486

Research Contribution

Monotone Polygon Containment Problems
Under Translation

JUI-SHANG CHIU* and J1A-SHUNG WaANG*

We investigate the problem of determining whether a polygon 7/ can be translated to fit inside another polygon
E without constructing the whole feasible region. For rectilinearly 2-concave polygons, an O(m +n+k log® mn)
algorithm is presented in which m is the number of edges of 1, n is the number of edges of E, and k is the number
of sliding steps. In the worst case, k may be proportional to O(mn). Since the feasible region may have O(m*n?)
edges, this algorithm runs more efficiently than one for finding the whole feasible region. An O(m+n+k log
m+t) algorithm is also presented for monotone polygons. In the worst case, f may be proportional to O(mn
a(mn) log m), where a(-) is the inverse of Ackermann’s function.

1. Introduction

The polygon containment problem is to determine
whether a polygon I can be translated to fit inside
another polygon E. This problem has been studied by
chazelle [5], Fortune [8], Baker ef al. [4], Avnaim et al.
[3], Martin et al. [12], and Ghosh [9]. For the case in
which both polygons I and E are rectilinearly convex,
Baker et al. [4] derived an algorithm that runs in O(mn
log m) time where m is the number of edges of / and n is
the number of edges of E. For rectilinear polygons, Av-
naim et al. [3] proposed an O(m’n?) algorithm that is
worst-case optimal. Both algorithms find the whole
feasible region. To the best of our knowledge, there is
no easy way to modify these algorithms so that they
stop whenever a feasible placement is found.

Designing an efficient algorithm to solve the polygon
containment problem without constructing the whole
boundary of the feasible region is an open problem in
general. This paper presents a family of decision
algorithms for problems in which (1) both polygons are
rectilinearly convex, (2) both polygons are rectilinearly
2-concave, and (3) both polygons are monotone. Based
on a plane-sweep-like approach, these algorithms ter-
minate on the first feasible placement found, if one ex-
ists. Their complexity is dominated by the number of
sliding steps, &k, which depends not only on the number
of edges of polygons but also on the size and the shape
of polygons. Naturally, in most cases, this family of
algorithms runs faster than those that find the whole
feasible region.

*Institute of Computer Science, National Tsing Hua University,
Hsinchu, Taiwan 30043, R.O.C.

Journal of Information Processing, Vol. 13, No. 4, 1990

2. Terminology

Given two polygons E and [/ in the plane, where E is
fixed and 7 is mobile, we try to translate / to determine
whether it can fit inside E. If it can, a feasible placement
(or the whole feasible region) of 7 is reported. The place-
ment of [is uniquely determined by the position of a
specific point of /. This point is called the reference
point. A feasible placement is a placement of the
reference point such that I is contained in E. A feasible
region is the set of all feasible placements of /. It can be
the union of a finite number of polygons, line segments,
and points.

A polygon P is simple if it has no holes and its edges
are nonintersecting. P is rectilinear if it is simple and its
bounding edges are either horizontal or vertical. P is
horizontally (resp. vertically) convex HC (resp. VC) if
it is rectilinear and its intersection with any horizontal
(resp. vertical) line is either a single line segment or emp-
ty. P is rectilinearly convex if it is both HC and VC.
Wood and Yap [16] give an alternative definition of con-
vexity by quantifying the ‘‘degree of concavity.”’ Let P
be a rectilinear polygon represented by the vertices (vo,
Viy. . ., Us—1, Uy) ON its contour, listed in clockwise
order. In this list, vo=wv,, we assign a turning number to
each v; such that

1if v;is a left turn

‘r.=
" l-1ifyisa right turn.

The concavity of P is defined to be
max (3] 7, 0) for all sub-paths of P.

A rectilinear polygon is k-concave if its concavity is k.
According to this definition, 0-concave polygons are
precisely rectangles, and 1-concave polygons are pre-

Monotone Polygon Containment Problems Under Translation

cisely rectilinearly convex polygons. Let HCp (resp.
VCp) be the horizontally (resp. vertically) convex
polygon containing P with the smallest area. It is ob-
served that P is 2-concave if the only if the intersection
of HCp and VCp is P.

