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Precise Formulation and Applicability of
a Software Reliability Growth Model
Based on Hyper-Geometric Distribution

RAYMOND JAacoBY*' and YOSHIHIRO TOHMA™®

In this paper, the Hyper-Geometric Distribution is used to estimate the number of faults in a program at the
beginning of the test-and-debug phase. The Hyper-Geometric Distribution Growth Model (HGD Model) is well
suited to estimating the growth curves of the observed accumulated number of detected faults. The advantage
of the model is its applicability to all kinds of observed data. Application of a single model makes it possible to
calculate exponential growth curves, as well as S-shaped growth curves.

First, the HGD Model is precisely formulated. Next, the exact relationship of the model to the NHPP Goel-
Okumoto Growth Model and the Delayed S-shaped Growth Model is shown. Assumption of an appropriate
value of w(i), the sensitivity factor of the proposed model, will establish the S-shaped HGD Growth Model.
The introduction of a variable fault detection rate significantly increases the goodness of fit of the estimated
growth curve to the growth curve of actually observed faults.

Various examples of the applicability of our model to actually observed data demonstrate the characteristics

of the HGD Model.

1. Introduction

In a software development process, a program is
designed, coded, tested-and-debugged, and finally
released. Test-and-debug is mostly carried out by a
testing team independent of the software programmers.
Usually, the test-and-debug team detects numerous
faults, whatever the programmers’ confidence in the
quality of their product.

At the beginning of the test-and-debug phase,
nobody knows exactly how many faults are still resident
in the software product. Furthermore, the testing team
members are unable to guarantee when the program be-
ing tested can be released. Therefore, it is necessary to
rely on the estimate of the number of initial software
faults. Such estimates are of major interest to guarantee
high reliability and quality assessments of a program
after the test-and-debug phase.

Various estimation models have been proposed,
based on the Gompertz curve, the logistic curve, and
Non-Homogeneous Poisson Process (NHPP). In a
previous paper [11], we presented our model based on
the hyper-geometric distribution. In the model, we
distinguish between the manifestation of faults and the
detection of faults in the process for estimating the
number of initial faults (E[m]) of a given program at
the test-and-debug phase. One of the key concepts is

*Department of Computer Science, Tokyo Institute of
Technology, Meguro-ku, Ookayama, 2-12-1, Tokyo 152, Japan.

tCurrently with TOSHIBA Corporation, Systems & Software
Engineering Laboratory, Saiwai-ku, Kawasaki-shi, 210, Japan.

Journal of Information Processing, Vol. 14, No. 2, 1991

w(i), the sensitivity factor in our model, which is a
measure that represents how many faults manifest
themselves as errors upon the application of a test in-
stance /.

A second main characteristic is the applicability of
our model to various kinds of observed data. Exponen-
tial growth as well as S-shaped growth can be estimated,
depending on the parameter values of the model. Since
in the initial stages of the test-and-debug phase nobody
knows the shape of the growth curve of observed
detected faults, various growth models must be applied
to the actually observed data. A single model should be
applicable to various kinds of data set, since it allows
such multiple model applications to be discarded.

The first aim of this paper is to formulate our model
precisely. In the next section, we give the exact mutual
relationship of our model to the Goel-Okumoto NHPP
Growth Model and the Delayed S-shaped Growth
Model. We then establish the S-shaped Hyper-
Geometric Distribution Growth Model with its variable
fault detection rate. Finally, the results of applicability
of our model to different sets of actually observed test-
and-debug data will be compared with the results ob-
tained by using other growth models.

