Power Company) and Hitachi Ltd.

One year after the shipment of VOS3 Lisp, a Com-
mon Lisp system for Work Station was shipped from
the Software Works. The Lisp is called HI-UX Lisp,
since it runs on HI-UX system of the 2050 Work Sta-
tion. The HI-UX Lisp is fully compatible with VOS3
Lisp.

On our HiLISP system, we have developed two
systems for extending usability of HiLISP, one is the
two HiOBJ systems which are object oriented systems
on HiLISP and the other is IPTS-an Interactive Pro-
gram Transformation System.

Originally HIOBJ-1 was designed on the different con-
cept with that of CLOS. HiOBJ-1 has unified class

302 M. YASUMURA, K. YUURA, M. KUROSU, T. AOSHIMA, N. TAKEICHI and Y. OSHIMA

definition capability for encapsulation, simple slot ac-
cess capability, slot daemon, and so on [28]. A simple
graphic manager was built on the HiOBJ-1. See Appen-
dix for the syntax of HiOBJ-1. Later on HiOBJ-2 [35]
was developed. The specification of HiOBJ-2 complys
with CLOS [37], but the implementation takes after
HiOBJ-1.

From the experiences of the optimizations of the
HiLISP compiler, we would liked to build an interac-
tive program transformer, where the system can get
enough information from the user to transform pro-
grams into more efficient ones. The system we built was
called IPTS [33]. This system is a rule based pattern
driven program transformation system. By using this
system, a layout CAD program was transformed into a
15% faster program [34].

8. Conclusion

The HIiLISP was designed and implemented on a
mainframe computer as a tool for Al researches in our
laboratory. The language specification is based on Com-
mon Lisp, but we extended its specification to allow
Japanese character set handling. The HIiLISP system
was carefully implemented to give enough performance
and usability on a mainframe computer.

Based on the HiLISP prototype, VOS3 Lisp was de-
veloped and shipped as the first commercial Common
Lisp made in Japan. Both HIiLISP and VOS3 Lisp have
been used for many Al applications. Based on HiLISP
further researches, such as object oriented system, win-
dow system, program transformation system, and tutor
system are still going on.

Acknowledgments

The authors are grateful to Ayako Takada, Kunio
Nomoto, and Hisashi Takahashi who participated in
development of HIiLISP. The authors would like to
acknowledge Dr. Takeshi Nakayama for his con-
tribituion to NNTS model. The authors also thank
Kazuo Morita, Ken Sakaibara, Mitsuhiro Nagata, and
Hiroshi Isobe of Software Works for their efforts to
make HiLISP into a software product.

References

1. ALLEN, J. R. Anotomy of Lisp, McGraw-Hill (1978).

2. Brooks, R. A., GABRIEL, R. P. and STEELE, G. L. Jr. An Op-
timizing Compiler for Lexically Scoped LISP, Proc. of the 1982
ACM Compiler Construction Conf. (1982), 261-274,

3. BURSTALL, R. M. DARLINGTON, J. A Transformation System for
Developing Recursive Programs, J. ACM, 24 , 1 (January 1977), 44-
67.

4. Carp, S. K., Moran, T. P. and NeweLL, A. The Keystroke-
Level Model for User Performance Time with Interactive System,
Comm. ACM, 23, 7 (1980), 396-410.

5. CHIKAYAMA, T. Implementation of the UtiLisp System, Trans. of
IPSJ, 24, 3 (in Japanese) (1983), 599-604.

6. DARLINGTON, J. Program Transformation, Functional Program-
ming and its Applications, Ed. by J. Darlington, et al., Cambridge
Univ. Press (1982).

7. FunakosHl, K. and MizuNo, K. Rule-Based Diagnostic Expert

System for LSI Manufacturing Process Flow, The Hitachi Hyoron,
70, 11 (in Japanese) (November 1988), 131-135.

8. HAaGIYA, M. Yuasa, T. Implementation of Kyoto Common Lisp,
First Conf. Proc. of Japan Society for Software Science and
Technology (In Japanese) (1984), 65-68.