A chain C=(u,, ..., u,) is a planar straight-line
graph with the vertex set {u), . . . , u,} and the edge set
{(ui, ui+1), i=1, ..., n—1}. Cis said to be monotone
with respect to a straight line /if any line orthogonal to /
intersects C at no more than one point. A simple
polygon is said to be monotone if its boundary can be
decomposed into two chains that are monotone with
respect to the same straight line /. A chain whose edges
are either horizontal or vertical is said to be X-
monotone (resp. Y-monotone) if its intersection with
any line orthogonal to X-axis (resp. Y-axis) is either a
single line segment, a single point, or empty. It is ap-
parent that a rectilinearly convex polygon can be decom-
posed into two X-monotone (or Y-monotone) chains.

3. The Rectilinearly Convex Case

Assume two rectilinearly convex polygons 7 and E in
the plane as shown in Fig. 1. / is contained in E if and

Fig. | An example of rectilinearly convex polygons.

i g
£
el‘ Ll
T _—_'7_-_1'/7:
7 —
i ,’—?_‘ i
I : 7
e o
|
|
e T —
7 VAT
il
——]
%
()

Fig. 2 The functions (e, ex) and h(e,, e;) for the hit pair (e;, e¢).

487

only if all horizontal edges of I are inside E. The set of
horizontal edges in the upper and lower X-monotone
chains of I (resp. E) are denoted by %, (resp. %) and
&, (resp. L), respectively. For a fixed placement of 7, /
is contained in E if and only if %, lies below % and ¥,
lies beyond # (. Thus, we can separately compare %,
with %E and -?1 with -?5.

First, we consider vertical translations of /(see Fig. 2).
If I is slid upward (resp. downward), each edge in %,
(resp. #)) hits a set, called a hit set, of edges of %,
(resp. ¥£). We associate with each edge e;e #, (resp.
£)) a hit pair (e, er), where e is the edge with the lowest
(resp. highest) height selected from the hit set of e,.
Note that only edges in the hit pairs are crucial for
finding a vertical translation that will place 7 in the in-
terior of E, and only one comparison is needed for each
hit pair in order to determine whether such a vertical
translation exists.

Next, we consider horizontal translations. As I is slid
to the right for a sufficiently small distance, the hit pairs
are unaffected. A placement of I at which the hit pairs
are changed is called a critical placement. The horizon-
tal step between two consecutive critical placement is
called a sliding step. For each sliding step, exactly one
hit pair will be changed. Note that a change of hit pair
indicates the height that an edge of %, (resp. ;) can
move upward (resp. downward) before hitting an edge
of E is changed. It is possible to translate 7 vertically to
such a height that &, lies beyond ¥ and %, remains
below %¢. Therefore, the decision of containment for
this new placement should be reconsidered.

Let Q; (resp. Qr) be the smallest rectangle containing
I (resp. E). We may slide I from where the lower left cor-
ners of Q; and Qf are overlapped to where the lower
right corners of Q; and Qf are overlapped. Since each
edge of I may hit a total of O(n) edges of E, there are
O(mn) critical placements in the worst case. A
straightforward approach to determining the contain-
ment is to test all the critical placements, but this takes
O(m*n) time. However, by associating the functions
v(ey, er) and h(ey, eg) for each hit pair (e, eg) as follows,
we show how to adapt the plane-sweep strategy to run
in O(mn log m) time.

ec.y—ery ifeec,,
e.y—ecy ifeecy

er.right.x —e,.right.x

v(en, ep)= L

if ege the right part of chain,
h(es, ex)= .
ec.right.x —e;.left.x

otherwise;

where eg.y (e;.y) is the y-coordinate of er (e)), er.right.x
(e;.right.x) is the x-coordinate of the right endpoint of
ee (e7), and e,.left.x is the x-coordinate of the left end-
point of e;. The value v(e;, e£) represents the maximum
distance that e; can move upward (or downward)
without hitting its corresponding edge eg, and the value

488

h(e;, er) gives the minimum distance that e, must move
to the right to change its own hit pair.
We also define the following three guiding measures:

vy=min {v(e, ex)le;e 4},
ve=min {v(e;, ex)lere L},
h=min {h(e;, ex)|le;c U, or e;c L,}.

