456

Research Contribution

Shortest Rectilinear Paths among
Weighted Rectangles’

C. D. YaNG*, T. H. CHEN* and D. T. Lee*

We consider the problem of a rectilinear shortest path among weighted obstacles. Instead of restricting a path
to avoid obstacles totally, we allow it to pass through them at extra costs. The extra costs are represented by the
weights of the obstacles. We aim to find a shortest rectilinear path between two distinguished points among a set
of disjoint, weighted rectangles. By using a plane sweep approach and a data structure called the weighted seg-
ment tree, we obtain an algorithm that runs in optimal © (n log) time and @(n) space, where n is the number of

rectangles.

1. Introduction

One of the fundamental problems in computational
geometry is the problem of finding the shortest path be-
tween two points in a plane. The problem varies accord-
ing to the metric used and the types of obstacle treated.
Most previous results [1-7, 9] deal with problems on the
assumption that the path does not cross any of the
obstacles, namely, that the path is collision-free. In the
real world, finding a shortest path that totally avoids
any obstacle may be undesirable and sometimes inade-
quate. In these circumstances, obstacles can be con-
sidered as regions that can be penetrated at extra costs.
For example, consider the case of going from city 4 to
city B with city C in between. We can choose either to
go though city C or to by-pass it, depending on how we
measure the cost. The distance between cities 4 and B
when passing directly through city C may be shorter
than when by-passing it, but may involve an extra cost,
such as a delay caused by heavy traffic. If we treat this
extra cost as a weight associated with each obstacle,
then the problem becomes one of finding a minimal-
cost path between two given points s and ¢ in the
presence of weighted obstacles.

Mitchell and Papadimitriou [8] first introduced the
‘weighted region problem’ and described an O(n3L)
algorithm, where L is the precision of the problem in-
stance (including the number of bits required to specify
the largest integer among the weights and the coor-
dinates of vertices) and 7 is the number of the weighted
regions. The algorithm finds a shortest path in the Eucli-
dean metric, that is, a path which minimizes the sum of

'Supported in part by the National Science Foundation under
Grants CCR 8420814 and CCR 8901815,

*Department of Electrical Engineering and Computer Science, Nor-
thwestern University, Evanston, ILL 60208.

Journal of Information Processing, Vol. 13, No. 4, 1990

the path lengths multiplied by the respective weight fac-
tors of the regions through which the path passes. In
this paper we will consider the rectilinear case, in which
the obstacles are disjoint (open) rectangles and the
distance metric is the L;-metric or Manhattan distance.
This paper is a natural generalization of the previous
work done by deRezende et al. [2], and is organized as
follows. In Section 2, we introduce the weighted seg-
ment tree structure and briefly describe operations on
the structure. In Section 3 we introduce our notation
and give some preliminary results. In Section 4, we
describe our main result, a @(n log n) time algorithm.

2. Weighted Segment Trees

The conventional segment tree is a static structure
designed to handle intervals on real line whose extremes
belong to a fixed set on n abscissae [10]. The abscissae
are fixed and can be normalized by replacing each of
them according to rank in left-to-right order. Without
loss of generality, we may consider these abscissae as in-
tegers in the range [1, n+1). The segment tree is a
rooted binary tree. Given integers / and r with /<r, the
segment tree T(/, r) is recursively built as follows. It con-
sists of a root v, with attributes v.B=/ and v.E=r,
where v.B and v.E are mnemonics for ‘beginning’ and
‘end,’ respectively, and if r—/> 1, of a left subtree T(/, L(v.B
+v.E)/2]), denoted as Is(v), and a right subtree
T(|(w.B+v.E)/2],), denoted as rs(v). The attributes
v.B and v.E of node v define the interval [v.B, v.E),
called a standard interval. The standard intervals per-
taining to the leaves of T'(/, r) are called the elementary
intervals. For r—1>3, an arbitrary interval (b, e), with
integer b<e, will be partitioned into a collection, called
a canonical covering of (b, e), of at most |log, (r—1/)]
+ | log, (r~/) | —2 standard intervals of T(, r).

