Research Contribution

Almost Boolean Algebraic Computation of
LALR(1) Look-Ahead Sets

Hirovuk! Anzar*

In order to obtain an LALR(1) parser from a given grammar, it is necessary to construct an LR(0) automaton
and to compute LALR(1) Look-Ahead sets. This paper presents a new method for doing so, based on the linear
algebra-like approach instead of the traditional graph theoretical one.

After pointing out that the regular language generated from the empty set is isomorphic to Boolean algebra,
this paper shows that the above problems can be solved by partially reducing them to problems of this simplest
language, Boolean algebra, in such a manner that unknown sets are defined by simultaneous equations each of
whose coefficients is a Boolean number.

For a given BNF, equations of this kind defining the state transition of an LR(0) automaton are given and
solved. Follow sets are similarly defined and solved. Each solution is a formula for computing the desired sets,
whose form is the product of the closure of a Boolean matrix and a vector of either Boolean numbers or sets of
symbols. Finally, each Look-Ahead set is obtained as a union of properly selected Follow sets.

Until now, this kind of computation has been done in an iterative manner of set computation on the equa-
tions until the sets obtained become unchanged. Instead, this paper gives a formula for computing them by

almost Boolean matrix computation.

1. Introduction

For a given grammar, in order to construct an
LALR(1) parser, which is one of the most practical and
popular kinds of parser, it is necessary to construct an
LR(0) automaton and to compute LALR(1) Look-
Ahead sets from the automaton. Many researchers have
devised methods for doing so [l, 2, 3]. An efficient
method was shown by DeRemer and Pennello [1] in
1982.

The traditional approach to solving the above prob-
lems is the graph theoretical one. Instead, this paper ap-
plies a linear algebra-like approach to the problems.

This approach to graphs was, however, shown to be a
field of graph theory by Carré [4] and Gondran and
Minoux [5]. In Japan, this approach has been applied
to finite automaton theory since the study by Utagawa,
Inagaki, and Tange in 1965 [6]. Nozaki showed in 1967
that this approach is based on the algebraic system as a
semi-ring [7]. We also studied applying the approach to
finite automaton theory [8]. After that, we used the ap-
proach for generation of recursive-descent syntax-
directed translators [9, 10].

This approach was first applied to context-free
languages by Tixier [11]. For a given extended BNF, he
gave a parametric representation equivalent to it, that

*Kyushu Institute of Technology, Faculty of Engineering,
Kitakyushu-shi, 804, Japan.

Journal of Information Processing, Vol. 14, No. 1, 1991

is, a system of simultaneous right linear equations, and
called it the Standard Right Linear equation or SRL
equation. In the equations, each coefficient is a set of ter-
minal and nonterminal symbols and each constant term
is either the empty set ¢ or the empty string set A. From
the equation, he gave a parser of the top-down type.

As an application of this approach, we present a new
method of obtaining an LR(0) automaton and its
LALR(1) Look-Ahead sets.

This paper also points out that the language space
generated from the empty alphabet is isomorphic to
Boolean algebra, and shows that the above problems
can be solved by partially reducing them to problems of
this simplest language, Boolean algebra, in such a man-
ner that unknown finite sets are defined in the form of
simultaneous equations each of whose coefficients is a
Boolean number. Formulas to compute the sets are then
derived as the solutions of the equations.

For Tixier’s SLR equations derived from a given
BNF, equations of this kind defining the state transition
of an LR(0) automaton are given and solved, and the
solutions, that is, the state transitions, are represented
as the product of a Boolean vector representing a state
and a Boolean matrix representing the state transition
function. First sets and Follow sets are also defined in
the form of the above kinds of equation, respectively.
Formulas to compute the sets are given as the solutions,
whose form is the product of the closure of a Boolean
matrix and a vector of symbol sets. Finally, each Look-

2

Ahead set is obtained as a union of some Follow sets.

Until now, concrete computation of the above sets
has been done by iteratively computing sets on recursive-
ly defined equations until the sets obtained become un-
changed. Instead, this paper gives formulas for com-
puting them in a manner that depends mainly on
Boolean matrix computation.

Section 2 prepares, for a given alphabet 2, basic mat-
ters necessary for computation of sets of strings
generated from Z. First, an algebra on language spaces
generated from 2'is given as a semi-ring with idempoten-
cy in addition. It is pointed out that the language space
generated from the empty alphabet is isomorphic to
Boolean algebra. Then, a few matters are shown concer-
ning regular languages, finite automata, and
simultaneous right linear set-defining equations of the
fixed point form, that is, the recursivly defined form,
concerned with sets of strings as unknowns.

In Section 3, in order to treat context-free languages,
the matters in Section 2 are extended on the assumption
that X has the structure of TUN, where T is a set of ter-
minals and N a set of nonterminals. The equations
given in Section 2, each of whose coefficients is a subset
of 2 and each of whose constant terms is either ¢ or A,
are extended so that 2 is TUN, and result into Tixier’s
SLR equations defining nonterminals in such a manner
that they are derived from BNF defining the nonter-
minals.

In Section 4, for each nonterminal symbol X, the first
symbol set First (X), a set of symbols appearing at the
first position in sentential forms derived from X, is de-
fined. Then, simultaneous equations for all First sets as
unknowns are derived and solved. The solution is of the
form I™d, a column vector each of whose constituents
is a First set, where I'* is the closure of a matrix I" each
of whose elements is A or ¢, and d is a column vector
each of whose constituents is a set of symbols.

Section 5 presents two methods of constructing an
LR(0) automaton. The first uses the traditional ap-
proach to automaton theory, and the second uses the
linear algebra-like one. In the latter, each state is
represented as a Boolean vector and each state-transi-
tion as the product of a Boolean matrix and the
Boolean vector.

In Section 6, for each nonterminal-transition in the
LR(0) automaton, its Follow sets, a set of terminal sym-
bols that cause state-transition from a state reached by
the nonterminal-transition, are defined. Simultaneous
equations concerned with the Follow sets as the
unknowns are then derived and solved in the same
manner as for Follow sets.

Finally, in Section 7, for each pair of a reduced state
and the rule reduced there, the LALR(1) Look-Ahead
set is given as a union of properly selected Follow sets.

2. Language Semi-Ring and Finite Automaton

This section prepares basic matters concerned with

H. ANzal

computation of sets of strings necessary for the follow-
ing sections.

An alphabet, a set of symbols, is written X. The set of
all strings generated from X is denoted by Z*. For any
strings #, ve Z*, the string uv is called the concatena-
tion of # and v, which again belongs to X* (closure).
For any u, v, and we X*, it holds that (uv)w=u(rw)
(associativity). The empty string ¢ is defined so that
ew=we=w for any we Z* (unit).

For a given set S, the cardinal number of S, i.e. the
number of all elements in S, is written #(S) and the
power set of S, i.e. the set of all subsets of S, is
represented as PS. The empty set is written ¢ and the
empty string set {&} A.

For sets x and y, x=y indicates an equivalence rela-
tion as a set, and xC y indicates an inclusion relation.
Furthermore, addition x+y and multiplication x- y (usu-
ally written xy) are defined as follows:

x+y={wlwe x or we y}
x-y={uvlue x, ve y}

From the above and set theory, we have the following
lemma.
Lemma 2.1 For any x, y and z in PX*, the following
relations (1)~ (10) are valid.
(1) x+ye PZ* (closure in addition)
2) (x+y)+z=x+(y+2z) (associativity
in addition)
(3) x+t¢=¢+x=x (unit in addition)
(4) x+y=y+x (commutativity in addition)
(5) xye PX* (closure in multiplication)
(6) (xy)z=x(yz) (associativity in multiplication)
(7) xA=Ax=x (unit in multiplication)
8) x(y+2)=xy+xz (left distributivity)
%) (x+y)z=xz+yz (right distributivity)
(10) x+x=x (idempotency in addition)

The algebra o/ (PZ*, +, -¢, 1) defined by the above
relations as axioms is a semi-ring with the idempotent
law in addition. We call it a ‘‘language semi-ring.’’ For
this semi-ring we take the set theoretical approach to = *
through out the paper, for practical reasons. This ap-
proach allows us to use set theoretical concepts directly.
Otherwise, we would have to use extra definitions.