The value v, represents the maximum height that / can
move upward such that %, remains below %¢. The value
— vy represents the minimum height that 7 must move
upward such that &, lies beyond #¢. Finally, the value
h represents the distance that 7 can move to the right un-
til a hit pair is changed. It is not hard to verify that a
feasible placement exists if and only if v,= —ve.
Hence, by computing the value of v, and v, we can
determine whether I can be translated vertically to fit
into E. Similarly, we can determine the distance for the
next sliding step by computing the value of A.

By organizing the information on these hit pairs into
priority queues [1], we can adapt the plane-sweep
strategy efficiently. While [slides from the left to the
right step by step, we can determine the feasible place-
ment by computing the guiding measures. The process
is terminated as soon as the first feasible placement
is found and reported.

The algorithm is as follows:

Step 1. Decompose both polygons 7 and E into two X-
monotone chains respectively;

Step 2. Let I slide step by step from the left to the
right. In each sliding step, we compute the values v, (or
vy) and h. Whenever v, = — vy, a feasible placement is
reported and the process is terminated successfully.

Here, we analyze the performance of the above
algorithm. In each sliding step, we need to update the
distance 4 and the height v, or v,. We keep track of
these values by using three priority queues. O(log m)
time is needed both for extracting and for updating the
minimum values of v, (or v«) and 4. Thus, the construc-
tion and maintenance of the data structures in Step 2
takes O(k log m) time, where k is the number of sliding
steps before a feasible placement is found. As for Step
1, the time needed to decompose / and E into two
chains each is O(m+ n), assuming that all the edges in /
and E are given in clockwise order. Therefore, the com-
plexity of the above algorithm is O(m+n+k log m).

We have shown that there are O(mn) sliding steps in
the worst case. Hence, the worst-case time complexity is
O(mn log m). This is the same that of as the algorithm
proposed by Baker er al. [4]. However, ours is capable
of finding the first feasible placement and then stopping
early. In contrast, theirs cannot report the answer
before the whole feasible region has been found. Since
the feasible region may have O(mn) edges, our
algorithm runs faster in most cases.

To find the whole feasible region, it suffices to report
the feasible region within each sliding step and then to
slide until the lower right corner of Q, and Qg are

J.-S. CHwu and J.-S. WANG

overlapped. The total time needed is still O(mn log m).

Our algorithm is not applicable when both 7 and e are
not rectilinearly convex, because the edges of the con-
cave part become obstracles, so the polygons / and £
cannot be decomposed into two X-monotone chains
each. However, if both polygons E and I are VC or HC,
our algorithm still works after a slight modification of
the distance function A(-,").

4. The Rectilinearly 2-Concave Case

Turning to the case in which both polygons 7 and E
are rectilinearly 2-concave, we present an efficient
algorithm to determine whether E can contain /. This
algorithm runs in O(m +n+ k log? mm) time, where k is
the number of sliding steps before a feasible placement
is found. In the worst case, & may be proportional to
O(mn). We also present a similar algorithm for finding
the whole feasible region. The time complexity becomes
O(mn log mn+t), where t is the number of edges of the
whole feasible region. In the worst case, # may be pro-
portional to O(m*n?).

A 2-concave polygon P can be regarded as the result
of intersection by one horizontally convex polygon HC»
and one vertically convex polygon VCp (see Fig. 3). Sup-
pose that we can transform [/ into HC; and VC}, and E
into HCr and VCg. Note that 7 can fit inside HC (resp.
VCy) if and only if HC, (resp. VC)) can be contained in
HCE (resp. VCg). Thus, the feasible region of I inside E

@)

(b) (c)

Fig. 3 (a) The rectilinearly 2-concave case, (b) The horizontally
convex case, and (c) The vertically convex case.

~

Monotone Polygon Containment Problems Under Translation

©

Fig. 4 The feasible regions.

is exactly the intersection of the feasible region HC; in-
side HCr and the feasible region VC, inside VCr. Fig. 4
shows a typical example.