9. IpA, M., TAKEUCHI, L., HAGIYA, M., YASUMURA, M., Yuasa, T.
and TERASHIMA, M. Panel Discussion: Common Lisp, Trans. IPS
Japan, 27, 1 (in Japanese) (January 1986), 67-77.

10. [ISHIHARA, K., YASUMURA, M. and TAKAHASHI, S. Overview of
Hitachi’s Knowledge Information Processing System, Hitachi
Review, 37, 5 (October 1988), 303-308.

11. KiERrAS, D. and PoLFoN, P. G. An Approach to the Formal
Analysis of User Capability, Int’s Journal of Man-Machine Studies,
22 (1985), 365-394.

12. Kurosu, M., NaKAYAMA, T. and AosHimMA, T. HiLISP Pro-
gramming Environment (1): Software-oriented Display Editor and its
Implementation, 34th National Conf. of IPSJ (in Japanese) (Mar.
1987), 935-936.

13. KoIKE, M., NAGAsAkA, M., KUuriYaMA, K. and Wapa, K. Proc-
essor Architecture Simulator—PASIM: Overview, 39th National
Conf. of IPSJ (in Japanese) (October 1989).

14. MANNA, Z. Mathematical Theory of Computation, McGraw-
Hill (1974), 448.

15. Mizutani, S. Guide to Syusin (Red Lisp)-—A Japanese Fasioned
Programming Language for String Manipulation, Tokyo Woman’s
Christian University (in Japanese) (1989).

16. JEIDA (Japan Electronic Industry Development Association),
Ed., The Report of the Surveys on Micro Computers [11]—Common
Lisp—, 61-A-235 [11] (in Japanese) (1986), 155.

17. Nakavama, T., Kurosu, M., AosHIMA, T. and OsHiMA, Y.
HiLISP Programming Environment (2): A Model for Evaluation of
Editing Operation, 34th National Conf. of IPSJ (in Japanese) (March
1987), 937-938.

18. OkuNo, H. The Proposal of the Benchmarks for the third Lisp
Contest and the first Prolog Contest, Report of WGSYM, 1PS], 28-4
(in Japanese) (1984).

19. OkuNo, H. The Report of the Third Lisp Contest and the First
Prolog Contest, Report of WGSYM, IPS], 85, 30 (1985).

20. PARTISCH, H. and STEINBUGER, R. Program Transformation
Systems, ACM Computing Surveys, 15, 3 (1983).

21, SteELE, G. L. Jr. Common Lisp: the Language, Digital Press
(1984), 645.

22. TAKADA, A., YASUMURA, M. and AosHIMA, T. New Scheme of
High Speed Code Generation for HiLISP compiler, 3rd Conf. Proc.
of Japan Society for Software Science and Technology (in Japanese)
(1986), 97-100.

23. TAKEICHI, N., YASUMURA, M., YUURA, K. and MoriTa, K. High
Performance List Processor System, The Hitachi Hyoron, 69, 3 (in
Japanese) (March 1987), 13-16.

24. WHOLEY, S., FAHLMAN, S. E. The Design of an Instruction Set
for Common Lisp, Conf. Record of the 1984 ACM Symp. on Lisp
and Functional Programming (1984), 150-158.

25. YASUMURA, M., TAKADA, A. and YUURA, K. Program Transfor-
mation Techniques in Recursive Programs, Riken Symp. on Func- -
tional Programming, FP-87-03 (in Japanese) (Feburary 1987), 20-27.
26. YASUMURA, M., TAkADA, A., YUURA, K. Some Program
Transformations of Recursive Programs in Lisp, 34th National Conf.
of IPSJ (in Japanese) (March 1987), 733-734.

27. YASUMURA, M., TAKADA, A. and AosHIMA, T. Design and Im-
plementation of an Optimizing Compiler for Common Lisp, Trans.
IPS Japan, 28, 11 (in Japanese) (November 1987).

28. YASUMURA, M. and Yuura, K. HIOBJ—A Proposal of Object
Oriented Language on Common Lisp, 5th Conf. Proc. of Japan Soci-
ety for Software Science and Technology (in Japanese) (September
1988).