Shortest Rectilinear Paths among Weighted Rectangles

In addition to the attributes u.B, u.E, and u.M associ-
ated with each node, where u.M is |(u.B+u.E)/2],
there are two variables u.w and u.e in the weighted seg-
ment tree. The first represents the weight of the interval
[u.B, u.E) and the second is defined later.

Basic operations performed on the weighted segment

tree structure include addw, resetw, setw, and getw: ‘ad-
ding a weight to a given interval,’ ‘resetting (to 0) the
weight of a given interval,’ ‘setting the weight of an in-
terval,” and ‘getting the accumulated weight of a given
elementary interval.’ The first, addw, is implemented by
adding the given weight to every node in the canonical
covering of the interval. Afterwards, the accumulated
weight of an elementary interval can be queried (by call-
ing getw) by summing up all the weights stored in the
nodes along the root-to-leaf path. The difficulty lies in
the resetw operation. Suppose we want to reset the
weight of an elementary interval. We cannot simply
reset the weights of all the nodes on the path, because
they might be commonly used by other elementary inter-
vals whose weights are not supposed to be reset. Thus,
we employ the idea of compensating for the ac-
cumulated weight of the nodes by adding to the node
corresponding to the elementary interval an equivalent
negative weight (making the total weight 0). In general,
if we want to reset the weight of an interval, we will per-
form compensation operations at the nodes in the
canonical covering of the interval and place a reset
mark at each of these nodes.
The reset mark is used to signify that the weights of the
nodes below the marked node have all been reset and
become useless. Consequently, the query operation is
modified so as to accumulate the weights of the nodes
on the root-to-leaf path until a marked node is en-
countered. The operation of adding weight to a given in-
terval is also modified as follows. If a marked node is en-
countered on the path from the root to a node in the
canonical covering of the interval, the node is first ‘un-
marked’ without changing its weight, and the effect of
the ‘marking’ is pushed downward to its two children
by resetting their weights and marking them. The serw
operation can be implemented by calling consecutively
the resetw and addw operation on the same given inter-
val. The modification follows the rule that all attributes
on and above a (reset) marked node are valid, and that
the rest are invalid and considered to be all zeros.

The following are the descriptions of the operations:
resetw (v: interval, u: node, wsum: int)

begin

if u is marked then begin
A3) Is(u).w=rs(u).w=0
mark Is(u) and rs(u)
unmark u
(6) end
/*now, u must be an unmarked node
(7) if (v.B<u.B and u.E<v.E)
/*u is in the canonical covering
then begin

457

mark u
/*and store the compensation value
u.w= —(wsum)
end
else begin
wsum=wsum+u.w
if (v.B<u.M) then
resetw (v, Is(u), wsum)
if (W.M<V.E)
resetw (v, rs(u), wsum)
end
end
addw (v: interval, u: node, weight: int)
begin
if u is marked then begin
3) Is(u).w=rs(u).w=0
mark Is(u) and rs(u)
unmark u
(6) end
(7) if (v.B=u.B and u.E<v.E)
then u.w=u.w+ weight
else begin
if (v.B<u.M) then
addw (v, Is(u), weight)
if (u.M<Vv.E) then
addw (v, rs(u), weight)
end
end
getw (ev: int, u: node)
begin
if (u.B=ev and u.E=ev+1)
then return (u.w)
if (u is reset-marked)
then return (u.w)
if (ev<u.M) then
return (u.w+getw (ev, Is(u))
if (ev>u.M) then
return (u.w+getw (ev, rs(u))

end
setw (v: interval, u: node, weight: int)
begin -

resetw (v, u, 0)
addw (v, u, weight)
end

Lemma 1. Each operation getw (ev, root), resetw (v,
root, 0) setw (v, root, weight) and addw (v, root,
weight), runs in O(log n) time.

[proof]: Immediate.<.

We illustrate the above operations by an example
given in Fig. 1. For simplicity, let the elementary inter-
val [i, i+ 1) represent integer /, and let the query interval
[a, b] be an interval covering integers from a to b. In-
itially, the weight of every node is zero and all are un-
marked. Figure 1 shows the final weighted segment tree
after a sequence of addw and resetw operations. If we
then perform getw (7, root), we will get 2.