To solve the containment problem of 2-concave
polygons, we first attempt to solve the problem in both
the horizontally convex and vertically convex cases. We
have proposed an algorithm for solving these two cases
in Section 3. The remaining problems are: (1) how to
transform a 2-concave polygon into one HC and one
VC, (2) how to find the whole feasible region, and (3)
how to determine the containment as soon as possible.

Nicholl et al. [14] proposed a linear time algorithm to
obtain a minimum-area rectilinearly convex polygon
that contains the given rectilinear polygon. This
algorithm can also be used to transform a 2-concave
polygon P into one HCp and one VCp in linear time.

As polygons 7 and E are transformed, the feasible
regions for the HC case and the VC case can be found
independently. Note that the feasible region in each
case is regarded as a union of feasible rectangles. There
are at most O(mn) feasible rectangles in both cases.
Thus, finding the feasible region becomes a problem of
computing the intersection of two sets of feasible rec-
tangles. This can be done in O(mn log mn+1t) time [15],
where ¢ is the number of edges of the feasible region.
Therefore, the total time needed for computing the
whole feasible region is O(mn log mn+1t). Note that ¢ is
negligible if we simply want to determine whether E can
contain /. This can also be determined by applying the
priority search tree [13].

However, to determine the containment as soon as
possible, neither the HC case nor the VC case is

489

necessary for finding the whole feasible region. We may
slide HC,and VC,to search for a feasible rectangle step
by step alternately. Whenever a feasible rectangle for
the HC (resp. VC) case is found, we begin to examine
whether it intersects with any currently found feasible
rectangles for VC; (resp. HC;). The process is ter-
minated as soon as a nonempty intersection is found.

To take advantage of answering rectangle queries
quickly, we apply the dynamic data structures proposed
by Edelsbrunner [6, 7]. Thus, the rectangle insertion
and the query of rectangle intersection both need
O(log? mn) time. Therefore, the total time needed for
finding a feasible placement is O(m+n+ k log? mn),
where & is the number of sliding steps. This algorithm
runs faster in most cases, though it is inferior in its
worst-case time complexity.

The algorithm is as follows:

Step 1. Transform polygons I and E into HC;, VC,,
HCEg, and VCg respectively.

Step 2. Slide VC, horizontally until a new feasible rec-
tangle is found. If one is not found, report that no feasi-
ble placement is possible and terminate the process.
Step 3. Insert the new rectangle into the set of found
feasible rectangles 2y, and then check whether it in-
tersects with the set of found feasible rectangles #,,c. If
so, report it and terminate the process.

Step 4. Slide HC,; vertically until a new feasible rec-
tangle is found. If one is not found, report that no feasi-
ble placement is possible and terminate the process.
Step 5. Insert the new rectangle into the set of found
feasible rectangles #4c, and then check whether it in-
tersects with the set of found feasible rectangles #,c. If
so, report this solution and terminate the process.
Step 6. Repeat steps 2 to S.

In the 2-concave case, we have shown that there in-
deed exists a more efficient algorithm that can deter-
mine the containment without constructing the whole
feasible region.

5. The Montone Case

A monotone polygon can be decomposed into two
monotone chains. Consider the case shown in Fig. 5.
To determine the containment, as in the rectilinearly
convex case, we may associate each edge of / with a hit
pair and then determine the containment by using these
pairs. However, unlike in the rectilinearly convex case,
the height for a hit pair is not a constant again, since it
changes continuously as 7 slides to the right.

Consider Fig. 6. For a given hit pair (e, ez), when
edge e, of %, (resp. &, moves upward (resp.
downward) to a height of v(e;, eg), it will touch a point
on edge ex of % (resp. £ £). We denote this as the con-
tact point. Contact points can be classified into two
different categories: (1) (edge contact) one of the end-
points of ¢, lies on e (2) (vertex contact) one of the end-
points of eg lies on e,.

Consider three different cases of edge contact as

490

Upper chain

Lower chain

Fig. 5 An example of monotone polygons.