2. Basic Concept and Precise Formulation of the
HGD Model

2.1 Basic Concept
A program has been developed and debugged. When
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x = number of newly detected y = faults that have been already
faults out of the total detected in previous test instances
remaining number t(G),j=1...i—1.
m—C(i—1). /
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Fig. 1 Manifestation of w(i) Faults.

the programmers are confident that there are no more
faults left, the product will be passed to the testing team
for more rigorous test-and-debug. Usually, more faults
are found by the testing team. In our model, we argue
for the detection and removal (fixing) of faults at this
test-and-debug stage. At the beginning of the test-and-
debug stage m faults are in the program being tested.
With the application of test instances (such as test runs),
these faults are detected. We call a ‘‘set’’ of test in-
stances a test.

Bearing in mind the distinction between the
manifestation and detection of faults at the application
of a test instance, we propose the Hyper-Geometric
Distribution Model as a means of estimating the
number of initial faults [11]. We make the following
assumptions for the Hyper-Geometric Distribution
Model:

1. Faults that manifest themselves upon the applica-
tion of a test instance #(i) will be removed (fixed) before
the next test instance #(i+ 1) is applied.

2. During the removal of detected faults, no new
faults will be inserted. Thus, the reliability of the pro-
gram will grow along with the progress in the test-and-
debug phase. (This assumption is subject to criticism,
but we are presently optimistic that it can be removed in
future.)

3. A random set of w(i) faults are sensed by test in-

stance #(/) out of m initial faults. They may or may not
have been detected in previous test instances.
w(i) is defined as the sensitivity factor. It is a measure
that represents how many faults manifest themselves as
errors upon the application of test instance #(i). For the
first test instance (1), the number of detected (and
removed) faults is of course w(1). When #(2) is applied,
the number of newly detected faults is not necessarily
w(2), because some of these w(2) faults may already
have been detected and removed by #(1), and so on for
all #(i), i=3 ... n. In the example shown in Fig. 1,
some of the w(2) faults have been detected in w(1), and
the number of newly detected faults for w(2)=2.

m initial faults manifestated faults

Fig. 2 Basic Idea of the HGD Model.

In test instance #(i), let C(i—1) be the cumulative
number of faults newly detected by #(1), #2), ...,
t(i—1), and let N(i) be the number of faults newly
detected by #(i). C(0) is defined to be 0. Some of the
w(i) faults sensed by #(i) may already have been
counted in C(i—1); the rest of the w(i) faults are newly
detected. This basic idea is depicted in Fig. 2.

2.2 Precise Formulation
In this model the probability that N(i)=x is given by

m—CGi—1)\{Ci—-1)
X w(i)—x
(o)
o )

where 0<x< U, U,=min {w(i), m—C(i—1)}.

The probabilistic distribution of Eq. (1) is called a
hyper-geometric distribution. The expected value of
N(i), denoted by N(i), is [1]

Prob(xim, C(i—1), w(i))=

N(@)={m—-cCc@—-1)} wi) )
m

and by definition, the cumulative number of newly
detected faults is given as

i—1
Ci—D)=2] N(k) €))
k=1
From now on, the estimate for a parameter P will be
denoted by E[P]. Thus, we can use an estimate for
C(i—1) such as
i-1
E[CG—D]= 3, N(b )
k=1
and substitute it for C(/—1) in Eq. (2). That is,
. . . w(i)
E[CHI=EIC(—D)+{m—E[C(— 1]} e

w(i)
m

=E[C(i—1)]{l-——}+w(i) (5)

E[C(#)] in Eq. (5) can be solved in a non-recursive form
as follows. For example let us take the first two
members of Eq. (5), E[C(1)] and E[C(2)]. By defini-
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tion, E[C(1)]=w(1). Therefore

E[CQ@I=E[C(1)] {1 —K'(nz—)} +w(2)

w(2
=w(l) {1 ——} +w(2).
m

Thus, the equation for E[C(2)] can be changed as
follows:

E[CQ)]= mew2)

+m—m

mxw(1) . {l—@} +
m m

_m*w(l)

*{1 w(2)}+m m x {I—M}
m m m
=m—m*{l—$} {1-—11%}

=mx* (1_{1__“’?(”2} * {1—%})

Hence, we obtain the following theorem:
Theorem: Eq. (5) can be rewritten as the following non-
recursive equation:

—ﬁ (1—%)] vi=1...n,

E[C(i)]=m * [1

6

with E[C(0)]=0.
Proof: by induction.

