36

Research Contribution

Roughly Sorting: A Generalization of Sorting

YOSHIHIDE IGARASHI*

A sequence a=(a,, . . .

and DERICK WooD**

» a,) is k-sorted if and only if for all 1</, j<n, i<j—k implies a;<a;. A k-sorting algorithm

called k-Bubblesort is first designed, since it is a generalization of Bubblesort. Next, a k-sorting algorithm called k-Quicksort
is designed, as well as an algorithm for transforming a rougly sorted sequence into a less roughly sorted sequence. It is shown
that k-Quicksort is time-optimal within a constant factor if & satisfies a certain condition. Parallel implementation of k-Bub-

blesort and k-Quicksort are also discussed.

1. Introduction

Sorting is an essential part of data processing and
algorithm design. However, in some applications it is
sufficient to sort sequences roughly rather than com-
pletely. The concept of rough sorting has appeared in
papers by Sado and Igarashi [11, 12] on parallel sorting
on a mesh-connected processor array. They have design-
ed fast parallel algorithms incorporating a method of
roughly sorted subfiles. Their algorithms are faster than
an algorithm based on merging four completely sorted
subfiles iteratively. This is a good example of how
rough sorting contributes to the improvement of the
overall time efficiency. Another example is a dynamic
data structure in which the sorted order is often
disturbed by inserting new items. In this case rough sor-
ting of the initial data may be acceptable, and it may be
better to have a searching algorithm that works for
roughly sorted files. Whenever we need a completely
sorted file, we sort the roughly sorted files. The notion
of presorted lists [4, 8, 9, 10] is a related concept, but
different from that of roughly sorted lists.

In this paper, we study rough sorting as a generaliza-
tion of sorting. In Section 2, we give definitions and
notations for understanding this paper. In Section 3, we
design a rough sorting algorithm that is a generalization
of Bubblesort. A parallel implementation of the
algorithm is given in Section 4. In Section 5, we design a
rough sorting algorithm that is a generalization of
Quicksort. This algorithm is time-optimal within a con-
stant factor (that is, we ignore the coefficient of the
leading term and the minor terms) under a certain condi-
tion. We also describe an algorithm for transforming a
roughly sorted sequence into a less roughly sorted
sequence.

*Department of Computer Science, Gunma University, Kiryu,

376 Japan.
**Department of Computer Science, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada.

Journal of Information Processing, Vol. 14, No. 1, 1991

2. Preliminaries

Our notion of rough sortedness is formalized by the
following definition:

Definition 2.1 A sequence a=(a,...,a,) is k-
sorted if and only if, for all i, jin {1,...,n}ti<j—k
imples a;<a;.

Suppose that (as, . . . , a,,) is the completely sorted

sequence of a=(ay, ..., a,). If for all i(l1<i<n),
li—a;l <k, then we say that « is k-deviated. We can
easily show that if « is k-sorted then it is also k-
deviated. However, a k-deviated sequence is not
necessarily k-sorted. For example, a=(3, 1, 4, 2) is 2-
deviated but not 2-sorted. From Definition 2.1, « is
sorted if and only if « is 0-sorted. The radius of « is de-
fined to be the smallest & such that « is k-sorted, and is
denoted by ROUGH(«). The radius is a presorted
measure satisfying the axioms introduced by Mannila
[9]. As shown in Altoman and Igarashi [2], for a given
sequence o of length n we can find ROUGH(«) in O(n)
time. We now introduce the notion of a b- block which
is important for the next section.
Definition 2.2 Given a sequence a=(a, ..., a,), a
nonnegative integer b, and an integer {, 1<i<n—b+1,
the b-block of « at position i is the subsequence (a;, . . . ,
@isp-1) Of . A b-block of « is a b-block at some posi-
tion /.

It is well known that O-sorted sequences can be
characterized by the following local conditions:
a=(a, ..., a,)issorted if and only if every 2-block of
a is sorted.