/%/(l‘i #
g8

q

(a) edge contact: case 1 (b) edge contact: case 2

(c) edge contact: case 3
T /
iviee) °
v * o T
g ‘/-/
G

(e) vertex contact: case 2

(d) vertex contact: case 1

Fig. 6 Ilustration of five situations for the edge contact and
vertex contact.

shown in Fig. 6(a)-(c). Imagine that e,, starting from a
contact, slides rightward along eg; an endpoint v, of
e; will keep contact with e until e, hits another edge
eg. Of course, the hit pair (e;, eg) is changed to (e;, ez) as
we have already discussed for the rectilinear convex
case. Here, for the monotone case, we define v(e;, er) as
the vertical distance between endpoint v, and edge e,
h(es, er) as the horizontal distance that e, can slide along
ez to the right until it hits ez, and s(e,, er) as the slope at
which e; must slide to maintain contact with ez. Note
that we do not really slide 7 up and down, but instead,
slide I to the right step by step.

Next, consider two cases of vertex contact, as shown
in Fig. 6(d) and 6(e). Imagine that e;, starting from a
contact, slides rightward passing through vg; e, will
keep contact with vg until it hits ez.

Let a straight line containing edge e be formulated by
an equation y=a(e)-x+b(e). The values of s(e;, er),
v(es, ee), and h(e;, eg) for the hit pair (e;, e¢) can be com-
puted as follows:

J.-S. CHiu and J.-S. WANG

(1) edge contact (v, eg):

ses, ec)=aler);

[a(eg)- e,.right.x + b(eg) —ey.right.y

if a(e;) = a(ey),

v(es, er) =

a(eg) e, left.x + b(er) —e,.left.y
if a(e)) <(er);

["eg.right.x —e;.right.x

if a(e)) = a(er),
ve.X—epright.x
h(e;, exr)= if there exists an edge ez on the right of e
intersecting e, while we slide ¢, along e,

eg.right.x —e;.left.x

L otherwise.
(2) vertex contact (e, eg):

(e, ex)=ale));

vies, e)) =ve.y —(ale)) - ve.x+ b(ey));

(vE.x—erright.x

if there exists an edge ez on the right of e,
_ intersecting e; at a point vz on it while we
her ec)= slide e;, keeping contact with vg,

ve.Xx—epleft.x

L otherwise.

In the following paragraphs, we employ the concept
of contact chain and envelope to describe the necessary
conditions for containment. Consider the edge e, in Fig.
7. While 7 is moving to the right in such a way that some
edges of E are always in contact with e;, the locus of the
reference point of 7 forms a chain, which we call the con-
tact chain of e,;. Note that this contact chain preserves
the monotone property, and may consist of at most n
line segments. In general, there may be m contact
chains for all of the edges of 1. For convenience’ sake,
we denote the set of upper contact chains by €, and the
set of lower contact chains by €.

From the above discussion, we know that the upper
(or lower) contact chain of e; contributes one necessary

Fig. 7 The contact chain.

Monotone Polygon Containment Problems Under Translation

C
1

0

wh

Fig. 8 The lower envelope C, of a set of upper contact chains.

(a)

wh

G4

(L]

Fig. 9 A divide-and-conquer approach to computer C,.

condition for the feasible placement of /. That is, the
reference point p; of I should be located below (resp.
above) the upper (resp. lower) contact chain of e;.
Thus, for a feasible placement of I, the reference point
p;must be located below all of the upper contact chains
and above all of the lower contact chains. These will be
all the necessary conditions for solving this contain-
ment problem. We denote the intersection of all the
lower (resp. upper) regions bounded by €4 (resp. € «)
as the lower (resp. upper) envelope Cy (resp. Cy). See
Fig. 8.

We also adapt the plane-sweep approach in order to
solve the polygon containment problem of the
monotone case. In each sliding step, the distance A(-,"),
height »(-,-) and slope s(-,-) for an appropriate hit pair
are computed and then a new edge of an associated con-
tact chain is generated. After all the contact chains have

491

Fig. 10 A binary merge tree for the envelope of contact chains.

been generated, the lower envelope C, and the upper
envelope C« can be obtained. Finally, the entire feasi-
ble region is found by simply computing the intersec-
tion of Cy and Cy.