458

operation sequence:

. addw([3,12],r00t,3)
addw([4,7),root,2)

. addw([6,15],ro0t,4)
. resetw([7,11],root,0)
. addw([1,8],ro0t,2)

. resetw([8,16],root,0)
. addw([9,13],root,3)

NoUMAWN =

C. D. YANG, T. H. CHeN and D. T. LEE

[1,6]

{u.B,u.E]

node u
@

[1.2) [23) [3.4) [45) [5.6) [67) [7.8) [8.9) [9,10) [10,11)[11,12)[12,13)(13,14)(14,15)[15,16)(16,17)
0 0 6 2 o0 4 0 2 0 0 7 0 3 o 4 0
m m m
Fig. 1 Illustration of weighted segment tree and the associated operations addw, resetw and getw.

3. Preliminaries

Definition 1. A rectilinear path Il is a path connec-
ting two points s and ¢, that consists of only horizontal
or vertical line segements, and its length is denoted by
[TTg 1.

Unless otherwise specified, we use the term path to
mean a rectilinear path.

Definition 2. Let I, be denoted as qi, pi, q2, p2, g3,
Ds, - . . Gk, Dk, Where g; is a path outside any obstacle,
and p; is a path completely within some obstacle R.. g,
or p, may be of zero length. Then the weighted length
of Iy, denoted dw(lly), is defined as dw(l,)=Xk,
(lgil + Ip:)+ ZX, (Ri.wx|pil), where R;.w denotes the
weight of R;.

Definition 3. A shortest path I1} between s and ¢ is the
one that has the smallest weighted length among all
possible (Ily)’s. The weighted shortest path length,
dw([1¥), is denoted as dw?, for short.

Note that I1¥ is not unique. Without loss of generali-
ty, we let point s be the origin of the XY-coordinate
system and point ¢ be located to the right of the Y-axis.
Definition 4. II is said to be monotone in the X-axis
if for all vertical lines V the intersection of Il is either
empty, a point on I, or a line segment in IL,,. Similarly,
11, is said to be monotone in Y-axis if for all horizontal
lines H the intersection of H and II, is either empty, a
point on II,, or a line segment in II,.

Definition 5. An X-path is a directed path that goes
only in the +X, +Y, or —Y direction; (—X), Y, and
(— Y)-paths are defined similarly.

Notice that an X-path or a (—X)-path is monotone
in X-axis and a Y-path or a (— Y)-path is monotone in
Y-axis.

Definition 6. An XY-path is one that is an X-path and
also a Y-path. X(—Y), (—X)Y, and (— X)(— Y)-paths
are defined similarly.

Definition 7. A Y-preferred XY-path is an XY-path
that always goes in the +Y direction if possible,
without crossing any obstacle. X, (—X) and (—Y)-
preferred AB-paths, where A={X, (—X)} and B={Y,
(—Y)}, are defined similarly.

Definition 8. The X-region of a point s, denoted as X-
region(s), is the region bounded by the Y-preferred XY-
path, denoted as P1, and the (— Y)-preferred X(—Y)-
path, denoted as P2, starting from s. (—X), Y and
(—Y) regions are similarly defined. (Fig. 2).

3.1 Monotonicity of the Shortest Path

Lemma 2. If a path that does not cross any obstacles,
I, exists and is an XY-path, an X(— Y)-path, a (—X)
Y-path or a (—X)(— Y)-path, then II,=II¥.

The following lemma shows the monotonicity of I1¥.
Lemma 3. II¥ must be a U-path if te U-region(s)
where Ue {X, Y, — X, —Y}.

[proof]: The proof follows the same arguments given

Shortest Rectilinear Paths among Weighted Rectangles

Y~regi0nD_\

l:][——D

X-region

Fig. 2

by deRezende et al. [2].O

Lemma 4. Suppose [I3NR;=Il,,, and ILNint(R) # ¢,
where a and b are two distinct points on the boundary
of R;, and int(R;) denotes the interior of R;. Then the
subpath I1,, must be either a horizontal or a vertical seg-
ment.