This local characterization of sorted sequences can be
generalized by the following theorem:

Theorem 2.1[7] Let a=(ai,. . ., a,) and k be a non-
negative integer. Then « is k-sorted if and only if every
(2k +2)-block of « is k-sorted.

The size of blocks specified in the above theorem is
optimal in the sense described in the next theorem.
Theorem 2.2[7] For every k=0, there exists a se-
quence « satisfying the following two conditions:

1. «is not k-sorted.

Roughly Sorting: A Generalization of Sorting

2. Every (2k+1)-block of « is k-sorted.

When a=(a;,...,a,), ;. ; denotes the subse-
quence (@, . . . , a;) of . When « is a sequence, |al
denotes the length of a. The computing time of each
algorithm given in the following sections holds both in
the worst case and on the average case, unless stated
otherwise.

3. k-Bubblesort

In this section we consider a generalization of Bub-
blesort. It is well known that any sequence of length n
can be sorted by at most n-1 bubbling passes, where the
i-th bubbling pass is described as follows:

for j:=1to n—ido
if a;>a;+, then exchange (a;, a;+1)
{a; is the j-th item of the sequence}

The bubbling operation compares two adjacent items
and exchanges them if they are not in sorted order. In
other words, the bubbling operation 0-sorts a 2-block.
We now extend the bubbling operation so that it k-sorts
a (2k+2)-block. This operation is called k-bubbling.
Obviously, ordinary bubbling is 0-bubbling. We shall
give an algorithm, k- Bubblesort, that k-sorts a given se-
quence by means of k-bubbling. Note that, in general,
there are many k-sorted sequences corresponding to a
(2k+2)-block and, for that matter, many k-sorted
sequences corresponding to any given sequence. Uni-
queness is achieved only when £=0. Therefore, k-bub-
bling transforms a (2k+2)-block into one of its
k-sorted sequences. However, for technical reasons we
specify that k-bubbling is a particular transformation
defined by the following procedure:

Procedure k-BUBBLE (a, j, j+2k+1);
begin
if j=1 then begin {simply k-sort o, . a+2}
fori:=1to k+1 do
fors:=1to i do
if a,++i<a then exchange (ax++i, a5)
end
else begin {make a;.2+ not less than any of
Q. ,j+k}
fori:=1to k+1 do
if @j+2+1<a;+i-1 then exchange
(@j+2x+15 Qjvi-1)
end
end

Using k-BUBBLE, a k-bubbling pass from the first
(2k+2)-block to the last (2k +2)-block can be described
as follows:

for j:=1to n—2k—1 do
k-BUBBLE (o, j, j+2k+1)
At the beginning of the j-th (j=2) stage of a bubbling

pass, the items in o;+4+1. . j+2« satisfy the condition of -
sortedness within a; . j+, since these items satisfy the

37

condition of k-sortedness within the subsequence at the
previous stage. Therefore, these items need not move
during the j-th stage. This is why we specify k-bubbling
as described in k-BUBBLE. Hereafter, we say that
terms are k-sorted with respect to a subsequence if and
only if the terms satisfy the condition of k-sortedness
within the subsequence.

Lemma 3.1 Suppose that a=(a, - -,a,) and the
following k-bubbling pass is executed:

for j:=1to n—2k—1do
k-BUBBLE (o, j, j+2k+1)

Then, for all i such that n—k<i=<n, a;is not less than

any item in o . ;-4-; that is, the last £+ 1 items are k-
sorted with respected to a.
Proof. The proof is by induction on the leftmost posi-
tion j of the 2k +2 positions currently being processed
in the k-bubbling pass. The set of these 2k +2 positions
are called the window of the k-bubbling.

Basis: j=1. At the end of the first stage of the k-bub-
bling pass the last k+1 items in «; . +2 are obviously
k-sorted with respect to o, 2x+2.