E[C(1)]= 1- 1_3’9)
[Cty=m+ -

=m—m+w(l)=w(l)

For i=1:

Assume the theorem holds for i=n—1. Then,
for i=n:

E[C(H))]=E[C(—1)] * (1 —i(l—)> + w(i)

—m*[l—lllj (l—f%)}*(l ('))+W()

1
w(i)\ w(J) .
= - -—] [+
m*{(l m) H(l p )] w(i)
Q.E.D.
Eq. (6) can be also be rewritten as an exponential

function. The product within Eq. (6) can be resolved by
applying the exponential function x=e™ to

W)\ ()
11(1-"2) -

’( W(J)) £ m (1-292)
e_,xl m

j=
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and therefore, Eq. (6) can be written as

wij)

[puat2

E[C(i)]=m*[1—e"2‘l( m)] vi=l...nm | (D

with E[C(0)] =0.

2.3 Approximated Expression for the HGD Model
Let us consider the following difference equation [12]:

E[C(i)]—E[C(i—1)]=AE[C(i—1)]
=w(i) {1 —%E[C(i— 1)]} . ®

Changing this difference equation into a differential
equation of a continuous function of /, and ignoring the
difference between i—1 and i, we get

AE[C()] 1 _
HEwi {1- Elcon] )

E[C(i)] can then be expressed as the following general
function:

E[C()]=m * (l—e(~5 S::”'("'MX]) 10

Eq. (10) is a similar expression to the one given for hard-
ware reliability models [7].

2.4 The Sensitivity Factor w(i) of the HGD Model

In several previous papers [5, 6, 12], the sensitivity
factor w(i) was related to information available from
data sets. Therefore, the following function was ap-
plied:

w(i)=X(i)x(axi+b), with
X(i)={number of tester(i) or computer time(i)
or test items(i) or 1.0} 1)

where I represents the ith test instance. This function
takes account of the linear change in the ease of testing
as the testing progresses.

2.5 Parameters and Evaluation of Optimal Parameter
Values

The sensitivity factor w(i) and the total number of in-
itial faults m are unknown parameters to be estimated,
(Ela}l, EI[b]l, E[m]). Their values are tentatively
calculated by using the full scan over a possible range of
values. (Our research is directed toward a new
methodology for determining the parameter values
analytically.) Thus, E[C(i)] for i=1, 2, . . . in Eq. (6)
and Eq. (7) is obtained by comparison with the actually
observed C(i), using an evaluation function that
measures the minimal distance between the observed
growth curve and the estimated growth curve in test in-
stance i, as follows:

1
EF1=72 IC()—E[C()HIH (12)
i=1
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The values E[m], E[a] and E[b] that minimize this
EF1 function are taken as the optimal parameter values
for the estimation of the number of initial faults.

This method is different from the maximum
likelihood (MLH) method for parameter value estima-
tion [9, 13]. With the MLH method, normalized data
are used together with the Kolmogorov-Smirnov
Goodness of Fit Test to calculate analytically the op-
timal parameter values. The normalization process im-
plies that the last estimated cumulative number faults is
identical to the last observed cumulative number of
faults. This condition is unrealistic in a real test-and-
debug and estimation environment. Furthermore, the
normalized data changes the original difference between
the observed and estimated values of the cumulative
number of faults.

Therefore, to preserve the original difference between
C(i) and E[C(i)] in test instance i and to respect the ac-
tual conditions of a test-and-debug environment, we
apply EF1 to determine the optimal parameter values.