For any xe PX*, we define x°=4, x"=x""1x, for
n=0, 1,- - -. The closure and the positive closure of x
are then defined as x* =22, x and x* =22, x', respec-
tively.

For a given set S, let A be an m x n matrix with q;;
(I=si=z=m, 1=j=n)in PS as its elements. We call it an
S-matrix and represent it as A=(a;), The (i, j) element
a; of A is also denoted by [A];;. For an m X n matrix A
and an m’ X n’ matrix B, we write A=B if and only if
m=m’, n=n', and [A];=[B); for any i and j. If [4];
=[B]; in the above definition is replaced by [A];; ¢ [Bl,
we write ACB. When and only when m=m’ and
n=n’, the sum of 4 and B is defined as {4 + B],;=[A];
+[B];;, and when and only when n=m’, the product of

Almost Boolean Algebraic Computation of LALR(1) Look-Ahead Sets

A and B is defined as [AB],I":Z;:l [A],‘k[B]kj. The
matrix where all elements are ¢ is called an empty
matrix and denoted by &. The square matrix whose
diagonal elements are all A and whose others are all ¢ is
called an identity matrix and denoted by E.

For the relations from (1) to (10) that define the
algebra #(PZ*, +, -, ¢, A), replace ¢ and A by
matrices @ and E, respectively, and x, y, and z by
matrices A, B, and C, respectively. If the sum and the
product can be defined for them, then we can show
again that all the relations remain valid [7].

For any square matrix A, we define A°=E,
A"=A""'A4, for n=1, 2,- - -. Then the closure and the
positive closure of A are defined as A*=X2, A4’ and
Ar=3232, A, respectively.

For any ae PZ* and for any 2*-matrix 4 =(a;), the
left and the right scalar product of @ and A are defined
as aA=(aa;) and Aa=(a;a), respectively. Note that if
A is a A-matrix, each of whose elements is A or ¢, the
scalar product of @ and A is commutative, that is,
aA=Aa=(a}), where aj=aif a;=2 and a;;=¢ if a;=¢.

Vectors are all shown in Gothic letters. An n-dimen-
sional row vector is regarded as an 7 X 1 matrix. The
transpose of a vector v is written ‘v. A column vector
whose components are all ¢ is denoted by ¢. Similarly,
a column vector whose components are all A is denoted
by 4. A row vector whose first constituent is A and
whose others are all ¢ is denoted by e;.

Let S be a given set of symbols. Then for a given sym-
bol s, in order to know whether S contains the symbol @
or not, we define a function 3:2' x PX— PA, as follows:

9;S=4 if se S, .1

=¢ otherwise.
For a Z-matrix A =(a;), the definition is extended as
3,4 =(3.a;). 2.2)

If a given alphabet X is empty, the language space
generated from X is isomorphic to Boolean algebra
under the correspondances of ¢ <> false, A < true, + < or
and - <and. Therefore, the role of the function 4 is to
reduce symbol manipulation to Boolean computation.
We give a simple example.

Any X-matrix A can be represented as follows:

A :Zse): {S}asA =Ese£ asA {5}

In order to avoid a complicated description, we adopt
the following notational conventions: each symbol
se Xis treated as a string se 2*, and each string we Z*
is sometimes treated (i.e. interpreted) as a set
{w}e PZ*. Thus the above equation is abbreviated as
follows:

A= s50,A=2 5 9,AS
Since d,As’ =s'9;A4 for any s, s’ X, we have
A= (e £ 50, AW 5 c £ 8705 A)
=2erlserss’0;A0,A.

3

Note that if 3,4 is an nXxn A-matrix (i.e. Boolean
matrix), then 8,49, A can be transformed into a matrix
of the same type.

For instance, let a matrix A be [a+b ¢]; then we
have b a

ol L I]

A ¢ A ¢ A 9)
2l C PR) [C MR M)
¢ ¢ A ¢ ¢ 4 A ¢
s 4 i3
= +(ab+ba+
aa[¢ i (ab+ba+bb) P
For a given 2, we introduce simultaneous right linear
equations each of whose coefficients is a subset of 2 and

each of whose constant terms is A or ¢, as follows:
n
Xi= E a;ix;+ci 2.3)
J=1

where a;e PX, cie PA, i=1,2, -+, n.

The above simultaneous equations are represented as
an n-dimensional right linear equation x=Ax+c,
where x='(x1, x2," - -, Xa), ¢='(c1, €2, *Cn), A=(a;),
1=i, j=n. It is easy to show that the equation has the
solution 4*c. Namely, the right part of the equa-
tion=Ax+c=AA*c+c=(AA*+E)c=A*c=the left
part of the equation. We call the equation a Z-righty
linear equation system, or 2-RLES for short.

It is well-known that, for a given regular expression R
generated from a given alphabet X, R can be unfolded
by introducing appropriate intermediate parameters x;,
X2,° * *, Xn, Which results in obtaining a 2-RLES whose
first constituent of the solution A*¢ is equivalent to R
(i.e. R=x,=e,A*¢) [6, 8]. For the Z-RLES, we can give
a finite automaton that can accept the language defined
by the regular expression R, as follows:

(S, 2, x, F, 1) 2.9
where

S: a set of states: {x;, X2, - *, Xa},
2 a set of input symbols,
x;: the initial state,
F: a set of final states: {x;|[c];=A},
7: the transition function: SxX—S§
: 7 (x5, S)=Xj iff se [A]ij iff [ajA]U=Avu

The language accepted by & is defined as
T(A)={s15," * 8| 7(- - - T(1(x1, 51), $2)," * *, S)e F, r=0}.

In the above, r=0 means that s,s;- - -s,=¢ and t(x),
£)=xi.

Lemmas and a theorem used in the following sections
are introduced below. Proofs are given in the Appen-
dix.

Lemma 2.2 (- - -t(t(x; 51), $2)," * *, $)=X;

iff [3;, 48,4 -9, A);=A.0
Lemma 2.3 s, - -s,e T(¥)

iff .0, 43,4 -3, Ac=A.0

Theorem 2.1 T7(«f)=e A%c.D

For a set 2’ C X and states x; and x;, it is said that x;
(or x;) is X’-accessible to x; (or from x;) if there exist sy,
82,0, 5,€ 2, rz0, such that 7(- - - ((x;, 51), $2),* "+, §r)
=x;. When 2’ =2, ‘‘Z-accessible’’ becomes simply ‘‘ac-
cessible’’. As regards, A and 2’, a A-matrix C’ is de-
fined as C’ =2, s9;A and called a X’-adjacent matrix
of A. In the following, C’, C” and C" are the 2’-, the
X”- and the 2" -adjacent matrices, respectively.
Lemma 2.4 x; is X’-accessible to x; iff [C'*];=1.0

If state x; is X’-accessible from the initial state (or to
at least one of the final states), then x; is said to be initi-
ally (or finally) X’-accessible. State x; is initially (or
finally) >’-accessible if and only if it holds that [e,C’*];
=1 (or [C"*cli=4).
Lemma 2.5 Forsets2’, 2", 2" ¢ 2 and for any sym-
bols s, s’ 2, there exists a string w'sw”s’'w” e T(«)
such that w'e Z'*, w"eX”* and w” e S”*, if and
only if it holds that

e C"*0,AC"*3,AxC" *e¢=1.0D

Lemma 2.6 For any s, s’e 2 and 2’ ¢ 2, if there ex-
ists a string wsw’s’w” in T(sf) such that w, w"e 3*
and w’e Z'*, then it holds that

e, C*d,AC'*3, AA=A.0

Lemma 2.7 For any se X and X’ C Z, if there exists a
string wsw’ in T(&) such that we Z* and w'e Z'%,
then it holds that

'A9;AC"*¢=4.0

When each state of « is initially and finally accessi-
ble, & is said to be reduced. If <« is reduced, Lemmas
2.6 and 2.7 are not only necessary but sufficient.