Induction step: j= 1. Suppose that at the end of the j-
th stage of the k-bubbling pass, the last k+1 items in
the window are k-sorted with respect to oy . j+2¢+1. Dur-
ing the j+ 1st stage, the items in ojsx+2. . j+2+1 remain
unchanged and any item in o, . j+«+1 cannot be greater
than the items in the same position at the j-th stage.
Hence, during the j+1st stage, the items in
Oj+k+2. . j+2k+1 are k-sorted with respect to ai. j+ak+2-
From the inductive hypothesis, at the beginning of the
Jj+ Ist stage a;+x+ is no smaller than any item in «, ;.
Furthermore, a;: .+, at the end of the j+ 1st stage is the
maximum of the items in 1. jex+1 and @az+r.

Al+3] A[j+4)] A[j+5]

AQl Afj+1) Afj+2)
C All..j1))
U X indicates that the order
may be destroyed

Alj+4] A[j+5) A[j+6]

— Ali+1] | A+2] | A+3)

(All..j1)) C Al)

Fig. 1 Change of a partial order by a one-position shift of the win-
dow in a 2-bubbling pass.

38

Hence, a@j+2+2 is no smaller than any item in o j+i+
at the end of the j+ 1st stage. Thus, theitems in oyx+2. j+2c+2
are k-sorted with respect to a;. j+x+2 at the end of the
J+ 1st stage. (The situation for k=2 is shown in Fig. 1.)
Therefore, at the end of the k-bubbling pass, the last
k—1items in « are k-sorted with respect to the whole se-
quence. D
From Lemma 3.1 we can design a k-bubble sorting
algorithm as follows: k-Bubblesort consists of
[(n—k—1)/(k+1)] k-bubbling passes. The length of
the first bubbling pass is n—2k— 1. The length of each
subsequenct bubbling pass is £+1 shorter than the
previous pass. k-Bubblesort is a natural extension of
Bubblesort, and is also called the rough bubblesort.
The algorithm can be described as follows:

procedure RBUBBLE («, 1, n, k);
begin
fori:=1to [(n—k—1)/(k+1)] do
forj:=1ton—k—(k+1)i do
k-BUBBLE (a, J, j+2k+1)
{if n—k—(k+1i<1 then k-BUBBLE is ex-
ecuted once in the second for loop}
end

Lemma 3.2 « is k-sorted by RBUBBLE (q, 1, n, k).
Proof. Let P(i) be the following assertion:

At the end of the i-th bubbling pass in the computa-
tion of RBUBBLE (a, 1, n, k), the last (k+1)i items
are k-sorted with respect to the whole sequence.

If (k+1)i>n, the last (k+ 1)/ items in P(/) should be
read as the whole sequence. We prove that P(i) is true
foralli, 1<i< [(n—k—1)/(k+1)], by induction on i.

Basis: i=1. From Lemma 3.1, P(1) is true.

Induction step: i=1. Suppose that P(i) holds and
i<[(mn—k—1)/(k+1)]. From the definition of k-
BUBBLE, during the i+ Ist bubbling pass any item in
On—tk+ 1)+ 1)+1. . n—k+ i does not move unless it is smaller
than an item in «; . ,—w+1i+1. Therefore, the items in
Qp-k+13i+1. . n TEMain k-sorted throughout the i+ 1st bub-
bling pass. From Lemma 3.1, at the end of the i+ 1st
bubbllng pass the items in p—(k+ D+ 1)+1. . n—(k+1); are k-
sorted with respect to «; . .—«+1,- Hence, at the end of
the i+ 1st bubbling pass the last (k+1)(i+1) items in «
are k-sorted. Thus, the lemma holds. a

We evaluate the computing time of RBUBBLE as the
number of calls of k-BUBBLE. By a simple calculation
we obtain the next lemma.

Lemma 3.3 The number of calls of k<-BUBBLE to k-
sort a«=(a...,a,) by RBUBBLE is |(n—k—1)
[(k+1) | (n—=2k+r)/24+(1—-5(r)), where r=n
modulo (k+1), and d(r)=1 if r=0 and 0 otherwise
(the Kroenecker delta).

Corollary 3.4 When n is a multiple of k+1, the
number of calls of <-BUBBLE to k-sort a=(a, . . .,
a,) by RBUBBLE is (n—k—1)(n—2k)/ 2k +2).