3. Mutual Relationship to Other Models

This section shows the exact mathematical relation-
ship of the HGD Model to other models, especially
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NHPP models. We prove that the Goel-Okumoto
NHPP Model can be represented exactly by the HGD
Model. It is also possible to define the relationship be-
tween the Delayed S-shaped Growth Model and the
HGD Model, but the estimated results for E[m] are not
the same for both models. This difference is explained
by the assumption of a variable fault detection rate p(i).

3.1 Mutual Relationship of the HGDM and the
NHPP Goel-Okumoto Model

The Goel-Okumoto NHPP exponential growth
model has the following mean value function of a
nonhomogeneous Poisson process:

m()=E[mlx(1—e~*) vi=1...n (13)

This equation can be compared to Eq. (7), assuming
E[m] to have the same value in both models. The follow-
ing relationship between the two models can be easily
derived, with w(j)=constant,

w(j)=b constant VJ,
. [ : b .
e/}lln(l‘m): ,.ln(|~Ei,;]1=e’°'
¢=—1 -2} vi=1 14
=_n — = . ..
Ein i n (14)

Table 1 Results of Estimations for the Data of [3].
Model E[m) Parameter Values EF1-value Kolm.-Smirnov Value
HGDM, EF1 141.37 b,=16.503 4.293922 0.121346
NHPP, EF1 141.37 ¢=0.124131 4.293922 0.121346
3] 142.32 ¢=0.1246 4.557864 0.122594

Number of faults observed and estimated for 25 test instances.
140 136.004(d
. w=x~k 136.000(a
e 135.022(b
120 e 135.022(c
Tk
. *
N <
u 100 .
b *
. s
[ 7 * I/
£ /
F 60+ */
& y /
% 40 - * 7 *xikrkx  Cum. Observed Faults (a)
s , —-—- HGDM, EF1, E[m] = 141.37(b)
w04 /| e NHPP, EF1, E[m|=141.37(c)
------ (3, E[m] = 142.32(d)
0 )(l (z) : corresponding observed and last estimated values
T T T T T L
0 5 10 15 20 25
Number of Test Instances (Hours)
Fig. 3 Comparative Estimation Results for Data in Goel [3].
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Resolving Eq. (14) for b, we have
[b=E[m]*[1-e* vi=1...n| 15

Thus, the exact mathematical relationship between the
two models is given by Eq. (14) and Eq. (15).
Example 1.

The results of estimations for the data in Goel [3] are
given in Table 1. The estimated growth curves are
shown in Fig. 3. As the mathematical proof indicates,
the estimated growth curves EF1 for both HGDM and
NHPP as well as the estimates for E[m] of both models
coincide. The difference between Goel’s results [3] and
ours stems from the different approach to parameter
value determination, which we discussed in Section 2.

3.2 Mutual Relationship of the HGD Model to the
Delayed S-Shaped Growth Model

In this section the mathematical relationship of the
HGD Growth Model to the Delayed S-shaped Growth
Model is established. The mean value function of the
Delayed S-shaped Growth Model is given by

G=E[m]«(1—(1+pi)xe ") ¥i=1...n (16)

Let us define f(p, i) so that f(p, i)=(1+p*i)xe ~*. Tak-
ing Eq. (6) into account, and using the same E[m] for
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both models, we can state that

R A .
for i: ,I=I| (1 -—E[m]) =f(p, i)

i—1: T (1=X\ o, i
fori—1: ,I;Il(l E[m])——f(P,l 1)

Dividing these functions,

(o w)

,IJ,(‘ E[m])=( _w(j))= S(p,1)
(D) "\ T Eml) e, i- 1)
1 (1-20a)

we have i
w(i)=E[m] x| 1

an

—J%;plf—l)l—)] with f(p, 0)=1

=E[m]x|1— a -I.-pi)*e_i/ — ]
| A +px(i—1))xe 7D
fl_(1+p*(i—1)+p) ,,]

=E[m] -
! (1+px(i—1))

L [ P 1o
w(i)=E[m] % |1 (1 +—1+p*(i—l)) xe "] vi=1l...n

18)