3. Context-Free Language
Automata System

and Muitiple Finite

Context-free languages are treated in this section by
extending the reasoning in the previous section.

A set of terminals and a set of nonterminals are
denoted by T and N, respectively. A union of 7and Nis
written V. For notational conventions, we use f as a ter-
minal in T; X, Y, and Z as nonterminals in N; and s as
an element (a terminal or a nonterminal) of V.

The right part of each BNF or EBNF can be regarded
as a regular expression generated from an alphabet V.
Thus, as shown in the previous section, for each nonter-
minal X, the right part Ry of the X-defining BNF can be
unfolded by introducing appropriate intermediate
parameters Xxi, Xx2," ", Xxa,, Which results in an nx-
dimensional V-RLES, as follows:

X=xx

3.1

ny
Xx= D AxiXx;+ Cxi
j=i

H. Anzal
i=1,2, -, ny,
or
xx=Axxx+cx, 3.2
and it holds that
X(=Ry)=xxa=[AXexh g V¥, (3.3)

where [A%cx], is the first constituent of the vector A¥cx,
the (minimal) solution of Eq. (3.2), and the equal sign
‘“="" means the equivalence relation for sets of strings
generated from the alphabet V. The simultaneous equa-
tion system for all Xe N as the unknowns composed of
Eq. (3.3) for each Xe N is considered to be satisfied by
the intrinsic solution on T*.

Tixier gave this kind of equation first and called it the
standard right linear (abr. SLR) equation [11].
Example 1. An example grammar given by Tremblay
and Sorenson [2], which is not SLR(1) but LALR(1), is
shown in Fig. 1 in the form of BNF. This form is easily
transformed into a kind of graphic representation, as
shown in Fig. 2, which can be interpreted as a system of

I

==

§-G
G~ E=E|If
E TIE+ T
T = fITxf

Fig. 1 An example grammar.

S =

T=>Ts=f

:f
(r)—X)

Fig. 2 Multiple finite automata derived from Fig. 1.

()
()

Almost Boolean Algebraic Computation of LALR(1) Look-Ahead Sets

Ag=[¢ G ¢ g =[]
¢ ¢ ¢
¢ ¢ ¢ | A

Ag=[¢ E ¢ ¢ cu=(¢
¢ 6 = ¢ ¢ ¢
6 ¢ ¢ E ¢ ¢
¢ b 4 b o A
[¢ ¢ ¢ ¢ ¢ | A

Ap=[¢ T E ¢ o] c=[¢
¢ 6 ¢ o ¢ A
$ ¢ ¢ v & ¢
¢ ¢ ¢ T ¢
|6 ¢ ¢ ¢ & A

Ap=[¢ £ T ¢ ¢| =9
¢ ¢ ¢ ¢ ¢ A
¢ ¢ ¢ o ¢
6 ¢ 6 6 ¢
(¢ ¢ ¢ ¢ o] | A

Fig. 3 Coefficient matrices and constant terms of V-RLES derived
from Fig. 1 or Fig. 2.

state transition diagrams representing a system of multi-
ple finite automata where each automaton co-operates
with the others to accept the language defined by the
grammar given in Fig. 1. It is easy to construct V-RLES
from Fig. 1 or Fig. 2. Coefficient matrices and constant
terms of the V-RLES are shown in Fig. 3.

For each nonterminal X, the X-defining BNF is
transformed into an automaton as shown in Fig. 2. We
call it automaton & x, which is described as follows:

A x(Sx, V, xx1, Fx, x), Xe N 3.9
where

Sx: a set of states {xXxi, Xx2," " *» Xxa}»

V: a set of input symbols (terminals and nonterm-
inals),

Xxxi: the initial state,

Fyx: a set of final states, which the rules to be reduced
are attached to,

7x: the transition function: Sy X V= Sy.

The state transition caused by a nonterminal is called
a nonterminal-transition, and when the nonterminal is
Y, the automaton &/ y is regarded as called there in the
manner of the recursive-call in normal programming
languages. Furthermore, each final state is regarded as
having a kind of output called ‘‘reduction,” which
reduces the rule attached to the final state just when the
return operation is performed there.

5

The behavior of the above system is generally
nondeterministic. One method of making it deter-
ministic if possible is to construct an LR(0) automaton
using LALR(1) Look-Ahead sets from the system,
which is described in the following sections.

For automaton & x, state xyx; is said to be g-accessible
to state xy; if xx; is accessible to xx; via a sequence of
transitions caused only by the empty string €. A nonter-
minal X that derives the empty string & (X = ¢) is called
the &-generating nonterminal. A set of all the e-
generating nonterminals in N is denoted by N’. Thus in
A x, Xx; is €-accessible to xy; if and only if xy; is N'-ac-
cessible to xy;.

As mentioned in Section 2, the N’-adjacent matrix of
Ay is Cy=2yendyAx. Therefore from Lemma 2.4, it
holds that xx; is e-accessible to xy; if and only if [Cx*];
=A. If N’ is empty, Cx=®yx and then Cy*=Py*=F.

In the following discussion, for a given BNF, we
assume that the reader knows the production rules in
the production grammar equivalent to it, and we write
P as the set of the production rules. Furthermore, we
use V-RLES, the SLR equation Eq. (3.2), where A-vec-
tors e, ¢, and 4 associated with Eq. (3.2) are
represented as ix, ¢x, and Ay respectively in order to
clarity their dimensions.

4. First Symbol Sets and Lmost Symbol Sets

For a given production grammar G(N, T, X,, P), this
section gives two kinds of symbol set called First sets
and Lmost sets. The former are sets of terminals used in
Section 6 and the latter are sets of nonterminals used in
Section 5.

For a nonterminal Xe N, a set of terminals appear-
ing in the first position of sentential forms derived from
X is defined as

First(X)={te TI X = tw, we V*} 4.1)

and is called First (symbol) set.
First, a method of computing First sets is given.
Initially, we define a function y:N x V— P4, as follows:

if there exists a rule X—&sw in P
such that e N'* and we V*. 4.2)
=¢ otherwise,

y/\’s:A-

where N’ is the set of all e-generating nonterminals.
Jje N'* means that there is a case where £ = ¢.

For our V-RLES xx=Axxx+cx, from Lemma 2.6
and using the N’-adjacent matrix Cx=2,.~0zAx, the

above yy; is given as follows:
Yxs=IixCx*d;AxAx 4.3)

Thus, we have the following relation:
First(X)= 3] yxy First(Y)+ 3 yx {1} 4.4
YeN teT
Now, to solve Eq. (4.4), we define two #(N)-dimen-

sional column V-vectors u=(ux), ux=First(X), and
d=(dx), dx=2cryxit}, and a #(N)x #(N) A-matrix

6

I'=(yxy). Then, Eq. (4.4) becomes
u=Tu+d 4.5)

and has the solution
u=r*d (4.6)
For te T, the definition of the First set is extended as
First(z)={¢}. 4.7

Next, for each Xe N, we define Lmost(X) as a set of
nonterminals appearing in the first (i.e. left-most) posi-
tion of sentential forms derived from X without applica-
tion of e-generation. A function y":N X N—P4] is then
defined as follows:

if there exists a rule X—Yw in P
such that Ye N and we V*.
=¢ otherwise.

yir=»X
(4.8)

For our V-RLES xy=Axxx+cx, the above yky is
given as follows:

4.9)

Then for each Xe N, we define a set of nonterminals
as follows:

Lmost(X)= Y, vxr Lmost(Y)+ > »x»{Y} (4.10)
YeN YeN

Yxy=ix0yAxAx

Here, we define two #(NV)-dimensional column V-
vectors u=(ux), ux=Lmost(X), and d=(dx), dx=
Sven?ir{Y}, and a #(N) X #(N) A-matrix I' =(y4v).
Eq. (4.10) then becomes

u=r'u+d=rI"*d. 4.11)

Note that px, and yxy is obtained not only from V-
RLES but also from P. In order to compute 7* and
I''*, we have Warshall’s famous theorem [12], of which
a A-matrix representation is shown in the appendix.