We next evaluate the computing time of RBUBBLE
in terms of the number of comparison-exchange opera-
tions instead of the number of calls of <-BUBBLE. Con-

Y. IGARASHI and D. Woob

sider the sorting of a reverse ordered sequence of length
n by bubble sorting. The sequence is initially (n—1)-
sorted. Each bubbling pass reduces the unsorted size of
the sequence by one. Therefore, in the worst case
n—k—1 bubbling passes are required to obtain a k-
sorted sequence from a given sequence of length n.
Thus, this straightforward method for k-sorting takes
(n—k—1)(n+2)/2 comparison-exchanges.

From Lemma 3.3 the next theorem is immediate.
Theorem 3.5 The number of comparison-exchanges
to k-sort a sequence of length n by RBUBBLE is
gk+)+k(k+1)[(n—k~1)/(k+1)] /2, where g is
the number of calls of k-BUBBLE given in Lemma 3.3
(i.e., g=n—k=D/k+1) | (n—2k+r)/2+(1~
a(r)).

Corollary 3.6 When » is a multiple of k+1, the
number of comparison-exchanges to k-sort a sequence
of length n by RBUBBLE is (n—k—1)(n—k)/2.

From Corollary 3.6 we can say that RBUBBLE is
faster than the straightforward method (i.e., k-sorting
by bubble sorting) by k(n—k—1) comparison-ex-
changes. This is a pleasant result. For large k, if we use
an O(k) partition algorithm for k-sorting a. s+ in k-
BUBBLE, the computing time given in Theorem 3.5
can be marginally improved. However, the purpose of
this section is to study a generalization of Bubblesort,
but not to design a fast k-sorting algorithm. In Section
5, a fast and optimal k-sorting algorithm for & satisfy-
ing a certain condition is given.

4. Parallel Implementation of RBUBBLE

In this section we consider how RBUBBLE can be im-
plemented by a parallel compute. Our model of a
parallel computer consists of a number of processors
and a global array memory. The processors can read
from or write into components of the array memory
concurrently unless they access the same component.
Each processor operates independently of the others,
but is synchronized by a global clock. We assume that
each item of a given sequence of length » is initially
stored in the corresponding component of the array.

We consider that the computing time for the comp-
are-exchange is one time unit. Then the computing time
for k-BUBBLE (a, j, j+2k+1) is k+1 time units if
Jj=2, whreras the computing time for k-BUBBLE («,
1,2k+2) is (k+1)(k+2)/2. Thus the first k-bubbling
pass of RBUBBLE takes (k+1)(k+2)/2+(n—2k—2)
(k+1) time units. To achieve simplicy in our anaylysis
of the computing time and the timing for parallel im-
plementation, we assume that k-BUBBLE (a, 1, 2k +2)
takes (k+1)* time units instead of (k+ 1)(k+2)/2 time
units. For example, we consider that the first k-bubbl-
ing pass of RBUBBLE takes (k+1)*+(n—2k—2)(k+1)
=(k+1)(n—k—1) time units.

In our parallel implementation, the first processor is
used for processing the first k-bubbling pass, the second
processor is used for the second k-bubbling pass, and so

Roughly Sorting: A Generalization of Sorting

processor 1

.1. —_— . progcessor2
+ —_ processor3
processor 4
processor 5
processor 6
processor 1

processor 2

=] oo ~ (= N] > w N
+ " N + N
+ t +—t +

t-th k-bubbling pass («— 1)

processor 3

10 + processor 4

processor5 .