[proof]: Immediate. &

A path I1, containing a horizontal or vertical segment
that lies in int(R)) is said to have a horizontal or vertical
penetration at R;, respectively. Unless otherwise
specified, we assume from now on that te X-region(s),
and R;e X-region(s), for all i.

Lemma 5. There exists II¥ without any vertical
penetration.

[proof]: Suppose there were a vertical penetration at
R, in I1¥. Assume that R; is penetrated from point a on
the bottom edge to point » on the top edge (Fig. 3). Let
the lower left corner and upper left corner of R; be
denoted @’ and c, respectively. We first form a (—Y)-
preferred (—X)(— Y)-path P from q’. P will intersect
either P, or Il at some point m. We can construct a
new path I1"* by concatenating I, [Ine, a’a, ab and
Iy, denoted IT"* =1l L lla’all@blilly. T1"* is not
longer than II¥. Now, replacing a’allab on II™* by
a’cllch, we get a better path I1"* that avoids the vertical
penetration.

Similarly, II¥ does not have a vertical penetration if
te (—X)-region(s), and II¥ has no horizontal penetra-
tions if te Y-region(s) or ze (— Y)-region(s).
Definition 9. A point @’ is the left projection of a
point ae X-region(s) if a’ is horizontally visible from a
and lies on the path P1 or P2 or on the right side of
some rectangle.

Lemma 6. There exists a shortest path I1 that passes
through the left projection of 7.
[proof]: Immediate. O

Lemma 6 implies that [I¥ can always be rewritten as
II%N7’t, where ¢’ is the left projection of ¢. Let R.e=ab
with @ above b denote the right side of rectangle R;.
Assume ¢’ is on R;.e. According to Lemmas 3 and 4, [1¥
has either a horizontal penetration at R; or a vertical
segement along R;.e. In the former case, the problem is
the same as if R; were removed. Of course, the length of
I1* is off by WixRi.w, where W, denotes the horizontal
width of R,. In the latter case, II} has a ‘turn’ at ¢’, and

459

because of the monotonicity property, II& must pass
through either a or b. The problem thereafter reduces to
that of finding IT} or II%. Similar arguments apply to
the left projections of @ and b. Thus, we need to have a
mechanism to determine if and where a penetration is to
occur at R, for each R;.

For a point ¢ on Ri.e, let ull%, dII¥ and pII}
denote, respectively, the shortest paths from s to g that
pass through a, b, and in#(R;). We define f,(q) and f4(q)
as follows:

Definition 10. f,(g)=dw(u I1%)—dw(p 11},
JSH@)=dw(d I1%)—dw(p I1%)

Definition 11. A point g on R;.e is called a penetrating
point if f,(g)>0 and f4(g)>0. The set PR,i={qlgisa
penetrating point of R;} is called the penetration set of
R;. The upper limit of PR;, denoted as PR;.u, is the max-
imum of the Y-coordinates of the points in PR;, and the
lower limit of PR;, denoted PR..l, is the minimum of
the Y-coordinates of the points in PR;.

Lemma 7. The penetration set PR, of R;, if non-emp-
ty, is a vertical continuous open interval (PR../, PR,.u)
corresponding to a subsegment of R..e.

[proof]: Assume that PR; consists of more than one in-
terval, called penetrating subintervals (Fig. 4). Consider
a point p¢ PR; that lies between two consecutive
penetrating subintervals. There exists a corner-turning
shortest path II% along R..e that must go either up or
down, passing through one of the penetrating subinter-
vals. When it reaches a point in PR;, it must penetrate
R;. But then this path can be replaced by one that
penetrates R; directly at p and makes an appropriate
turn to reach the point at which the former path exits
from R;. That is, p is a penetrating point, a contradic-
tion. The lemma is proved. ¢

Lemma 8. For any two points g and r, g above r. on
Ri.e where PR;# ¢, we have (i) f.(q)<f.(r) and (i) fa(q)
= fd(’).

