Research Contribution

Reliability Assessment Measures Based on
Software Reliability Growth Model with
Normalized Method

JUN HISHITANI*, SHIGERU YAMADA* and SHUNJI Osakr*

It is very important to assess software reliability quantitatively by using failure time data observed during soft-
ware testing. This paper discusses a method of assessing software reliability on the basis of a software reliability
model described by a nonhomogeneous Poisson process, that is to say, an exponential reliability growth model.
The mean time between software failures and the software reliability function are adopted as reliability assess-
ment measures. Since the time-intervals between software failures for the model are improper, it is shown that
the means of the distributions can be obtained from the normalized distributions. Numerical examples of the
mean time between software failures and the software reliability function are given by applying the method pro-

posed here to actual data.

1. Introduction

It is very important to develop a highly reliable soft-
ware system, since a computer system that has broken
down as a result of software failure may cause various
problems. In general, a software system is developed
through successive four phases: specification, design,
coding, and testing. Software reliability measurement
and assessment in the testing phase, which is the last
stage of the software development process, have been
often discussed. The purpose of software testing is to
detect and remove software faults latent in the software
system. During the testing phase software failures are
observed and recorded. A software failure is defined as
an unacceptable departure from expected operation
caused by a fault in the software system. We assume
that all detected faults are removed and that no new
faults are introduced into the program. On this assump-
tion, the cumulative number of detected faults increases
as they are corrected, and the time-interval between soft-
ware failures becomes longer. This means that the
probability of software failure-occurrence decreases, in
other words that software reliability increases, as the
testing goes on. A mathematical tool that deals with
such a software failure-occurrence phenomenon during
the testing phase is called a software reliability growth
model [1]. Many software reliability growth models
have been developed for describing the failure-occur-
rence (or fault-detection) phenomenon and assessing
the software reliability (such as those described by
Goel and Okumoto [2], Jelinski and Moranda [3],
Higashi-

*Faculty of Engineering, Hiroshima University,

Hiroshima-shi, 724, Japan.

Journal of Information Processing, Vol. 14, No. 2, 1991

Littlewood [4], Moranda [5], Musa [6], Musa and
Okumoto [7], and Yamada and Osaki {8]). As quan-
titative measures for the software reliability assessment,
we can use the expected number of remaining faults in
the system, the mean time-interval between software
failures, the software reliability function, and so on,
which are derived from the software reliability growth
models.

In this paper, we analyze software failure time data
observed during software testing by using a software re-
liability growth model based on a nonhomogeneous
Poisson process (NHPP) [9]. In particular, using as a
basis an exponential software reliability growth model
proposed by Goel and Okumoto [2], we discuss
methods of estimating the mean time-interval between
software failures and the software reliability as quan-
titative assessment measures. Since the distribution of
software failure-occurrence time in this model is im-
proper, simplified and normalized methods of obtain-
ing these measures for software reliability assessment
are proposed. First, we summarize a software reliability
growth model based on an NHPP, and discuss the soft-
ware reliability analysis for the exponential software re-
liability growth model. Next, we investigate the distribu-
tion of the software failure-occurrence time in the
exponential software reliability growth model, and pro-
pose simplified and normal methods of estimating the
mean time-interval between software failures and the
software reliability. We also derive the conditional
mean time-interval between software failures from the
normalized software reliability function. Finally, we
compare the two methods proposed in this paper in
terms of the goodness of fit by using actual software
failure time data.

R M A'l'oy/d nt A
2. Software Reliability Growth Model

2.1 Model Description

During the testing phase of software development,
many testing resources are used to detect and correct
software faults. A software system is subject to soft-
ware failures caused by the faults remaining in the
system during the testing phase. Consequently, test data
such as the software failure-occurrence times or the
numbers of detected faults can be observed. These test
data can be used to describe a software failure-occur-
rence phenomenon and to assess software reliability, on
the basis of existing software reliability growth models.
The following assumptions are made:

1. A software failure is caused by a software fault.

2. Each time a failure occurs the fault that caused it
can be removed immediately.

3. Correction of a detected fault does not introduce

any new faults.
Let {N(?), t=0} denote a counting process representing
the cumulative number of faults detected up to testing
time ¢. Then, by using a software reliability growth
model, we can describe a software failure-occurrence
phenomenon based on an NHPP as [10].

Pr {N(t)=n}=w exp[-H(t)] (n=0,1,2,---),

m

H(t)=§ h(s)ds, 2)
0

where H(t) is a mean value function that indicates the
expected cumulative number of faults detected up to
testing time ¢, and A(¢) is an intensity function that
indicates the fault-detection rate at testing time f.
Pr{A} in Eq. (1) means the probability of event A.
Defining a as the expected initial fault content or the
expected cumulative number of faults to be eventually
detected, we usually assume that H(©)=a.