12 4 processor 6 __

27 54 81 108 135 162 189 216

———— time units

Fig. 2 Timing of the RBUBBLE computation for n=39 and
k=2.

on. To start the second k-bubbling pass, the process in
the first k-bubbling pass involving the items from the
first position to the (2k +2) th position should be com-
pleted. Since 2(k+1y¥=(k+1)(k+2)/2+(k+1)?, a
time delay of 2(k+ 1)? time units is sufficient for starting
the second k-bubbling pass. In general, there is no tim-
ing problem if the i+1 st k-bubbling pass starts at
2(k+1)’ time units after the i-th k-bubbling pass
started. In this fashion, we can implement RBUBBLE
in parallel on the model with [(n—k—1)/(2k+2)]
processors. The timing of the parallel RBUBBLE com-
putation for =39 and k=2 is shown in Fig. 2. Such a
parallel implementation can be described as follows:

procedure PRBUBBLE (¢, 1, n, k);
begin
fori:=1to [(n—k—1)/(k+1)] do in parallel
start the (i modulo [(n—k—1)/(2k+2)])-th
processor at 2(k+ 1)}(i—1) clock time;
forj:=1ton—k—(k+1)ido
k-BUBBLE (g, j, j+2k+1) by (i modulo
[(n—k—1)/(k+2)] -th processor
{if n—k—(k+1)i<1 then k-BUBBLE is ex-
ecuted once in the for loop}

end

end

By simple calculation we can evaluate the computing
time of the parallel version of RBUBBLE (i.e., PRBUB-
BLE) in the next theorem.

Theorem 4.1 For nand k such that n>k+1, the com-
puting time of PRBUBBLE for k-sorting a sequence of
length n is (n—k—1)k+1)+ | (n—2k—2)/(k+1)]

(k+1)*+ (n modulo k+ 1)(k+ 1) time units, where the
computing time for the compare-exchange operation is
the time unit.

39

Corollary 4.2 When n is a multiple of £+ 1, the com-
puting time of PRBUBBLE for k-sorting a sequence of
length nis (2n—3k —3)(k + 1) time units, where the com-
puting time for the compare-exchange operation is the
time unit.

5. k-Quicksort

Quicksort is a divide-and-conquer method for sor-
ting. It works by partitioning a file into two parts and
then sorting those parts recursively in the same way.
This method can be also used for k-sorting.

Let PARTITION («, b, y) be a procedure for finding
the median m of and constructing a partition (8, y) of
o by m (that is, any item in f<m=<any item in y),
where we assume that | [—Ipil<]1.

procedure RQUICK (e, 1, lal, k);
begin
if lal <k+1 then return
else begin
PARTITION («, 8, y);
return RQUICK (8, 1, 181, k) followed by
RQUICK (y, 1, Iyl, k)
end

end

The above procedure RQUICK can be considered a
generalization of Quicksort. Since the necessary and
sufficient number of comparison-exchanges for finding
the median among 7 items is @(n) [3], the next theorem
is immediate.

Theorem 5.1 Let o be a sequence of n items. Then «
can be k-sorted by RQUICK (a, 1, lal, k) and its com-
puting time is O(n log (n/(k + 1))) time units.

As stated in the above theorem, RQUICK takes O(n
log (n/(k+1))) time even in the worst case. However,
the constant factor and the effect of minor terms associ-
ated with the linear algorithm for finding the median
are relatively large for practical-sized n This results in
RQUICK being much worse on average than a rough
quicksorting associated with randomly choosing the
pivot for the partition each time instead of chooosing
the median, although the latter method takes O(n?)
time in the worst case.

Let k£ be a function of n, and denote it by k(n), If
lim -« k(n)/n=1, then a can be k-sorted by simply PAR-
TITION (01 n—k+10k=1. .ny Q1. n—k+15 Qtk=1..n) in
O(n—k(n)) time. In this case RQUICK is not time-op-
timal, since the order of n—k(n) is less than linear in 7.
For example, when k(n)=n— vn, a can be k-sorted in
O(+'n) time by the method mentioned above.
Theorem 5.2 RQUICK (a, 1, lal, k) is time-optimal
for k-sorting within a constant factor, if lim,-« k(n)
/n<1 and if one of the following three conditions is
satisfied:

(1) For some positive constant ¢, ¢, <lim,.» k(n)
/n.
(2) lim,.« log k(n)/log n=0.

40

(3) For some positive constant ¢;, ¢;<lim,-» log
k(n)/logn<1.

Proof. We assume that lim,-« k(n)/n<1.