The remaining problem is to find the envelope of m
contact chains efficiently. Several authors have ob-
served that a straightforward divide-and-conquer
algorithm can solve a similar problem of finding the up-
per envelope of 7 line segements in O(n «(n) log n) time
[2, 10], where a(n) is the inverse of Ackermann’s func-
tion. Note that the upper envelope of n line segments
may consist of O(n a(n)) edges [10]. Since our problem
has m contact chains, each of them with at most #n line
segments, the envelope of these contact chains can be
computed in O(mn a(mn) log m) time, using the same
approach (see Fig. 9). Recently, an optimal algorithm
was proposed by Hershberger [11]. Hence, Cy and C«
can be obtained in O(mn log mn) time by Hershberger’s
method.

In addition, the intersection of Cy and C, can be
computed in O(mn o(mn)) time. Also, as in the rec-
tilinearly convex case, there are O(mn) sliding steps,
each which takes O(log m) time. Therefore, the worst-
case complexity of our algorithm is O(mn log mn).

However, the above algorithm is not our final goal,
since we are interested in solving the decision problem,
namely, to find a feasible placement as soon as possible.
Under the circumstances, some modifications are
necessary for computing Cy and Cy step by step. To
combine the divide-and-conquer approach with the
plane-sweep approach, we employ a data structure
called a binary merge tree to help the process. The tree
is shown in Fig. 10. There are m contact chains stored in
m leaves, respectively. Initially, each chain may contain
only one edge. As [is sliding to the right, a new edge of
some contact chain, say C;, is generated in one sliding
step. Then, we start the merging process leading from
the leaf containing C; to the root. Two contact chains
are merged into a new chain, which is the envelope of
these two chains. For instance, C, ., is the envelope of
C, and C,. Thus, the current Cy (resp. Cy) is found in
the root. Note that the merging process is performed in
such a way that only those edges that belong to the
envelope of two chains are produced. We shall discuss
this in the next paragraph. The above steps are repeated
until a nonempty intersection region between C; and

492

G
©)
C .
- e
//e// :
G
(©

Fig. 11 Three cases in the merging process of two chains.

Cy is found.

Consider the case shown in Fig. 11(a). The currently
generated edge e of the contact chain C; lies below the
edge e’ of the contact chain C;_,, and the right endpoint
of e located to the left of the right endpoint of e’. At
this moment, it is not certain whether the whole edge of
e’ will become part of the upper envelope of C;-, and C;
or not. Thus, the merging process should be delayed un-
til either of the two cases shown in Fig. 11(b) and 11(c)
appears. In the former case, the whole edge of e’ is part
of the upper envelope. In the latter case, only some
parts of e and e’ are in the upper envelope. In accor-
dance with the above discussion, to ensure that the
merging process always produces edges that belong to
the envelope of two chains, the merging process is ad-
vanced to a higher level of the tree only if the current
envelope needs to be updated.

Finally, we analyze the performance of the above
algorithm. In each sliding step, a new edge of an associ-
ated contact chain is generated and the envelopes along
a path of the tree from this leaf to the root should be up-
dated to generated some edges of Cy (or C.). Since
both trees are balanced, the tree height is O(log m), the
updates take at most O(log m+1¢) time, where ¢ is the
number of edges updated along the path. Therefore, the
complexity of the above algorithm is O(m+n+k log
m+1), where k is the number of sliding steps. In the
worst case, the total number of edges updated before
finding a feasible placement is

[tm, n)y=2t(m/2)+ O(mn a(mn)),
t(1, n)=0(n)

ifm=2,

Otherwise,

which is O(mn a(mn) log m).
Here, we should point out that the subproblem of

J.-S. CHIU and J.-S. WANG

finding the envelope of a set of chains has several
special features, that is, (1) it forms 7 monotone chains
each of which has O(n) line segements, (2), there are
O(m+ n) slopes of the segments, and (3) these chains
are similar to each other. It is not known whether the
complexity of the envelope can be reduced from O(mn
a(mn)) to O(mn o(m)) or even O(mn), but the probabil-
ity is high.