[proof]: It follows from the triangle inequality. ¢

With the information of PR, for each rectangle in X-
region(s), we can construct II¥ by tracing backwards
from ¢ as follows. We first find the left projection ¢’ of ¢
on R;, and decide whether to make a turn or a penetra-
tion. For a turn, we known whether II} should turn up-
wards to a or downwards to b along R;.e. We continue
finding the left projection of the point a or b, and

460

nonpenetrate
PR [7o7z7mnom==-

B
H
£
g
=3
g
g
3
B

PR; penetrating subinterval

rate
P

Fig. 4 There is only one penetrating interval for each rectangle.

repeat thus process until we hit P1, P2, or s. For a
penetration, we continue finding the left projection of
t’ as if R; were nonexistent, and repeat the same proc-
ess. The first left projection point at which a turn is
made is called a nonpenetrating left projection. Findry
the nonpenetrating left projection in this manner ap-
pears to be a time-consuming process. It turns out that
the nonpenetrating left projection of a given point ¢ can
be calculated easily by a plane sweep method, as de-
scribed below.

4. The Algorithm

Let V be a set of vertical segments containing those
on Pl and P2, R,.e for all R; and the point ¢ (regarded as
a degenerated segment), and let C denote the set of Y-
coordinates of the endpoints of all the segments in V.
For each R;, define PR; to be the smallest open interval
(l,u), I, ue C, that encloses the penetrating interval
(PR..l, PR,.u). PR;=¢, that is, /= u, if PR,=¢. We are
now ready to describe the plane sweep method, which
also computes PR; for each R;.. We shall sweep the X-
region(s) from left to right by a vertical sweep line L
stopping at each segment in V. The sweep line L con-
tains a set of cut points, {c;}, i=1,2,...,m, whose Y-
coordinates are exactly those in C, and these cut points
are sorted by their Y-coordinates. Associated with each
cut point ¢ on L, we have two attributes, c.e and c.w.
The first denotes the index of some segment in V to the
left of L that contains the first nonpenetrating left pro-
jection ¢’ of ¢. The second, c.w=X%, R;.w+ W}, where
W; is the width of R; penetrated by c¢c’, and c. w=0if no
R; exists, in other words, ¢’ is the left projection of c.

With these two attributes, c.e and c.w, of ¢ maintain-
ed on L, we can determine the weighted length of IT}
for each cut point ¢ on L as dwk=dw* +Ic’cl +c.w,
where ¢’ is on the vertical segment c.e and dw}. is ob-
tained as follows (Fig. 5):

(1) if ¢’e Ri.eand ¢’.y=PR,.u, then

dwk=dwk+Ic’al,
where a is the upper endpoint of R..e
(2) if c’e Ri.e and ¢’.y=PR,.l, then
dwk =dwk+1c'bl,
where b is the upper endpoint of R;.e
(3) if ¢’ is on Pl or P2, then
dwh=l1c¢' x=sxl+Ic'.y—syl.
Definition 12. Let u.e be an attribute associated with
each internal node u in the weighted segment tree 7.

C. D. YANG, T. H. CHEN and D. T. LEE

Ri.a o { Rjw : S
ccexcy) | i 9 ! :
= ™ +—i ¢
S Lo beeeeet P
Ri.e=c.e [AR H :
1 Ri.b i
H x-axis : N
cex -

Fig. 5 Hlustration ot a cut point ¢ and its attributes.

Define sete, resete and adde to be functions identical to
setw, resetw and addw, respectively, but applying on
the attribute u.e instead of u. w. gete is the same as getw
except that it extracts information from wu.e instead of
u.w.

Functions sete and gete are designed to maintain c.e
for each cut point c. We are now ready to describe the
algorithm.

Initially, the variables u.w and u.e for each node u in
the weighted segment tree are set to zero, and every
node is unmarked.

Let Ri.e={c;i=b, ¢i+1, . . . , c;=a} denote all the cut
points on R;.e. Recall that getw (c;, root) 'returns c;.w,
the accumulated weight of the elementary interval [c;,
¢i+1), in O(log n) time. f,(c:), by definition, is equal to
dwi+ lac,| —dw¥,— |ci, ¢ —getw(cy, root), and
Sac)=awk+ | beel —dwk,— | ci, el —getw(cy, root),
where ¢ is the projection of ¢; on ct.e and c.e is ob-
tained by calling gete(ck, root). The detail is given in
Algorithm SRP0.