Number of faults observed and estimated for 21 test instances.
50
. 47.032(b
__ A 46.000(a
e 46.000(d
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N 40 - r.,!'
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T . ﬁffgf ------- [91, E[m] = 71.7248(d)
0~ T (z): corresponding observed and last estimated values
r T T T T
0 5 10 15 20
Number of Test Instances (Debugging Days)
Fig. 4 Comparative Estimation Results for Data in Ohba [9].
Table 2 Results of Estimations for the Data in Ohba [9].
Model E[m] Parameter Values EFl-value Kolm.-Smirnov Value
HGDM, EF1 64.3 w(i)=0.304%i+0.53 0.837071 0.094860
S-Shaped, EF1 76.98 p=0.096240 0.988674 0.099198
9] 71.7248 p=0.103967 1.042750 0.114289
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For Eq. (18) two interpretations of the parameter an exponential, actually observed growth curve. Exam-
value are possible. The equality only holds in the follow- ple 2 gave the estimated results of the HGD Model for
ing two cases: an S-shaped growth curve. Depending on the choice of

1. For i=1, p can be calculated numerically, and the function for the sensitivity factor w(i) and its
from the value of p all other w(i) can be calculated for parameter values, the HGD Model is well suited to all
i=2. The constant p defines a set of w(i)=ai+ b values kind of data set. In this section, we will study the S-
that are not the same at each i. Therefore the estimates shaped behavior of the HGD Model more precisely.

for E[a] and E[b] are not constant in test instance i.

2. w(i) is not a constant for all test instances i. If 4.1 S-shaped HGD Model and Variable Fanlt Detec-

the optimal E[a] and E[b] are constant values for all i, p tion Rate

is not constant. In this case we consider a variable fault In Eq. (18) we established the relationship of the
detection rate, as discussed in the next section, on the S- HGD Model to the Delayed S-shaped growth model.
shaped HGD Model. When w(i)=ax»i+b and E[a] and E[b] are the optimal
Because of these two cases for Eq. (18), the respective es- estimated parameter values in all test instances /, p is

timated values of E[m] for the HGD Model and the not a constant value for all /. With the assumption of
Delayed S-shaped Growth Model are different, the same value E[m] for both models, the equality of
although the equality in Eq. (18) holds. Egs. (6) and (16) is given by the following relationship:
Example 2.

For the data set in Ohba [9], the estimated numerical
results are given in Table 2 and the estimated growth
curves are shown in Fig. 4.

Table 3 Comparison of Results for Variable Fault Detection Rate.

~ i aj+b -
It can be seen from the EF1-values of Table 2 that the i T (1 _ ) (+plimiyse= ™ p(i)  p=0.11699
estimated growth curve of the HGD Model fits the ac- =1 m
tually observed growth curve better than does that of 1 0.987030 0.987029 0.17041 0.993668
the Delayed S-shaped growth model (D-S-shaped, EF1). 2 0.969561 0.969562 0.13483 0.976544
In fact, it fits the observed growth curve even better
than the growth curve obtained in Ohba [9] by the 6 0.860002 0.859996 0.10901 0.843520
thod of normalized data 7 0.824452 0.824464 0.10802 0.801972
me . 8 0.786473 0.786470 0.10771 0.759316
9 0.746526 0.746521 0.10786 0.716303
4. The S-shaped HGD Model and Variable Fault 10 0.705078 0.705075 0.10835 0.673533
Detection Rate
40  0.013577 0.013577 0.16116 0.058045
40 0.010898 0.010899 0.16348 0.052722