When N’ is empty, we have pxy=pxy. Therefore, in
this case, we can have First sets and Lmost sets at once,
as follows:

u=Tu+d=I*d (4.12)

where u=(uy), ttx=Lmost(X)YJFirst(X) (4.13)

d=(dx), dx= E ix0sAxAx{s}=ixAxAx 4.149)
se V

I'=(yxy), yxy=ix0rAxdx=0y(ixAxAx)=0ydx. (4.15)

Example 2. Computation of Lmost sets and First sets
in Example 1.

There is no e¢-generating nonterminal in Fig. 1.
Therefore, from Fig. 3 and Eqs. (4.14) and (4.15), we
have d and I, as follows:

ds { G} I'=(yxy)=Qvdx)
d= ds _ {E, f} =(3sd dgd 9:d drd)

de| |{E, T}|

dr {T, 1}

H. ANzAl
o A ¢ & A A A A
r=¢¢,1¢'r*=¢/l,11’
$ ¢ 4 A ¢ o 4 A
¢ ¢ ¢ A ¢ ¢ ¢ A
Then from Eq. (4.12), the desired sets are obtained as
Lmost (S) U First (S) {G,E,T,f}
e Lmost (G) U First (G) = { ETf1) .
Lmost (E) U First (E) { ET,r}
Lmost (T) U First (T) { T, f}

5. LR(0) Automaton

The traditional method of deriving an LR(0)
automaton from a given grammar uses the dot notation
on production rules and is considered to be an extended
variation of the subset construction method used in
making a nondeterministic finite automaton deter-
ministic. This method is shown first by the usual
automata theoretical approach and then by a linear
algebra-like one.

Automata Theoretical Approach

For the multiple finite automata system given in
Section 3, an LR(0) automaton &/ r is given on the
asumption that it is a simulator of &/x, Xe N, co-
operating with each other to analyze a given input
string. The LR(0) automaton &/ has a finite number
of states Iy, 1), - -, Ix. Each state I, the so-called LR(0)
term, is given as a set of all Iix for Xe N, where I,xis a
subset of the set of states Sx for each automaton & x.

For a given input se V, the state transition of the
LR(0) automaton is defined as follows: First, for each
automaton &x, the transition function Tx:PSyX
V— PSx is given as

Jix=TxUix, $)={x'I’xe Lix, X’ € tx(x, $)}.

é.1n

Put Sir =Uyxc nSx; then for o, the preparatory tran-
sition function Trans: PS.g X V—PS.r is given as a
union of all Jyx, Xe N, as follows:

Jie=Trans(lk, §)=Uxe nJix=Uxe NTx(Lix, $). 5.2)

Next, the other preparatory functions ¥x:PSiz—
PSy, Xe N, are defined such that the values Jix=
¥x(Jy) are given as the solutions of the following
simultaneous equations:

Jix=JixU{xxne SxI’Ye N, ve Jiv, 'y’ e Sv:

Y= X (6.3

For any Jix, Xe N, that satisfies the above recursive-
ly defined simultaneous equations, we can expect that
for Xe N, if there exists Y such that there is a state
ye Jiy from which a state transition caused by the
nonterminal X can start, then Jix contains xx, the ini-
tial state of o/ x.

Instead of Eq. (5.3), the following definition is
available:

Almost Boolean Algebraic Computation of LALR(1) Look-Ahead Sets

Jix=¥x(Ji)
=JixU{xxie Sx1*Ye N, ye Jiy, ¥’ € Sy:
[y =ty(y, X) or °Ze N: Xe Lmost(Z),
y'=t(y 2)}. (5.4)
This means that for Xe N, if there exists Y such that

there is a state ye Jiy from which can start a state transi-
tion caused by the nonterminal X or by the nonterminal

Jo = { xSI }

2 xs10 %G1 %1 *m) =Ty
Trans(1,6) = { xgp } = Goto(Iy,0) = I
Trans(19,E) = { xgo. xp3 } = Goto(Ig,E) = 1,
Trans (1), T) = { xpo¥, xq3} = Goto(I, T) = Iq#
Trans(I.f) = { xgg#, xqo¥ } = Goto(Iy,f) = I ¥
Trans(1y,#) = { xg3h } = Goto(Iy,#) = IcA
Trans(I5,=) = (xg3)

>{ xgg» *gp» X1 } = Goto(Iy,?) = Ig
{ XE4)

=>(XE4' X-n)
TPBI’IS(IB-*) = { x74 }
Trans (I.E) = { xg4¥, xp3)
Trans(Ig,f) = { xqo¥)
TPB!IS(I7.T) = { XES.. xr3 }
Trans (Ig.f) = { xpght) = Goto(Iy,f) = Ijy
Trans(lg,T) = { Xgo¥s "T3} = Goto(Ig,T) = Iqw
Trans (I7.1) = { xpot } = Goto(l4,f) = Iy
Trans(Ig,+) = { xgq) = Goto(Ig,*) = 14
Trans (I34.%)= { xp4) = Goto(l4,3)= Ig

Trans (I, +)
= Goto(Iy+) = Iy
= Goto(ls.t) = Ig
= Goto(Ig.E) = Igh
= Gotollg, 1) = Iy
= Goto(I4,T) = Iy#

Fig. 4 Transition function of the LR(0) automaton obtained from
Fig. 2 in Example 1.

So>G

7

Z whose Lmost set contains X, then Jix contains xx,. It
will be shown in the next approach that Eq. (5.4) is the
solution of Eq. (5.3).

A function Closure: PS;g— PS.r is then constructed
as a union of all J;x, as follows:

Closure(Ji) =Uxe nJix=Uxe v Px(Ji). (5.5)

Finally, the desired transition function of &1z Goto:
PSir X V= PS;r is synthesized as shown below:

Goto(ly, s)=Closure(Trans(/y, s)). (5.6)

For the starting nonterminal X, the initial state I, of
& 1r is given for the initial state xx; of « x, as follows:

I,=Closure({xx,}). (5.7

If a state I, contains a final state xy/concerned with a
production rule X—a, the state I, is, in &/, a reduced
state for the rule X—«.

Example 3. The LR(0) automaton s/, obtained from
the finite automaton system given in Fig. 2 is shown in
Figs. 4 and 5.

The above method can be seen to construct and
LR(0) automaton & r from the finite automata &y,
Xe N, so as to embed each of them into ¢z one or
more times. In the above example, this is shown by the
‘“Embedding table”’ in Fig. 6. In this table, each col-
umn is indexed by a nonterminal-transition (/, Y)
which corresponds to an occurrence of embedding
automaton &y from I, and each row is indexed by state
I of & 1r. If a state xy; of &y embedded from ; is con-
tained in I, the state xy; is written in the [/, (I, Y)]-th
element of the talbe. If &y is embedded from 1, the [/,
(f;, Y)]-th element contains xy;, the initial state of .« y.