4.1 Algorithm SRP0

1. Partition the plane into four regions according to
the given query point s.

2. Determine the region in which the given query
point ¢ falls. (assume ¢ falls in the X-region(s)).

3. Construct the sweep line L, consisting of cut
points CC={¢;}, i=1, 2,. .., m, sorted in ascending
order of their Y-coordinates and all ¢;.ye C and create
the weighted segment tree T for CC in L.

4. Sort the vertical segments in V.

5. Start sweeping from s to ¢ from left to right, stop-
ping at each segment in V. For each sweeping step, do
the following:

5.1 If the current L contains R,.e, do the following:
(let Ri.e=ab with a above b, and let denote the cut
point list of L on R..e, that is, I={c;=b, Ci+1,. . .,
-1, ¢;=a})

5.1.1 Use binary search to find intervals [c,, Cr+1)
and (¢,-1, ¢,], X<y, on I containing PR;./ and PR;.u, re-
spectively, as follows. Take the middle cut point c;e 1.
If fa(ce) >0, then ¢, is below ¢; otherwise ¢, is equal to

'We use getw(c,, ¢) to denote getw(c,.y, v).

Shortest Rectilinear Paths among Weighted Rectangles

or above ¢x. In the former case, reduce the search do-
mainto {c;, . . . , cx—1}; in the latter, consider {c¢, . . . ,
¢;}. The search continues until f;(c,)<0 and fi(cx+1)>0
for some i<x<j. Do the same to locate (¢,-1, ¢,] so that
fu(¢,)<0and f.(c,-1)>0. Let /=c, and u=c,. PR, exists
iff # and / are found and u>/. Let PR,=(/, u).

5.1.2 If PR;exists, then for all c in intervals [u, ¢;-1],
and [c¢;+,, /] perform resetw operation and set c.eto R;.e
and for all ¢ in (/, u), perform the addw operation. If
PR; does not exist, then for all ce [ci+), ¢j—1]. perform
the resetw operation and set c.e to R;.e. Calculate and
store in R; the information dw?, dwj, and PR,, if it ex-
ists.

5.2 If the current sweep line contains a vertical edge
ve on P1 or P2, perform the resetw operation and set
c.e to ve for those cut points ¢ in ve.

5.3 When the sweep line L reaches the point ¢, we
can start tracing back from ¢ by first finding the
nonpenetrating left projection of ¢ (say c¢). The rec-
tangle R; containing c.e is the first place that the shortest
path should make a turn. By comparing PR; with .y,
we determine whether it should turn to @ or to b. Now
continue the recursive steps from the points a or to b.
Now continue the recursive steps from the points a or b
until we hit P1 or P2 at some point, say m. The shortest
path from s to ¢ will be the path concatenated by the
path from s to m on P1 or P2 and the segments found in
each recursive step.

In the algorithm SRPO, we spend O(log n) time
evaluating fis(cx) and f,(cy) (the getw and gete opera-
tions), and therefore O(log’n) time locating the
penetrating interval of each vertical segment. Thus the
total time complexity of the algorithm is O(n log? n).
Theorem 1. There exists an algorithm that solves the
shortest path problem in the presence of n weight rec-
tangles in O(n log® n) time and O(n) space.

4.2 Extended Weighted Segment Tree

We shall show below that the time complexity can be
improved further by modifying the underlying data
structure and using a global search to find the
penetrating interval in O(log n) time in each sweeping
step. The idea is as follows. For each interval [u.B, u.E)
in the canonical covering of interval I, we expect to
know in O(l) time whether it contains a penetrating
point. If so, we need to know which subtree of node u
to search further.

We therefore maintain in each node u four attributes
u.law, u.raw, u.lae and wu.rae;, u.law is the left ac-
cumulated weight of those nodes along the leftmost sub-
path from u to the leftmost leaf, and w.raw is the right
accumulated weight of those nodes along the rightmost
subpath from u to the rightmost leaf. The weight of u is
included in these two new attributes. That is, if » is the
leftmost or rightmost leaf of the subtree rooted at u, its
accumulated weight ».w can be obtained in O(1) time
from w.law or u.raw respectively.