Case 1. There exists a positive constant ¢, such that
¢ <lim,-« k(n)/n.

In this case RQUICK takes O(n) time, from Theorem
5.1. On the other hand, to k-sort o, each item in
Q1. n—k+1 OF iN ax—1 .., must be compared with another
item at least once. It theorefore takes at least @(n) time
by any comparison-based k-sorting algorithm.

Case 2. lim,-« log k(n)/log n=0.

In this case RQUICK takes O(nlogn) time from
Theorem 5.1. The optimal number of comparisons need-
ed to sort a sequence of n items is @(n log n) [1], and
the optimal number of comparisons needed to sort a k-
sorted sequence of » items is @(n log (k+1)) [5, 7]. Let
T(n) be the computing time for k-sorting a sequence of
n items. Then from those facts @(n log n) < T'(n)+6(n
log (k+1)). Since lim,-«logk(n)/logn=0, T(n)
= 6O(nlog n).

Case 3. There exists a positive constant ¢, such that
c;<lim,.» log k(n)/log n<1. In this case RQUICK
takes O(nlog n) time. Suppose that in this case
RQUICK is not time-optimal. Then there exists an
algorithm for k-sorting in 7'(n) time such that lim,-«
T(n)/(nlog n)=0. We can construct the following sor-
ting algorithm. We first k-sort a given sequence by the
above mentioned type of T(n)-time algorithm. Let the
obtained k-sorted sequence be «;. ,=AA;...A,
where for each i | 4;] =k. For simplicity of description
we assume that » is a multiple of &, but with a minor
modification the algorithm will also work properly for
any n. Next we use a linear time partition algorithm as
follows:

fori:=1to t—1
PARTITION (A;Ai+1, Ay Ais1)

Then for the obtained sequence o). ,=A4,4,. .. A4,
any item in A, is not greater than any item in A; if i<j.
Finally sort each A4; by a sorting algorithm whose com-
puting time is asymptotically not greater than c; n log n.
Then final sequence is completely sorted.

Let ¢, be a constant such that lim,-« log k(n)/log
n<cs<1. Then the total computing time for sorting by
the method mentioned above is not asymptotically
greater than

(n/k(n)) X csk(n) log k(n)+ T(n)+cn<cscanlogn
+T(n)+cn.

Since T'(n) and cn are minor terms, this means that
there exists an asymptotically faster sorting algorithm
with a smaller constant factor of the leading term in its
computing time than any comparison-based sorting
algorithm. However, since the optimal time for com-
parison-based sorting is @ (n log n), there should exist a
positive constant ¢s such that the number of com-
parisons needed to sort by any algorithm is greater than
¢s n log n. From this contradiction we can conclude that

Y. IGARAsHI and D. Woobp

RQUICK is time-optimal within a constant factor. O

For k such that lim,~« k(n)/n=0 and lim,-« k(n)
logn=1, we do not know whether RQUICK (e, 1,
lal, k) is time-optimal. For example, k(n)=n/logn
satisfies the above conditions. We conjecture that in this
case RQUICK is also optimal.

If a given sequence is already roughly sorted, we may
skip an initial part of the recursion for partitioning in
RQUICK. In this fashion we can improve the com-
puting time for k-sorting rougly sorted sequences.

procedure ADJUST (e, 1, n):

{Assume a=(a,, . ., a,). For simplicity we assume
that n is a multiple of 2ROUGH («). If « does not
satisfy this condition, the procedure needs a minor
modification. }

begin
p:=ROUGH(«);
ri=n/p;

for i:=1 to r do begin
Qil = Olp(i—1)+1 . . pis
PARTITION (a;, ai, i)
end;
for i:=1 to r—1 do begin
pii= Q0i+1),5
PARTITION (8, 8, 8:,)
end;
return C¥|‘/3'|]ﬂ|2 P ﬂ(,_1,|ﬂ(,_1)2a,2
end

Lemma 5.3 Let a be a p-sorted sequence of length n.
Then ADJUST (a, 1, n) returns a sequence y=(c,, .
cn) satisfying the following conditions:

(1) 7y is a permutation of «.