In Example 3, &5 derived from S—G# is initially
given as Ip-2-1,-%-I;. For the nonterminal-transition
(f, G) there, o/ ¢ derived from G—E=FE|fis embedded
as Jo-£-5L~=-I-%-I, and I,-Z-1,. Because there are two
nonterminal-transitions (f, £) and (/s, £) in the embed-

E->E+T

Fig. 5 State transition diagram of the LR(0) automaton in Fig. 4.

(Iy.Y)
L [t 0]t. D], (0. Bfug D] D

Io I1%1 {%1 |*01 |[*n
hofse - |- |- |- |- |-
Ipo |- (%2 |*3 |- |- |- |-
Igw | - = %" | %13 | %2 [*73 | -
14' - Xas' - XTzﬂ - - -

b e A R R B
Is |- (%3]~ |- [*a1 |*n |~
o= |- |%a | - |*a |- |[*n
Is 1= |~ 1 |2 |*ra |*14
Igh | - |%gq¥| - B O -
Ilol - - - - - x-l.zll xTzl
In*f = | = |*s*| - [*es"| -~ |*13
112“ - - - xES. - XES' x-[5ll

Fig. 6 Embedding Table.

ding, & ¢ derived from E— T| E+ T is embedded for (1,
E)as I-*-I and Iy-%-5-*-1-1-1,, and for (I, E) as I
-I-I, and I-%-I-*-1-I-1,,. In the former occurrence
of embedding &/, we have three nonterminal-transi-
tions (l, T), (lo, E), and (f;, T) and similarly in the lat-
ter, we have (Is, T), (Is, E), and (I;, T). However, for
(lo, E) and (s, E), o/ ¢ has been already embedded. Ac-
cordingly, for the only three nonterminal-transitions
(l, T), (Is, T), and (I, T), it is necessary to embed & r
derived from 7 f| Txf. Thus, &7 is embedded for (Z,
T) as Ip-Z-I, and Iy-*-I-*-Is-£- 1,5, for (I, T) as It-%-
Ioand Is--I;-*-I-£-1,, and furthermore for (15, T) as
L-%-Io and F-I-1,-*-I-L-1,,. Because there is no
more new nonterminal-transition, no more embedding
occurs. (If we replace the word ‘‘embed” by
‘‘generate’’ in the above, one more method of construc-
ting the LR(0) automaton will be found.)
Linear algebra-like Approach

Our linear algebra-like approach follows a similar
course. For each & x associated with the X-defining V-
RLES xx=Axxx+ cx, each subset I, of Sy is represented
as the so-called set characteristic vector, i.e. an nx-
dimensional bit vector such that for each state xx;e Sx,
if I;x contains the state xy;, then the i-th bit of the vector
is A, otherwise ¢. This bit vector is also denoted here by
I.x. Each state I, of & is specified here by a list of all
Irx, Xe N, as shown below:

Ik=(1kxo"'1kx"']kz), k=0,1,---, K (59)

That is, I, is an ng-dimensional bit vector, where
nir=2x~ nx. Here we denote the n-dimensional bit
vector space by b"™. Two functions, Trans: b"™®
x V—-b"= and Closure: b™®— p"» are defined by us-

H. ANnzal

ing two kinds of functions, Ty: b"¥ x V> p"» and ¥y:
bW — 9 respectively, as follows:

Trans(l, S)=Jh=(x," " Jix" - Jaz) (5.10)
where Jix=Tx(Iix, §)=Lix0;Ax, (5.11)
Closure(J)=Ji=(Jix," - *Jix- - - Jiz) (5.12)
where Jix= ¥x(Ji)
=Jixt+ Zyen JivdxAydyix (5.13)
In order to solve Eq. (5.12), put
H=(hxy), hxy=0xAyAy (5.14)
D=(dxy), dxy=liy if X=Y,
=¢y otherwise (5.15)
Then, from Eqs. (5.12) and (5.13), we have
Ji=Jt+JiHD (5.16)
and have the solution
Ji=J«(HD)*=J,+ J.H"'*D (5.17)
where I'" =DH=(yxy), Yxr=ixdyAxAx (5.18)

Note that yxy is the same as Eq. (4.9). Thus, Egs.
(5.16) and (5.17) correspond to Egs. (5.3) and (5.4),
respectively.

The transition function Goto: b x V—ptw jg
given as

Goto(ly, s)=Closure(Jy)=J,+ J HI"*D (5.19)
where Ji,=Trans(li, s)=1,8;G (5.20)
G=(gxy), gxyr=A,if X=Y,
=@y, y otherwise.
The initial state of &/ is defined as
Iy=Jy+JLbHI"*D (5.21)
where Jo=(ix,, bx - dxd2).
If a state Ix contains I, such that
Iixex=24 (5.22)

then the state I; is a reduced state in &, z.

Example 4. o, in Example 3 is computed from V-
RLES in Fig. 3. From Egs. (5.14) and (5.15) and Exam-
ple 2, we can compute H, I'’* and HI''*D, as shown in
Fig. 7. Then, from Egs. (5.19), (5.20), and (5.21), the
desired #/«r is computed as shown in Fig. 8.

In this approach, the Embedding table shown in Fig.
6 is changed into a A-matrix in such a manner that if its
element contains a state, it is replaced by 1. This A-
matrix is called an Embedding matrix and denoted by
M=(u 4,v)-

Note that for each nonterminal-transition (I;, Y), &y
is embedded from state /; once and only once. That is,
for each nonterminal-transition (/,, Y), we have only
one column (/,, Y). In the column, it holds that y; ¢, v,
=4 and I/iy=A (i.e. the first bit of Ly is 1), because
contains the initial state of <« y. Furthermore, if it holds

Almost Boolean Algebraic Computation of LALR(1) Look-Ahead Sets

H=[oxoe]. r¥=[arar]. wrfo=[exad][igé; ég o7
XX SAAA 660 |o5 ig g oy
$o49¢ s8N sd¢ | o5 9g ig oy
XN s0A $OAA |85 g og ip
so¢¢ $o0¢4
s $AA
s0¢9¢ $60¢
$60¢ XY
2% s8N
$o0¢ 4669
$od9¢ 4694
960 TXRN
4664 so09
TR $60A
Ty so00¢
4699 $04¢
66094 XX
RXXX3 XXxa

Fig. 7 Computation of HI™*D for V-RLES in Example 1.

Lelhs I e 0 S

Jo5(Aod 600690 600600 66069)

D(Add Aodod Addodd Addo9) =l
Trans(I5.G)=(¢ A ¢ ¢6 060 60606 ¢¢¢¢¢)lota(ly6)=];
Trans(1p,E)=(¢ 6 ¢ ¢A600 6169 ¢¢¢¢¢)Gotoly,E)=ly
Trans(15,T)=(¢ ¢ ¢ ¢666¢ ¢A666 ¢ A¢¢)Goto(lyT)=1g
Trans(1,f)=(d 66 666X 6064 6AL¢¢¢)Gotolly =1,
Trans(11.#9)=(¢ A ¢6 069 60606 ¢6¢¢d)Gotolly,1)=IgA
Trans([p.=)=(6 0 ¢ 60Aéo 66060 060¢4¢)

D(odd ddAdd Adddd Ad¢¢¢)lotolly,=)=Ig
Trans(Ip,+)=(¢ 66 66069 66616 6699¢)

D(ddd ¢d000 d66A¢ Add¢o)lota(ls)=,
Trans(I3,3)=(0 8¢ 66064 ¢66¢¢ ¢9¢¢A¢)Gotolly,*)=Ig
Trans(Ig.E)=(¢ & ¢ 06 A¢ ddAo¢ ¢6¢¢¢)Cotoll,E)=Iy
Trans(Ig,f)=(¢ 8¢ 606066 686666 ¢A¢¢¢)Uotollg0=IoH
Trans(I7.T)=(6 6 ¢ 60666 0661 696 A¢¢)=Gotolly,T)=In
Trans(Ig.f)=(0 8¢ 060006 6666¢ ¢¢¢¢A)Gotollyg,N=Ion
Trans (I4,T)=Goto (I, T)=I4#, Trans(I4 f)=Goto(I7,f)=I qp
Trans (I, +) =Goto(Ig, +) =14, Trans(1y;.%)=Goto(1,,.3)=Ig,

Fig. 8 Transition function of the LR(0) automaton obtained from Fig. 3.