461

u.lae and u.rae, like u.law and u.raw, store the in-
dexes, Im.e and rm.e, of the leftmost and rightmost
leaves /m and rm of u.

That is, left
L(u)=set of nodes on the leftmost subpath below and
including # and
R(u)=set of nodes on the rightmost subpath below and
including u.

We have w.law=2X...w (w.W), U.raw=Z,cpw (v.Ww),
ulae=2%,c 1w (v.e), and u.rae=2%,c pw (v.€).

After finding these attributes in advance, we can
locate the intervals [ck, ¢x+1) and (c,-1, ¢} containing
PR,.u and PR../, respectively, in O(log n) time within
those subtrees rooted at the canonical covering nodes
for interval R;.e, as described below.

1. Initialize all u.law, u.raw, u.lae, and u.rae at
zero.

2. Modify the algorithm resetw by adding between
lines (6) and (7) the following:

if (v.B<u.B) then u.law=-(wsum)
if (v.E=u.E) then u.raw=-(wsum)

This is to ensure that if the leftmost (or rightmost)
leaf of the subtree T'(u) rooted at u is in the interval to
be reset, the left (or right) accumulated weight is ad-
justed accordingly. Make similar modifications to resete
for u.lae and u.rae.

3. By the same token, modify the algorithm addw
by adding between lines (6) and (7) the following,

if (v.B=<u.B) then u.law=u.law+ weight
if (v.E=u.E) then u.raw=u.raw + weight

Make similar modifications to adde for u./ae and
u.rae.

4. To be consistent with the rule that all attributes
on and above a marked node are valid, add the follow-
ing after line (3) in algorithms addw and resetw.

Is(u).law =Is(u).raw =rs(u).law =rs(u).raw =0.

Add similar statements for attributes /ae and rae in
algorithms adde and resete.

5. To find PRi=(u, I) of a rectangle R;, a new opera-
tion bi_search as described below is used to find an
elementary interval [c,-1, ¢,) that contains PR,.u.

5.1 Find the canonical covering C of R;.e.

5.2 Examine the node ve C from right to left in the
tree (that is, from high to low ordinate), and check
f.(v.B). Note that v.B corresponds to a cut point ¢, and
c..w can be calculated from v.law, as described in
bi_search. If f,(v.B)>0, then PR,.u lies in the subtree
T(v) and we do the next step. If f,(v.B)=<0, check the
next node in C. If the nodes in C are exhausted, then
PR; does not exist.

5.3 Suppose T(v) contains PR;.u. Use the subsearch
operation to perform a standard binary search on T(v)
to find the elementary interval [¢,-, ¢,) where f,(cy-1)
>0 and f,(c,)<0. Thus, let u be c,. Similarly, use f;
function to find an elementary interval [c,, ¢,+1) contain-

462

ing PR;.l and let / be c,. Note that PR, is nonempty iff
u>l\.
bi_search (u: node, v=[g, h]: interval, wsum: int,
esum: int, U: int, done: boolean)
/*v=interval of cut points on segment ab, a above
b.*/
/*wsum and esum are accumulated values above u, ex-
clusively.*/
/*let SA[al=dw(l,).*/
/*let RW=(Weight of the rectangle encountered)*(its
Width)* /
begin
if (2.y<u.B) and (u.E<h.y) then
/*u is a canonical covering node*/
begin
if f(SA[a], u, wsum, esum, RW, a)>0 then
begin
U=subsearch (¥, wsum, esum)
done=TRUE
end
end
else begin
wsum=u.w + wsum
esum=u.e+esum
/ *search right subtree first*/
if not done and (u.M <h.y) then
bi_search (rs (u), v, wsum, esum, U, done)
if not done and (g.y <u.M) then
bi_search (Is (u), v, wsum, esum, U, done)
end
end
subsearch(u4: node, wsum: int, esum: int): int
begin
if u is a leaf then return (u.B)
wsum=wsum+u.w
esum=esum-+u.e
if f(SA[a], rs(u), wsum, esum, RW, a)>0 then
return(subsearch(rs(u), wsum, esum))
else return(subsearch(Is(u), wsum, esum))
end
f(sa: int, u: node, wsum: int, esum: int, RW: int, a:
point): int
begin
e=esum+u.lae/*get c.e for c=u.B*/
/*let e=(e.a, e.b) with e.a above e.b*/
dw=min (SA[e.a] + le.a.y—u.BIl, SA[e.b]
+lu.B—e.b.yl)
return((sa+ |a.y—u.B|)—((wsum+u.law)+(la.x-
—e.a.x| +dw))
end
The functions, bi_search, subsearch and f shown
above are designed to find PR;.u. Modifications can be
made to find PR..I.