Example 1 showed that the HGD Model can estimate - R

Number of test instances, i = 1 to 40.
1.0 W ~
094 O\ (i) = 0.304 + i +0.53, and E[m] = 64.3]
\‘(\\
0.8 YN
e 0.7+ N,
X N
o 06 Q'\ ;
.0 hA 1 .
a “is— HGD Model, [] (1 - ‘—’J,-"ﬂ), same for
n 0.5 Ry i=1 o
t N\, S-shaped Model, (1 + p(i) * 3) x e~P(*
@ 0.4 N
p(3) 0.3 \‘>§\ p = 0.11699, constant for
: NS S-shaped NHPP,
0.2 p(i) of Del. S-shaped "\~ _ (I+p*i)xe”
R L. .- :‘--:: """""""
0.1+ TTermessmmeommnTTTo Sl e
0.0~ I
r T T T T T T T )
0 5 10 15 20 25 30 35 40
Number of Test Instances (Debugging Days)

Fig. 5 Variable Fault Detection Rate for p(i).
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i aj+b ai
II (l_jT)z(Hp(i)*i)*e'“"" vi=1l...n
Jj=1

19

This equality holds only when p in Eq. (16) is replac-
ed by the variable p(i). In Eq. (19), p(i) does not have a
constant value for all / and we can therefore introduce
p(i), the variable fault detection rate.

Example of variable fault detection rate p(i)

In order to represent the variable p(i), the optimal es-
timated parameter values in Example 2, E[{m]=64.3,
E[a]=0.304, and E[b]=0.53, are used in Eq. (19). In
Table 3, the numerical values of the variable fault detec-
tion rates p(i) that satisfy the equality in test instance i
in Eq. (19) are given. The Delayed S-shaped growth
curve in Ohba [9] can calculate the same growth curve
as obtained by the S-shaped HGD Model only for the
variable p(i).

In Fig. 5, the variable fault detection rate p(i) is
represented for 40 test instances. The failure intensity
function for the optimal parameter values of the HGD
model is shown together with the failure intensity func-
tion for the Delayed S-shaped growth model where
E[m]=64.3 and the estimated optimal constant fault
detection rate p=0.11699. It can be seen that the
Delayed S-shaped growth model with its constant fault
detection rate p cannot calculate the better-fitting
growth curve of the HGD Model.

4.2 S-shaped HGD Model and Goodness of Fit

The S-shaped HGD model significantly increases the
goodness of fit of the estimated growth curve to the real
observed growth curve. Table 4 shows the optimal esti-

mated parameter values as well as the goodness of fit
values for the optimal estimated growth curves
represented in Example 2. The optimal constant fault
detection rate p for an estimated initial number of
faults E[m]=64.3 (the same value as estimated by the
HGD Model) is also listed for the Delayed S-shaped
growth model. The S-shaped HGD Model evaluates the
best-fitting estimated growth curve. With a constant
fault detection rate p, the Delayed S-shaped model is in-
capable of calculating the better-fitting growth curve of
the S-shaped HGD Model.

4.3 Conclusion for S-shaped HGD Model

The HGD Model with w(i)=axi+b, a>0and =0,
has a variable fault detection rate p(i), whereas the
Delayed S-shaped Growth Model does not. The usage
of p(i) has a positive impact on the goodness of fit of
the estimated growth curves to the real observed growth
curve.

Therefore, the introduction of a variable fault detec-
tion rate into the theory of software reliability model-
ing, as realized by the HGD Model, can be seen as a
great improvement on previous growth models that con-
sider only constant fault detection rates. A variable
fault detection rate also seems more realistic in an ac-
tual test-and-debug environment.

5. Applicability to Different Kinds of Data

In this section, three data sets of real observed data
will be analyzed. The values of the parameters esti-
mated by the HGD Model are compared with those esti-
mated by other models.

Table 4 Comparison of Goodness of Fit.

Model E[m) Parameter Values EF1-value Kolm.-Smirnov Value
HGD Model, EF1 64.3 w(i)=0.304%i+0.53 0.837071 0.094860
D-S-shaped, EF1 76.98 p=0.09624 0.988674 0.099198
D-S-shaped, EF1; 64.3 p=0.116990 1.285424 0.135735

with E[m]=64.3

assumed
91 71.7248 p=0.103967 1.042750 0.114289

Table 5 Results of Estimations for 111 Test Instances.