10 H. ANzl

that 4y u,vy=A and Lycy=A, I is a reduced state in
d[_R.

6. Follow Sets

For a given LR(0) automaton &/, a formula for
computing Follow sets is given in the same way as in Sec-
tion 4.

Let Q2 be a set of all nonterminal-transitions in &z.
Then for each nonterminal-transition (/,, X)e £, a set
of terminals is defined as follows, and is called the
Follow set of (fx, X).

Follow(lx, X)={te T Xo = 0Xtw,
@ accesses state Ir, e V*, we T*} (6.1

where = indicates the rightmost derivation.

DeRemer and Pennello [1] derived from the defini-
tion two types of inclusive relations related to Follow s
sets and gave a method for obtaining the sets concrete-
ly, based on inclusive relations, in the manner of recur-
sive computation of sets of symbols. The method given

below first derives simulaneous equations with Follow '-_B
sets as the unknown sets, and then solves them. The
solution is of the product form of the closure of a A- @
matrix and a 7-vector.
There are generally two types of production rules: Y + aXgsB
(1) Y—oXisp, o, Be V*’ de N’*’ (6.2) Fig. 9 Embedding of automaton Y in case 1.
@) Y—aX¢, ae V¥, e N'* 6.3)

where N’ is the set of e-generating nonterminals.

They introduce the following two types of situation
in the derivation sequences:

For (1), there is Xo= dYw = daXispw, de V*,
we T* and for (2), there is Xo= dYw = daXéw,
de V*, we T*.

Similarly, in the related LR(0) automaton ¢\, the
two types are derived as shown in Fig. 9 and Fig. 10.

For the first type, we have the following proposition.
Proposition 6.1 The following two conditions are
equivalent.

—There exists a rule Y—>aX&sB, a, B V*, Ee N'*,

—There exist an occurrence of embedding &y and a Goto (Ik'x) X C,;ato (IkY'x)
state /; of & 1x such that
LiydxAyCy* 3 Aydy=A 6.4) \r
where Cy is the N’-adjacent matrix of Ay. Figure 9 &
shows this situation and its relation to the definition of
Follow sets. That is, if Eq. (6.4) holds, we can expect to
have the following relation: Y + oXE
Follow(Z,, X) 2 First(s) (6.5) Fig. 10 Embedding of automaton Y in case 2.
The above relation is shown with condition (6.4) as
follows: Foll .
ollow(Zy, X)2 IydxAyCy*3;AyAy First(s
Follow(Zx, X) 2 IkydxAyC*3,AyAy- First(s) (6.6) U EN Zy krOxArCy 0, Aydy First(s)
Because this relation is valid for any Ye N and any Here we put

se V and any se V, it holds that by=3,cv Cy*3,AyAy First(s) 6.7

Almost Boolean Algebraic Computation of LALR(1) Look-Ahead Sets

du,xy=2vyen IiydxAvby (6.8)
FOllOW(Ik, X) ; d(]k,x) (6.9)

Note that I,ydxAy is a A-vector Ty(liy, X) given by
Eq. (5.11). Therefore, we have

du. = Zyen Ty(ky, X)by

The next proposition is given for the second type of
situation.
Proposition 6.2 The following three statements are all
equivalent:

—There is a rule Y= oX¢, ae V*, e N'*.

—There are two nonterminal-transitions (/x, X)) and
(I, Y) and there is an occurrence of embedding &y of
which the initial state is embedded in I, and of which
some state is embedded in /; in such a way that at least
one of the final states of &y is embedded in state
Goto(- - -Goto(Goto(lk, X), s1),"), S), $182° - 8.=¢,
r=1, or state Goto(x, X), which is reducible the rule
Y- aX¢.

—There are two nonterminal-transitions (/;, X) and
(I/, Y) such that ﬂ]k_(]py)=A and IkyaxA yC;/*Cyzr{.

Figure 10 shows the above situation and relations to
the definition of Follow sets. That is, if the above condi-
tion holds, we can expect to have the following relation:

Follow(Zs, X) 2 Follow(/,, Y) (6.11)

Here, we define a function u:Q2 x Q- PA, as follows:

(6.10)

6u,.x.u,vy=A if the condition of Proposition 6.2 holds,
i.e. if it holds that e; y,ry=4 and liydxAyCi*ey=A4,

=¢ otherwise.

Then the above relation (6.11) is given as shown
below:

FO”OW([k, X) 2 Z H(Jk'x)_(ll,y) FO“OW(II, Y)

(., Y)eQ
Here, we define a #(2) X #(2) A-matrix as

U X), I, Y)e 2,

and call it a Direct Inclusion matrix. This matrix © for
&/ 1r in Example 4 is shown in Fig. 11.

(6.12)

O=yu . x .1

ZZ i)
b= , where bs=| {#} | , bg=
be
Lb, ¢]
d(l, G))| [Trans (Jo, G))
d(ly, E) Trans (lo, E)
d= dh, T) _ Trans (f,, T) b=
d(ls, E) Trans (I, E)
d(s, T) Trans (I, T)
td(l,, T)) UTrans (I;, T)_

11
pw[1] 2 3] 4| 5| 6
i [0\ Jug. 0ty Bluy.nltgblug. Hlug.m]
1] 1.0
2| (1y.E)
3] (1.1 A
AEEE
5| (1.1 A
6| (17,1 A A
Fig. 11 Direct Inclusion Matrix: ©.

For © of &g, the Direct Inclusion matrix @ is con-
structed as follows: For each nonterminal-transition (/,,
Y)e @2, a new row (/;, Y) and a new column (/,, Y) are
made. Note that embedding of &y starts newly from
state I;. Each element in this matrix is initialized as ¢.
For each nonterminal-transition (fy, X), if state
Goto(Iy, X) contains a final state of &/ y embedded from
I,, then A is assigned to 8¢, x,v)-

From Egs. (6.9) and (6.12), we have the following
equations:

FO"OW(Ik, X)= Z 0(,k_x,,(,l‘y, FO“OW(I/, Y)+d(lk.X)

7, VeQ

(6.13)
To solve Eq. (6.13), put

u=(ug, x), Uy, x=Follow(, X)

d= (d(lk,x)),
Then, the desired Follow sets are obtained as follows:
u=0u+d=6*%d (6.14)

Example 5. Computation of Follow sets for &y in
Example 4.