4.3 The SRP Algorithm in &(n log n)

[Algorithm SRP] We obtain the optimal algorithm SRP
by modifying algirithm SRPO in steps 4 and 5.1.1 as
follows:

C. D. YANG, T. H. CHEN and D. T. LEE

4. Create the extended weighted segment tree T for
CCin L.

5.1.1 According to Lemma 8, to find PR,, we use
operation bi_search to find intervals [c,, ¢,+1) and (c,-,
¢,] on L that contain PR;./ and PR;.u, respectively. Let
u=c, and I=c,, PR, exists if and only if u>{. PR;=(l,
u).

Theorem 2. The algorithm SRP runs in O(nlogn)
time and ©(n) space, which are both optimal.

[proof]: Since step 5.1.1 can be done in O(log n) time,
the time complexity of the algorithm follows. The space
requirement of the algorithm is obviously O(n), since
each node in the extended weighted segment tree con-
tains O(1) attributes and there are O(n) nodes. The op-
timality of the algorithm follows from the proof given
by Clarkson et al. [1].©

Theorem 3. The problem of the Shortest Rectilinear
Path among Weighted Rectangles can be solved optimal-
ly in ©(nlog n) time and @(n) space, where n is the
number of rectangular obstacles.

5. Conclusion

In this paper, we first introduced the weighted seg-
ment tree structure, which enabled us to find the
shortest rectilinear path among weighted rectangles in
O(n log? n) time. Then, by maintaining more informa-
tion on the weighted segment tree, we were able to solve
the problem optimally in O(nlogn) time and O(n)
space. The problems with weighted rectilinear obstacles
or, weighted simple polygonal obstacles are interesting
and worth further research.

References

1. CLARkSON, K. L., KAPOOR, S. and VAIDYA, P. M. Rectilinear
shortest paths through polygonal obstacles in O(n log? n) time, Proc.
3rd ACM Symposium on Comp ional Geometry, Waterloo, On-
tario (June 1987), 251-257.

2. DEREZENDE, P. J., LEg, D. T. and Wu, Y. F. Rectilinear shortest
paths with rectangular barriers, Discrete and Computational
Geometry, 4 (1989), 41-53.

3. GuiBas, L. J. and HERSHBERGER, J. Optimal shortest path
queries in a simple polygon, Proc. 3rd ACM Symposium on Computa-
tional Geometry, Waterloo, Ontario (June 1987), 50-63.

4. LArson, R. C. and Li, V. O. Finding minimum rectilinear
distance paths in the presence of barriers, networks, 11, (1981), 285-
304.

5. Leg, D. T. Proximity and reachability in the plane, PhD Disserta-
tion, University of Illinois, 1978.

6. LEg, D. T. and PREPARATA, F. P. Euclidean shortest paths in the
presence of rectilinear barriers, Networks, 14 (1984), 393-410.

7. LozaNo-Perez, T. and WESLEY, M. A. An algorithm for plann-
ing collision-free paths among polyhedral obstacles, Comm. ACM,
22 (1979), 560-570.

8. MITCHELL, J. and PAPADIMITRIOU, C. The weighted region prob-
lem: Finding shortest paths through a weighted planar subdivision, J.
ACM, to appear.

9. MitcHELL, J. Shortest rectilinear paths among obstacles
Technical report NO. 739, School of Operations Research and In-
dustrial Engineering, Cornell University, April 1987.
10. PreparaTA, F. P. and SHAMOs, M. 1.
Geometry, Springer-Verlag, NY (1985), reading.

Computational

(Received February 13, 1990; revised June 25, 1990)