Parameter Values

Model E[m] EFl1-value Kolm.-Smirnov Value
HGDM, EF1 475.9 w(i)=0.663%i+3.74 10.208244 0.125941
Del. S-shaped 483.04 p=0.068653 12.491662 0.133920
G-O NHPP 497.29 ¢=0.030796 25.641797 0.195207
HGDM, EF1 [5] 484 w(i)=testworker(i)x 9.825453 0.111240
(0.082%i+1.36)
Del. S-shaped, EF1 481.8 p=0.071568 12.369654 0.153361
G-O NHPP, EF1 527.8 $=0.02646 23.150693 0.175228




5.1 Example 3, Monitoring and Real-Time Control
Software

A data set presented in [11] is used. The data were col-
lected during the test-and-debug of a monitoring and
real-time control software package consisting of about
200 modules, each about 1000 lines of code written in
FORTRAN. The test conditions are not known. The
only given facts are the number of test workers involved
in the test and the number of newly detected faults on a
day-by-day basis for 111 debugging days.

In our paper [5], we used w(i) as the following ‘‘ease
of test’’ function:

199

w(i)=testworker(i)x(axi+b)

For the estimations here, however, we define w(i) asa
linear function of w(i)=axi+b. Table 5 shows the
results of estimations for the different parameters as
well as the goodness of fit values obtained by EF1 and
the Kolmogorov-Smirnov Goodness of Fit Test. The es-
timated growth curves are plotted in Fig. 6.

The Goel-Okumoto NHPP Model is inappropriate
for this data, as can be seen from the estimate for E[a]
of the HGD Model and the goodness of fit values. The
estimated growth curves obtained by the HGD Model
best fit the actually observed data. This better fit of the
estimated growth curve to the actually observed growth

Number of faults observed and estimated for 111 test instances.
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481.000 (c
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Fig. 6 Estimated Growth Curves for Monitoring and Real-Time Control Software.
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curve is realized by the assumption of the variable fault
detection rate p(i) in our model. The application of
NHPP models in combination with the evaluation func-
tion EF1 in Eq. (12) also gives better-fitting estimated
growth curves than those obtained by the maximum
likelihood method.

R. JacoBy and Y. ToHMA

5.2 Example 4, Railway Interlocking System

The data analyzed here was given in our previous
paper [11]. It is the bug report from a program con-
sisting of about 14.5 KLOC of ASSEMBLER language
for a railway interlocking system. Only the number of

Table 6 Results of Estimations for 199 Test Instances.

Kolm.-Smirnov

Model E[m] Parameter Values EF1-value
HGDM, EF1 65.6 w(i)=0.0069%i +0.0000 2.037733 0.128216
Del. S-shaped 76.0672 p=0.01282 2.517038 0.127030
Del. S-shaped, EF1 97.0 p=0.01034 2.114081 0.108003
Number of faults observed and estimated for 199 test instances.
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newly detected faults was reported. Therefore, the
results for the HGD Model, with w(i)=axi+ b, are com-
pared with those for the Delayed S-shaped growth
model.

The numerical results for the estimation are given in
Table 6 and the respective estimated growth curves, as
well as the variable fault detection p(i)-curve, are plot-
ted in Fig. 7.

The estimated growth curve of the HGD Model
(HGDM, EF1) best fits the actually observed data, ow-
ing to the variable fault detection rate. In the final stage
of estimation, this estimated growth curve bends earlier
than the other estimated growth curves and therefore

calculates E[m]=65.6 initial faults, whereas the
Delayed S-shaped growth model estimates 76.0672
faults by maximum likelihood method. The growth
curves estimated by EF1 fit these data much better than
those obtained by the maximum likelihood method.