For six nonterminal-transitions (l,, G), (lo, E), (I,
T), (s, E), (Is, T) and (I7, T) in &/, a six-dimensional
T-vector d and a 6x6 A-matrix @ (Fig. 11) are
necessary. The vector d needs a T-vector b, which is

{f} {rh {f}

{=} ¢ ¢

{fY], be=|{+}|, br=|{*}

¢ (i {f}

¢ - ¢ ¢

M # (¢ ¢ & ¢ ¢ o
{=, +} ¢ ¢ & o o ¢
{*} ¢ 2 ¢ ¢ ¢ ¢

, 0=

{+} A o b ¢ ¢ o
{*} ¢ & & A b ¢

L Lé 4 ¢ 1 ¢ ¢

12

Thus we have the desired Follow sets as follows:

H. ANzal

[Folooow (o, G)| Ao o b o o\ #] [H# 1
Folooow (/o, E) o A o ¢ ¢ o||{=,+} { =+ 1}
e | FOlo0OW U0 T) | _ o |6 A ,1¢ ¢ ¢ ¢ || =, +,%
Folooow (Is, E) A ¢ ¢ A o ¢ {+} {#, + }
Folooow (Is, T) Ao ¢ A A ¢ {*} {#, +, *}
__Folooow (I, T) LA A ¢ 2 ¢ 2JL {x} 1 L4 =, +,»}]
composed of bs, bg, be, and by obtained from Eq. (6.7),
and the value Trans(li, X) for (I, X)e @ (Fig. 8).
7. Look-Ahead Sets
LALR(1) parsers use sets of symbols called Look- /'
Ahead sets to make parsing deterministic. The sets are !
defined for each pair of a reduce state / and the reduc- !
ed rule X—a, as follows: !
LAUi, X~a)={te TI Xo2 dXtw, S V*, we T*, . i
da accesses I} 7.1 L
= A union of all Follow(/;, X) 7 =
such that 7, transits to I, by a. X ¢X
(7.2) Fig. 12 Relation of a rule X—« and states in an LR(0)
automaton.
Figure 12 shows the situation expressed by the defini-
tion. We thus have the following proposition:
Proposition 7.1 The following three statements are all the embedding table in Section 5, we obtain here a
equivalent: matrix in such a manner that if 7, is not a reduced state,
—I; transits to Iy by a for a rule X—a. the Ii-th row is removed. Note that only reduced states,
—There exists an occurrence of embedding & x of that satisfy Eq. (7.3) are left. Then the matrix is altered
which the initial state is embedded in 7, and of which a as shown below: The row index I, is replaced by a pair
final state is embedded in /; and the initial state transits of I; and the rule reducible there. However, there may
to the final state by « in &/ x. be a state reducible concerned with two or more rules.
_ For such states, we expand the matrix to row-direction
— = d Lixex=A 7.3 . ’ e \
Hian=h and Tocex -3 in such a manner that if I, is reducible for rules X—a,
From the embedding matrix M=(,ulA,(I,,X)) given from X’ —»a’, cee, X" _’(X”, we genera[e state-rule pairs (Ik,
(I l'Y’ 1 2 3 1 5 6
Iy o X2 a)N\ (. 0]ty B)](1y. D1,)l D|(L5.T)
1 (13 . E9T) A A
21 (1 4 G->f) A
3 (I 4 T>r) A
4 (Ig » G>E=E) A
5 (Ilo. T=>f) A A
6| (Ij7. EDE+T) A A
7 (112. T->T=f) A A A

Fig. 13 Look-Back Matrix: 4.

Almost Boolean Algebraic Computation of LALR(1) Look-Ahead Sets

X-a), (i, X' —=a’), -+, (I, X" —>a”) and replace the
Ii-th row by (Ik, X—’a)-th, (Ik, X’_’Q’)-th," oy Uk,
X" —a”)-th rows so as to satisfy the following condi-
tion. The obtained A-matrix is shown as

4= (J(IA.Xﬂa)»(l,.Y))
where , x-a.u,)=l a1 if X=Y,
=¢
and is called the Look-Back matrix.
From the Embedding matrix M obtained from Fig. 6,
we obtained Look-Back matrix 4 shown in Fig. 13.
Look-Back matrix 4 is also directly constructed as
follows: For each nonterminal-transition (/,, Y) in &,
a new column (/;, Y) is made. Each column indexed by
(I, Y) corresponds to an occurrence of embedding of
&y started from /.. For each pair of a reduced state I
and the reduced rule X—«, a new row (I, X—«) is also
made. If I, is the state where a rule X— o must be reduc-
ed (i.e. for the embedded automaton & y associated to a

(7.4)

otherwise. (7.5)

v=(LA (I, x~a))=40*d

(LAULE-T) 7 [A ¢ 4 ¢ ¢7[4
LA (I, G=f) A ¢ o ¢ ¢ o|ld
LA (I, T—f) ¢ ¢ A o b S|l
=LA (s, G2E=E) |=|4A ¢ ¢ ¢ ¢ ¢ || 41
LA (I, T—f) ¢ ¢ ¢ & A A || A
LA (I, ECE+T) ¢ A o A ¢ ¢ |LA
LLA (s, T-T*f) 1 Lo ¢ 4 ¢ A A

8. Conclusion

This paper showed a new method for computing,
from a given grammar, an LR(0) automaton and the
LALR(1) Look-Ahead sets as an application of a new
methodology, a linear algebra-like approach to the
language semi-ring. The method is based on the recogni-
tion that the language space generated from the empty
alphabet is isomorphic to Boolean algebra and on the
methodology for solving problems by partially reducing
them to problems of Boolean algebra.

Traditionally, these problems are generally formaliz-
ed so that simultaneous equations concerned with
unknown sets sy, Sz, -+, S, are derived as follows:

si=s;,Us,U---Us; Ud, for i=1, 2, -+, n,
where 154y, io,- -, ln=n,

and are solved in such a manner that all the unknown
sets sy, 52, * *, Sp are initialized as ¢ and then computed
by using the equations iteratively until the sets obtained
become unchanged.

Our method introduced into the equations the
coefficients y;;, 1 <i, j=n, which take the value A or ¢,

B N

13

column (I, X), if a final state I, x is accessed from the in-
itial state Iy by «), A is assigned to the associated ele-
ment J(Ik,x—.a),(ll_)().

Using the Look-Back matrix 4, Look-Ahead sets are
defined as

LA, X2 a)= Z 5(/k.x~a),(/,,r) Follow(J;, Y) (7.6)
UYe
In order to solve them, put

v=(LA(, X—a)),
u=(uy,v)), ug,vy=Follow(l,, Y),
The desired Look-Ahead sets are then obtained from
Eqgs. (7.6) and (6.14), as follows:
v=Au=A40%} 7.7

Example 6. Computation of Look-Ahead sets for
&z in Example 4.
From Eq. (7.7), Fig. 13 and Example 5, we have

o o ¢ N H) =+ 1N
¢ ¢ ¢ ¢l {=,+} {# }
A o ¢ ¢ {*} { +, *}
¢ A o ¢ {+r |=| ¥ Y,
¢ A 1 ¢ {*} {#, =, +, *}
o A o AJL {*} J |{# =+, 1}
L{#, =, +, =}
as follows:
Si=yasityaset - +Yus.td;
fori=1,2,---, n.
or
s=Is+d
where
§='(S1, S25" " "4 Sn)s
d='(d,, d," -, d»),
I'=(yy)
For the equation, the traditional method is

represented as the following computation of symbol
sets:

(1) Set s<d.

(2) Compute s I's+d until the value s becomes un-
changed.

It is known that the obtained s=I'(I"---(Id+d)
+ ---)+d)+d is the minimal solution, i.e. the minimal
fixed point, of the equation, which is simply written as
s=TI*d. Therefore if we compute the closure of the
Boolean matrix I'* first, computation of sets of sym-

14

bols is done only for (I'™*)d. Now, let us give a method
for computing I*:

(1) Set M<E,

(2) Compute M—MI'+M until the value of M
becomes unchanged.

This method may be said to be equivalent to the tradi-
tional one if we ignore the difference between the com-
putation of symbol sets and that of Boolean numbers.

It is, however, well-known that 7*=E+I" and in
order to compute I' *, we have effective methods such as
Warshall’s theorem. This is the basic reason why our
method is more effective than traditional ones.

The above method was commonly used for obtaining
First sets, Follow sets, and LR(0) automaton. (Each
Look-Ahead set is given as a union of properly selected
Follow sets). The next problem was how to compute the
coefficients y;, 1<i, j<n, and the constant terms d,
1 =i=n, of the equations. From the above discussion, it
will be seen that they can be obtained by traditional
methods.