(2 Any item of (cpi-n+1, - . . , Cp) is not smaller

than any item of (Coi-2+1,. .., Cpu-1) for each
i(2=i<n/p) and is not greater than any item of
(Cpi+1s .+« 5 Coiivy) for each i(l<i<n/p—1).
Proof. It is obvious that y is a permutation of «. We
use the following notation. For x and y, a pair of se-
quences, x<y means that any item in x is not greater
than any item in y. Since « is initially p-sorted, the
following inequalities hold for each i:

.y

ap .

L. a(;_z)ISaiISa(,«H,z “ e a’z’

ay, -

. Cl'(i-l),_<.Oti2_<.(}¥(,'+2)l B 7

After the execution of the first PARTITION in AD-
JUST, for each i the above inequalities hold and
a;, <o, After the execution of the second PARTITION
in ADJUST, for each i the following inequalities hold:

an By, . . Bu-n,=Pu-n,=8B, . . < Bir-n,0r,,

a1lﬂ|| e .ﬂ(,‘—nlsﬁi’Sﬁiz .. .ﬁ(,_n;oz,.l.

Therefore, the lemma holds (a computing process by
ADJUST (a, 1, n) is depicted in Fig. 3). O
procedure FRQUICK (o, 1, n, k);
{Assume that a=(a,, . . . , @,) and that # is a multi-
ple of 2 ROUGH (). If @ does not satisfy this condi-
tion, the procedure needs a minor modification.}

Roughly Sorting: A Generalization of Sorting

;-1 O Qivl

SIDSSSNN 1 1 VI I III4"S

(a) The initial

ion of a p-sorted seq

a=a) ..ap =81 ... &

©G2)2 ®G Qgi-1)2 iy iy Qa1 Qirl)2

AN SN T R 7 777 A Z 7

(b) After the excution of PARTITION (o;,0t;,,&i;) foreachi(1<isr)

Biz Bi- Bi Bint

AMMANNANLARRRN NN 7777 "4

(¢) After the excution of PARTITION (B;, Bi;.Bi,) foreachi(1<i <r-1)

SNy =< REXXXXN =

Fig. 3 Computation process using ADJUST («, n).

begin
if n<k+1 then return
else begin
P:=ROUGH («);
x:=ADJUST (o, 1, n)
let y:=b,... by
for i:=1 to n/p do begin
Xi::bp(i—l)+l ... bpi;
PARTITION (xi, B, vi);
return RQUICK (8, 1, |8:l,k) RQUICK (y;,

1, Iy, k) to xi
end;
return x,. . . Xn/p
end
end

Theorem 5.4 Let o be a sequence of n items. Then «
can be k-sorted by FRQUICK (a, 1, n, k) in O(n log
[(ROUGH(a)+ 1)/ (k+1)]) time.
Proof. From Lemma 5.3 the correctness of
FRQUICK is immediate. The computing time of
PARTITION is O(n), and it has been shown that
ROUGH (o) can be computed in O(n) time [2]. Hence
the computing time of ADJUST («, 1, n) is O(n). From
Theorem 5.1 the computing time of the for loop in
FRQUICK is O(nlog [(ROUGH(a+1)/(k+1)]).
Therefore, the lemma holds. m]

The reason we use ROUGH (a)+1 instead of
ROUGH («) in Theorem 5.4 is to avoid the case for
log [ROUGH(«@)/(k+1)] =0. The proof of the next
theorem is analogous to that of Theorem 5.2.
Theorem 5.5 FRQUICK (a, 1, n, k) is time-optimal
for k-sorting ROUGH («)-sorted sequences within a
constant factor, if lim,-» k(n)/ROUGH (a)<1 and if
one of the following three conditions is satisfied:

(1) For some positive constant ¢, ¢ <lim,.» k(n)
/ROUGH(«).

(2) lim,-« log k(n)/log ROUGH(a)=0.

(3) For some positive constant ¢;, ¢;<lim,-» log

41

k(n)/log ROUGH(a)< 1.