29. Yuura, K., TakaDpA, A., AosHIMA, T., YASUMURA, M.,
Kurosu, M. and TAKEICHI, N. Implementation of HILISP—High Per-
formance Common Lisp, 33rd National Conf. of IPSJ (in Japanese)
(October 1986), 475-476.

30. Yuasa, T. and HAGIYA, M. Implementation of Kyoto Common
Lisp, Report of WGSYM, IPSJ, 34-1 (in Japanese) (1985).

31. Yuura, K. and YasumMura, M. High Speed Methods for the
HiLISP Interpreter, Report of WGSYM, IPSJ, 40-5 (in Japanese)
(1987).

32. YUUura, K. and Yasumura, M. Some High Speed Methods and
their Experimental Evaluations for Common Lisp Interpreters,
Trans. IPS Japan, 30, 6 (in Japanese) (June 1989), 719-724.

HiLISP—a Common Lisp with an Optimizing Compiler on a Mainframe

33. YUura, K. and YAsuMuRA, M. Improvement of Efficiency of
Lisp Programs by Interactive Program Transformations, 5th Conf.
Proc. of Japan Society for Software Science and Technology (in
Japanese) (September 1988).

34. YUuRra, K., YASUMURA, M. and NAGATA, M. HiLISP: High-Per-
formance Common Lisp and its Optimizing Tool, Proc. of the first
European Conf. on the Practical Application of Lisp (March 1990).
35. YUurA, K., SAKAIBARA, K., TAKAHASHI, H. and FunaTsu, T.
Object-oriented Programming with HiOBJ-2 on CLOS, 39th Na-
tional Conf. of IPSJ, (in Japanese) (October 1989), 1348-1349.

36. YaMaDA, N., KoBayvasHl, Y., Fuill, D., UEDpa, Y., I10, J., MAT-
SUDA, S. and YosHizawa, J. A Design Verification for Sequential
Control Circuits No. 2, 39th National Conf. of IPSJ (in Japanese)
(October 1989), 1689.

37. BoBrow, D. G. ef a/l. Common Lisp Object System Specifica-
tion, Draft X3J13 Document 88-002R (1988).

38. VOS3 Programming Supporting Editor ASPEN Manual, 8090~
3-330, Hitachi, Ltd. (in Japanese) (1985).

(Received November 8, 1989)
Appendix: Syntax Summary of HiOBJ-1 [28]

defclass class-name (class-options)({slot-description}*)

{doc-string}*{method-description}*[Macro]
class-options:: = {[{class-parameter}*]

:super({ class-name| [class-arguments])} *)|

:instance| {:constructor init-name lambda-list }*}*
class-parameter::=var
class-arguments:: = {:class-parameter value}*
slot-description:: =(slot-name[slot-options))
slot-options:: = {:init value| :type{type-name| class-
name} |

:alloc{instance | class | family |none} |

:access{private| family| public} |

:read-only|:if-gets method-namel:if-sets method-

303

name}*
method-description:: =
(method method-name method-lambda-list{declara-
tion\doc-string}*{ form}*)
method-lambda-list:: = ({var| parameter-specifier}*
[&optional{var|(var{initform[svarl])}*] [&rest var]
[&key{var|({var|(keyword var)}[initform[svar]])}*
{&allow-other-keys}]]
[&aux{varlinitform})}*1)
Dparameter-specifier::=(var class-name)
declaration:: = (declare{declaration-specifier}*)
declaration-specifier:: = method-options|
other-declaration-specifiers-as-CommonLisp
method-options:: = {(access{(ac-
cess{private| family | public})
message-passing:: = (selector-name instance{arg}*)|
(send instance selector-name arg-list)
selector-name:: = method-name
slot-access:: = (slot-name instancel:class-name))| .slot-
name
slot-update:: = (setf(slot-name
value)|
(setf.slot-name value)
with-form::=(with instance{ form}*)
psuedo-variable:: =self
instance-creation::=(new class-namefclass-arguments)
[initial-values))
(init-name{value}*)
class-arguments:: = {:class-parameter value}*
initial-values:: = {:slot-name value}*

instance(:class-name])