In general, the software reliability growth represents
the mathematical relationship between the cumulative
number of detected faults and the time span of software
testing. During the testing phase, two types of reliability
growth curves of the detected faults are typically ob-
served: exponential and S-shaped software reliability
growth curves. We therefore call the models describing
these software failure-occurrence phenomena the ex-
ponential and S-shaped software reliability growth
models, respectively.

In this paper, we discuss the exponential software reli-
ability growth model with mean value function m(¢)
proposed by Goel and Okumoto [2]:

H(t)y=m(t)=a(l—e™") (a>0, b>0), 3)

where b is the fault-detection rate per fault remaining in
the system.

es Based on Software Reliability Growth Model with Normalized Method 179

2.2 Estimation of Parameters

Let X, denote a random variable representing the
time-interval between the (k—1)-st and k-th failures
(k=1, 2,). Then, Sy=2=f X; is a random variable
representing the k-th failure-occurrence time, where
Xk=Sk—Sk—| (kzl, 2,' P (So:()) The joint
probability density function of {S;, S, - -, S,} for an
NHPP with H(¢) in Eq. (2) is given by

Fovsos (S0 S sy=exp [~ H) [hs), (@)
=1

where 0<s<s,<---<s5,<9. Suppose that data on
the failure-occurrence times s, (k=1, 2,---, n;
0<s <s5,<---=<s,) (that is, s, is a realization of S;) are
observed during the testing phase. The likelihood func-
tion for the unknown parameters in an NHPP model
with H(t) is then given by Eq. (4). Denoting the
likelihood function in Eq. (4) by L and taking the
natural logarithm of L yields

InL=—H(s,)+ Z": In A(sy). &)
k=1

Solving the likelihood equations obtained from Eq. (5),
we then can estimate the parameters of a fitted software
reliability growth model based on an NHPP by the
method of maximum likelihood.

For the exponential software reliability growth
model, substituting Eq. (3) in Eq. (5) gives

InL=—a(l—e ™)+n(lna+Inb)—b >, s. (6)
k=1

We can obtain the maximum likelihood estimates of
the unknown parameters a and b by solving
the simultaneous likelihood equations dln L/da=
d1n L/3b=0. Thus, we have

n/a=1—e %

" 7
n/b= 7Y sy+as.e > o
k=1

which can be solved numerically.
3. Software Reliability Assessment Measures

We can estimate the mean value function m(¢) in Eq.
(3) by using the estimated model parameters discussed
above. It is very useful in quantitative assessment of
assessing software reliability to estimate and predict
software reliability measures derived from the esti-
mated model. In this paper, we adopt the mean time be-
tween software failures and the software reliability as
such measures.

3.1 Normalization of Failure Time Distribution

The mean time between software failures has been
often adopted as a software reliability measure when
the failure time data measured in CPU time or test-

180

effort time are available.
From Eq. (4), the marginal density of Sk, Sk+1,"* "5 Sn
k=1, 2,---, n) is given by

11 h(s)- {H(s)!
=k

k)
x exp [—H(sn)], ®

Ssusein 8.8k Skats 7 Sn)=

where I'(k) denotes a Gamma function. Further, deriv-
ing the marginal density of S, from Eq. (8), the probabil-
ity density function of S, (k=1, 2,---, n) can be ob-
tained as:

h()-{HO}Y!

Tk k=1, 2,---, n).

S5, ()= exp [—H(1)]

©

From Eq. (9), the cumulative distribution function is
given by

H (1)
Fs (1)=—— u*"le“du. 10
g)rw& (10)
It should be noted that the cumulative distribution func-
tion is improper since

Fsk(w)=l—%5a uletdu<1, (11)
where H(©)=a, e.g., m(©)=a in Eq. (3). Eq. (11) im-
plies that a mean of the distribution of S; does not exist.
Therefore, the joint distribution function of {Si,
Sa,* -+, S,} is also improper. Consequently, a mean
time between software failures does not exist.

However, the mean time between failures can be ob-
tained approximately by calculating the inverse transfor-
mation of the mean value function for the observed
failure-occurrence time [2]. That is, for the exponential
software reliability growth model, we can obtain the
mean time to the k-th software failure, §; by solving the
following equation in terms of the observed failure time
Sk

k=m(s) (k=1,2,---, n). (12)
Then, we have
-1

§k=m"(k)="1;—

(-%)
In{l1—— (k=1,2,---, n).
a (13)

Thus we can use this simplified method to estimate the
mean time between software failures as £i=8§— 8-
k=1, 2,---, n).