We can implement RQUICK in parallel. After the ex-
ecution of PARTITION(q, 8, y) in RQUICK(e, 1,
lal, k), RQUICK(S, 1, |81, k), and RQUICK(y, 1,
{yl, k) can be executed in parallel if we have an ap-
propriate parallel computer. If such parallel executions
are always possible after the partitions, RQUICK(«,
1, n, k) can be implemented in O(f(n) log (n/(k+1)))
time, where f(n) denotes the computing time needed to
find the median of n items by the parallel model. In a
similar way, we can also implement FRQUICK in
parallel. We do not explain here the implementations in
detail, since they depend to a large extent on the parallel
model.

6. Concluding Remarks

We have designed k-Bubblesort and k-Quicksort as
generalizations of Bubblesort and Quicksort, respec-
tively. Sorting roughly sorted sequences and related
problems are also important [2,5,6,7]. Other in-
teresting problems are the design and analysis of rough
sorting versions of other well-known sorting
algorithms, the design of an efficient algorithm for merg-
ing two k,-sorted sequences into a kr-sorted sequence,
and the trade-off between the computing time and (ki,
k) of the the merging algorithm. These problems are
worth further investigation.

Acknowledgements

Part of the work was carried out while the first author
was a visitor in the Department of Computer Science,
University of Waterloo. This visit was supported by
Japan Society for the Promotion of Science, and the
Natural Sciences and Engineering Research Council of
Canada. The work of the second author was supported
under a Natural Sciences and Engineering Research
Council of Canada, Grant No. A-5692. The first author
wishes to thank Professor Maarten H. van Emden for
useful discussion of this work during his stay in
Waterloo.

References

1. AHO, A. V., HopcrorT, J. E. and ULLMAN, J. D. The Design and
Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass.,
1974.

2. ArTMAN, T. and IGARASHI, Y. Roughly Sorting: Sequential and
Parallel Approach, Journal of Information Processing, 12 (1989),
154-158.

3. BLum, M., FLoyp, R. W., PraTT, V. R., RIVEST, R. L. and
TarJAN, R. E. Time Bounds for Selection, J. Comput. Syst. Sci. 1
(1972), 448-461.

4. Cook, C. R. and KiM, D. J. Best Sorting Algorithm for Nearly
Sorted Lists, Comm. ACM, 23 (1980), 620-624.

5. EsTiviLL-CAsTRO, V. and Woop, D. A New Measure of
Presortedness, Tech. Report CS-87-58, Dept. of Computer Science,
Univ. of Waterloo, 1987.

6. 1GASASHI, Y. and KORTELAINEN, J. Time Lower Bounds for Sor-
ting Roughly Sorted Sequences, Tech. Report COMP89-19, IEICE
(1989), 21-27.

7. IcARrasHI, Y. and Woop, D. Roughly Sorting: A Generalization
of Sorting, Tech. Report COMP87-20, IECEJ (1987), 11-19.

42

8. LevcopouLos, C. and PETERSSON, O. Heapsort-Adapted for
Presorted Files, Workshop on Algorithms and Data Structures,
Ottawa, Lecture Notes in Computer Science, 382, Springer, Berlin
(1989), 499-509.

9. ManniLA, H. Measures of Presortedness and Optimal Sorting
Algorithms, IEEE Trans. Comput. CS-34 (1985), 318-325.

10. MEeHLHORN, K. Sorting Presorted Files, 4-th GI Conf. on
Theory of Computer Science, Aachen, Lecture Notes in Computer

Y. IGARASHI and D. Woob

Science, 67 , Springer, Berlin (1979), 199-212.

11. Sapo, K. and IGaRrAsHI, Y. A Divide-and-Conquer Method of
the Parallel Sort, Tech. Report AL84-68, IECEJ (1985), 41-50.

12. SaDpo, K. and IGARASHI, Y. A Fast Parallel Pseudo-Merge Sort
Algorithm, Tech Report AL85-16, IECEJ (1985), 21-30.

(Received June 5, 1989; revised February 20, 1990)