5.3 Example 5, PL/I Application Program Test Data

The following are test data for a PL/I database ap-
plication program [9]. The program is of about 1.317
KLOC. The data reported for a period of 19 weeks. The
execution times and the number of faults detected per
week are reported. The total number of observed
failures is 358. The results of estimations for the HGD
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Table 7 Results of Estimations for 19 Test Instances (Weeks).
Model E[m] Parameter Values EF1-value Kolm.-Smirnov Value
HGDM, EF1, [4] 368.7 w(i)=exec.-time(i)* 8.887544 0.156170
(0.86%i+7.97)

HGDM, EF1 363.4 w(i)=3.07xi+14.72 6.793139 0.127944
Exponential G-O, [9] 455.4 ¢=0.0267368 12.672613 0.174075
Inflection S-shaped, [9] 347.2 ¢=0.0935493, r=0.2 8.898889 0.131950
Exponential G-O, EF1 859.6 $=0.0274 9.818134 0.122025
Delayed S-shaped, EF1 385.2 p=0.1845 9.640437 0.116258
Totally Observed 358

Model are compared with those obtained by Ohba [9].

In Table 7, the numerical results of estimations are
given. For a comparison of the goodness of fit, the
numerical results of estimation for the Delayed S-
shaped model and the NHPP Goel-Okumoto model, in
combination with the evaluation function, Eq. (11), are
also given.

The estimated growth curve of the HGD Model and
those of the Inflection S-shaped growth model and the
NHPP Goel-Okumoto model are shown in Fig. 8.
Here, to keep the representation of data consistent, the
estimated growth curves in Ohba [9] for the inflection
growth model and the NHPP Goel-Okumoto growth
model are plotted for test instances / rather than for
cumulative execution times ¢.

For these data also, the growth curves estimated by
the HGD Model better fit the actually observed data.
Furthermore, the estimates for E[m] of the HGDM are
the closest to the actually observed total number of 358
faults detected.

From these data, it is difficult to judge which of the
NHPP models estimates a growth curve closest to the ac-
tually observed data. With the application of the
HGDM, we do not need to worry about the probable
shape of the observed growth curve. This is very useful,
because it allows the HGDM to make estimations for all
kinds of observed growth curves. The parameters of the
model are responsible for a better fitting to the actually
observed data.

6. Conclusion

In this paper, we have presented the basic concepts of
the Hyper-Geometric Distribution Growth Model for
the estimation of the number of faults at the beginning
of the test-and-debug phase. The exact formulation of
the model is established. To evaluate the optimal
parameter values of our model, we use some distance
function. This approach is different from the idea of ap-
plying the maximum likelihood method to estimate the
best-fitting growth curves.

The exact formulation of the HGD Model makes it
easy to compare with other models. We presented the
relationship of the HGD Model to the Goel-Okumoto

NHPP Growth Model and the Delayed S-shaped
Growth Model. The Goel-Okumoto NHPP model can
be regarded a special case of the HGD Model. The rela-
tionship to the Delayed S-shaped growth model is
given, but the estimated growth curves obtained by the
HGD Model correspond more closely to the actually ob-
served data than those obtained by the Delayed S-
shaped model. We introduced the concept of a variable
fault detection rate. This variable fault detection rate in-
creases the goodness of fit for growth curves estimated
by our model.

A very important property of the HGD Model is that
it can be applied to various kinds of data, as we have
shown in this paper. A single model can be used to esti-
mate exponential growth as well as S-shaped growth.
This means, that using this overall model, we do not
need to worry about which model is to be applied to
which actually observed data. This is very advantageous
in reliability estimations based on reliability growth
curves.

Future research will attempt to eliminate some of the
unrealistic assumptions common to many software relia-
bility growth models. One major point of interest is the
introduction of new faults during the fault elimination
process. We are also conducting research on a more
general ‘‘ease of test’’ function for w(i) that does not
have a linear property, and on the establishment of
some analytical method for determining the parameter
values of our model.
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