6. Discussion

If a rectilinear polygon [can fit inside a rectilinearly
convex polygon E, the rectilinearly convex hull I’ of
can also be contained in E. Since I’ can be computed in
linear time [14], we can use our method to solve this
polygon containment problem. For a similar reason, if /
is rectilinear and E is rectilinearly 2-concave, / can be
considered as a rectilinearly 2-concave polygon. Further-
more, if 7 is simple and E is monotone, / can be con-
sidered as monotone. Moreover, if some edges of / (or
E) are circular arcs and preserve the monotone proper-
ty, the algorithm for the monotone case may still work.
However, some modifications are needed, for instance,
to compute the distances and to compute the intersec-
tions between arcs and line segments.

In this paper, we have presented a family of
algorithms for the restricted cases in which two
polygons are rectilinearly convex, 2-concave, and
monotone. The complexity of these algorithms is
dominated by the number of sliding steps, which
depends not only on the number of edges of the
polygons but also on the size and the shape of the
polygons. In these restricted cases, we have shown that
it is possible to develop a more efficient algorithm that
finds a feasible placement without constructing the
whole feasible region. However, in more general cases
in which both polygons are k-concave, where k> 2, the
problem remains open.

References

1. AHO, A. V., HOPCROFT, J. E. and ULLMAN, J. D. The Design and
Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass.,
1975.

2. ATALLAH, M.]. Dynamic Computational Geometry, JEEE 24th
Annual Symposium on Foundations of Computer Science (1983), 92-
99.

3. AvNaIM, F. and BoIssONNAT, J. D. Simultaneous Containment
of Several Polygons, 3rd ACM Symposium on Computational
Geometry (1987), 242-250.

4. BAKER, B. S., FORTUNE, S. J. and MAHANEY, S. R. Polygon Con-
tainment under Translation, Journal of Algorithms, 7 (1986), 532-
548.

5. CHAzELLE, B. The Polygon Containment Problem, Advances in
Computing Research, 1 (1983), 1-33, JAI Press.

6. EDELSBRUNNER, H. Dynamic Data Structures for Orthogonal In-
tersection Queries, Rep. F59. Tech. Univ., Graz, Institute fiir Infor-
mations-verarbeitung, 1980.

7. EDELSBRUNNER, H. and MAURER, H. A. On the Intersection of
Orthogonal Objects, Inf. Process. Lert., 13 (1981), 177-181.

8. FORTUNE, S. J. A Fast Algorithm for Polygon Containment by
Translation, Automata, Language, and Programming, 12th Collo-
quium, in Lecture Notes in Computer Science 194, Springer-Verlag,
New York (1985), 180-198.

Monotone Polygon Containment Problems Under Translation

9. GHosH, P. K. A Solution of Polygon Containment, Spatial Plan-
ning, and Other Related Problems Using Minkowski Operations,
Computer Vision, Graphics, and image Processing, 49 (1990), 1-35.
10. HARrT, S. and SHARIR, M. Nonlinearity of Davenport-Schinzel
Sequence and of Generalized Path Compression Schemes, Com-
binatorica, 6 (1986), 151-177.

11. HERSHBERGER, J. Finding the Upper Envelope of n Line
Segments in O(n log n) Time, Inf. Process. Lett., 33 (1989), 169-174.
12. MarTIN, R. R. and STEPHENSON, P. C. Putting Objects into
Boxes, Computer Aided Design, 20 (1988), 506-514.

13. MCCREIGHT, E. M. Priority Search Trees, SIAM J. Comput.,

493

14 (1985), 257-276.

14. NicHoLL, T. M., LEE, D. T., Liao, Y. Z. and WoNG, C. K. Con-
structing the X-Y Convex Hull of a Set of X-Y Polygons, BIT, 23
(1983), 456-471.

15. WibMAYER, P. and Woop, D. A Time- and Space-Optimal
Algorithm for Boolean Mask Operations for Orthogonal Polygons,
Computer Vision, Graphics and Image Processing, 41 (1988), 14-27.
16. Woop, D. and Yap, C. K. The Orthogonal Convex Skull Prob-
lem, Discrete Computational Geometry, 3 (1988), 349-365.

(Received February 7, 1990; revised June 11, 1990)