In this paper, however, we showed again the method
for computing them by Booloean algebra. That is, for
each nonterminal X, the structure of the right part of
the X-defining BNF was represented as a V-matrix Ax
and a A-vector (i.e. Boolean vector) c¢x, and for each
se V, the structure depending on s was abstracted from
Ax by means of the operator d, as a A-matrix (i.e.
Boolean matrix) d;A4x. The coefficients y;, 1 =i, j=<n,
and the constant terms d;, 1 =i=<n, were computed by
using these Boolean matrices and vectors.

Ax, whose size is nearly equal to the length of the X-
defining BNF, is generally sparse, and ;A4 x is more so.
How to implement matrices of the sparse kind is well
known in numerical analysis. It is easy to give, if nec-
cesary, a procedure for obtaining a compact form of
9;Ax from the X-defining BNF directly without using
Ax. Let B be an array containing the right part (whose
length is n) of the X-defining BNF, and let C be an array
containing a pair of indices i and j such that the (7, j)-th
element of d;Ax is A. The desired procedure is then
given as follows:

fi=0; k:=1; m:=0; :=1;
while 1< =n do begin
if B[t]=*I|’ then f:=0
else begin
k:=k+1;
if B[t]="‘s’ then begin
m:=m+1;
if /=0 then C[m, 1]:=1 else C[m, 1}:=k—1;
fi=1; C[m, 2]:=k
end
end;
t.=t+1
end;
This means that the method of representing a given

problem as algebraic expressions is different from the
method of implementing those expressions, that is,

H. Anzal

from the method of transforming them into a system
composed of procedures and data structures so as to
adapt it to the given circumstances. The aim of this
paper is, of course, the former.

Generally speaking, LR(0) automata as well as recur-
sive descent parsers can be regarded as using the
mechanism of finite automata supported by the
mechanism of the pushdown stack. In other words, the
properties of regular languages are used to analyze con-
text-free languages. We can find this kind of
methodology in mathematics. (Remember that in order
to analyze real numbers, the properties of rational
numbers are used.)

Thus it may be said that this paper has shown that
just like the above, the properties of Boolean algebra,
that is of the language space generated from empty sets,
are available for analyzing regular and context-free
languages, and that the algebra has sufficient capability
in language processing for the linear algebra-like com-
putation of the form of matrices.

For the electrical circuit theory, there are various
kinds of underlying mathematical theory such as the
theory of differential equations, the theory of complex
functions, graph theory, and linear algebra. The author
considers that the algebra shown in this paper is
available as one more underlying candidate theory in
language machine theory. We call the algebra, that is,
the linear algebra-like theory on the semi-ring with idem-
potency in addition, ‘‘semi-linear algebra.”

References

1. DEeREeMER, F. and PeENNELLO, T. Efficient computation of
LALR(1) Look-Ahead sets. ACM. Trans. Prog. Lang. and Syst. 4
(1982), 615-649.

2. TREMBLAY, J. and SORENSION, P. G. The Theory and Practice of
Compiler Writing, McGrow-Hill, New York (1985).

3. AHO, A.V,, SETHI, R. and ULLMAN, J. D. Compilers, Principles,
and Techniques, and Tools, Addison-Wesley (1986).

4. CARre, B. Graphs and Networks, Clarendon Press, Oxford
(1979).

5. GONDRAN, M. and MiNoux, M. Graphs and Algorithms, John
Wiley and Sons, New York (1984), 84-128.

6. UTtAaGAwa, K., INAGAKI, Y. and TANGE, H. The state-characteris-
tic equations of finite automata and their regular expressions, Proc.
IECE, Japan, 48, 9 (1965), 1524-1533 (in Japanese).

7. Nozaki, A. Algebraic theory for transition matrix of finite
automata, Proc. IECE, Japan, 50, 2 (1967), 204-206 (in Japanese).
8. ANzal, H. Algorithms equationally characterizing a group of
regular expressions, Trans. IECE, Japan, 57-D, 12 (1974), 653-660;
available in English in Systems. Computers. Controls (Scripta Pub.
Co.), §, 6 (1974), 47-55.

9. ANzal, H. A theory of recursive descent syntax-directed
translator generator, Proc. of the Int’l Comp. Symp. *80. 1171-1182.
10. ANzal, H. and YamanNoug, T. Fundamental concepts of
language processor generator MYLANG, Trans. IECE, Japan, J69-
D, 2 (1986), 117-127; available in English in Systems and Computers
in Japan, 17, 12 (1986), 23-35.

11. TIXiEr, V. Recursive Functions of Regular Expressions in
Language Analysis, Tech. Rpt. CS58, Comp. Sci. Dept., Stanford U.
(1968).

12. WARSHALL, S. A theorem on Boolean matrices, J. ACM 9
(1962), 11-12.

(Received June 6, 1988; revised July 3, 1989)

Almost Boolean Algebraic Computation of LALR(1) Look-Ahead Sets
Appendix

Proof of Lemma 2.2 The left statement is valid

iff there exists a sequence of states x;=x;, x,l, N
x; =x; such that 7(x;,_,, s9)=x;, for k=1,2,---,r

,N=j (1 <o, by By 0, irZ0):
[35,ALii, [85,ALi,i,- - - [05, AL, ;=4

XS 3 B Al Al o [0,4], =1

=1 h=1 =1

iff Fi=ip, %y, Yy, -

iff the right statement is valid. O

Proof of Lemma 2.3 The left statement is valid

iff (- o(x(x, $1), 82,7, SHE F

iff 31 sj=n): [8;,A49,,A -85 Al;;=4 and [c];=

iff > [0,,A3,,A" -
j=1

iff the right statement is valid. O

Proof of Theorem 2.1 7(«)=
2 2
r=0 5,5, " ‘s,€ X

=e 2 (3 10, A)X Z $:0,4) - (3] 5,35, A)e

r=0 s el nelX sel

=e (Z A’)c=e.A*c o

r=0

-3,,A]1,- [C]j=l

€,0;,A0;,A- - 05 Ac-5152" - 8¢

Proof of Lemma 2.4 From Lemma 2.2, it holds that

20, %, 5, e I [0, A0, A -0, Al;=A
iff Z Z [05,A 85,4 - - 05 A)= 4

r= 0 51,52, Spe 2’
iff Z [(Z as,A)(Z as,A) Z aa‘,/q]ij“zl'l

5§ seZ’

']U:[Z C”] =[C"*]y=4D
r=0 .

)

iff

||Ms

15

Proof of Lemma 25 ‘*welX'*, ‘weX"*
e I"*: wsw”s'w” e T(/) means that there exist
states X;, X;, X and x; such that [C'*];=4, [3,4];=1,
[C"*l,-k=l, [0sAlu=A and [C"” *c],=A are valid. Ac-
cordingly,

LY, kN (=i, g, Ky I=n):
[C*11il0:A151C” *1¢[85 AL[C ™ *c)i=A
iff

n n

A”V_: Z i; [C'*]lilasA]ij[C”*]jklas'A]k/[C'"*c]:=l

i=1j=1k=1i=
if e,C'*3,AC"*3,AC"*c=A.0

Proof of Lemma 2.6 In Lemma 2.5, let 2/, 2" and
>” be X, X' and 2, respectively. Then the following
relation holds.

e,C*3,AC'*3,A)2e,C*d,AC"*3,AC*c=A1D

Proof of Lemma 2.7 Put w =s5"-

-8, r=0, then it
holds that %, 3 (1=i, j=n), rz0, %, s, -, s,e 2":

1040, Ad, A~ - -3, Al;=1 and [c];=
if Ci(l=izn): [6,A(Z c") }=A

r=0

iff ‘49,AC"*c=AD

Algorithm for Computing Positive Closure of 1-Matrix
Input: nxn A-matrix C.
Output. C*.
Procedure. (1). M9«C.

(2). For k=1, 2,---, n, do the following computa-
tion:

M® «— pM*-Dy m(k 1) [m(k n, (k 1)]

k—1
mi,’

3). C*=M".0o