In this paper, to obtain the mean time between soft-
ware failures more accurately, we normalize the failure
time distribution Fs (¢) in Eq. (10) as

Fs() _ Fs(

Gs ()= =
; Fs, () Fu""e'"du/l"(k)
0

(14

J. HISHITANI, S. YAMADA and S. OsAK1

In this way we can show that Gs (0)=0 and Gs,(®©)=1,
and thus that Gs, (¢) is proper. The probability density
function is given by

Ss.(1) _ Js.(1)
Fs,(0) Yu""e‘“du/l"(k)
0

gs (1)= 15)

3.2 Mean Time Between Software Failures

From Eq. (15), the mean of Sy, that is, the mean time
to the k-th software failure, is given by

0

ELsa=| 195,00

o

(k=1,2,---, n) (16)
Thus, the mean time between software failures can be
obtained numerically from the equation

E[X)=E[S]—E[S«-] (k=1,2,---, n). a7
From Eqgs. (15) and (16), we have

H™'(Wu* e "du
E[S]==2 . (18)

Y u*le vdu
0

For the exponential software reliability growth model
with m(¢) in Eq. (3), the mean time to the k-th software
failure is calculated as

| Y {lna—In(@a—uw)}u* ‘e “du

E[S]=—"°
(Sl b Y .
u*"le "du
0
1 Y In (@—w)u*"'e *du
= Ina— =2 , 19)
Yu""'e""du
0
since
B _ Ina—In (a—u)
H 'wW=m'Wy=——""—" (20)

b

The mean time between software failures E[X)] (k=1,
2,- -+, n) for this model can then be obtained from Eqgs.
(17) and (19).

3.3 Normalization of Software Reliability

For the software reliability growth model described
by Egs. (1) and (2), the software reliability, which
represents the conditional probability that a software
failure does not occur in the time interval (¢, t+x],
given that the last failure time is ¢, is
R(Xlt)EPr {Xk>X|Sk—|=t}

=exp [-{H(@t+x)—H()}] (=0, x=0), (1)

which is independent of k(k=1, 2,---, n). From Eqgs.
(3) and (21), we have

R(x|t)=exp [—e "m(x)], (22)

Reliability Assessment Measures Based on Software Reliability Growth Model with Normalized Method 181

for the exponential software reliability growth model.
Thus R(01#)=1 and R(© |¢t)=exp [—ae~*]. From Eq.
(22), the conditional probability that a failure occurs in
(¢, t+x] is given by
F(x1t)=1-R(xlt)
=1—exp [—e "m(x)]. 23)
Thus
FOlf)=0, F(olt)=1—exp[—ae <1, (24)

which implies that the conditional distribution F(x|¢) is
also improper and that a mean does not exist.

In a similar way to that in which we found the failure
time distribution Gs (¢) in Eq. (14), we can normalize
the conditional distribution as
F(xl?)

F(oit)
_l—exp[—ae "(1—e ™)
- 1—exp [—ae™ "]
From Eq. (25), G(01t)=0 and G(o|t)=1. Therefore,
the software reliability function is given by
SxI)=1-Gxlr)
_ 1—exp [ge ")

" l-explae™®] 26

Gxlt)=

(V&)

By the normalized method, we can obtain the mean of
the distribution (25) as

0

E[X|t]=§ S(x1t)dx
0

1 (e —1
=b(e"“’— D So » du, 27
where
n(t)=ae™", (28)

which is the expected number of remaining faults at
testing time ¢ for the exponential software reliability
growth model. Eq. (27) shows the conditional mean
time between software failures when then total testing
time ¢ is given.

4. Numerical Illustration

We analyze actual software failure time data ob-
served during the testing phase to give numerical ex-
amples for application of the method described above.
The data sets denoted by DATA1 and DATA2, which
were cited by Goel and Okumoto [2] and Musa et al.
[12], respectively, are analyzed here. DATAIl is
available in the form s, (k=1, 2,-- -, 26) measured on
the basis of the numbers of days. DATAZ2 is available in
the form s, (k=1, 2,-- -, 15) measured on the basis of
the numbers of CPU seconds.

We apply the exponential software reliability growth
model with m(¢) in Eq. (3) to these data sets. The model

parameters can be estimated by solving Eq. (7)
numerically. We obtain the estimated parameters
as 3=33.99 and 5=0.00579 for DATAI and 4=23.46
and b=0.00345 for DATA2, that is,

DATAL: r(t)=33.99(1 —e 00" 1), 29)
DATA2: rfi(t)=23.46(1—e 000341, (30)

Using the estimation results above, we calculate the
mean time between failures by using the simplified and
normalized methods discussed in Section 3. Tables 1
and 2 show the estimated mean times between failures
for DATAl and DATA2, respectively, which are
calculated by using the simplified method of Eq. (13)
and the normalized method of Eq. (17). We find that
the mean time between failures becomes longer (that is,
software reliability grows) for each method as software
testing goes on. Further, we calculate the sum of square
errors between the actual time-interval and the esti-
mated mean time-interval between failures to compare
the simplified method in Section 3.1 and the normalized
method in Section 3.2 in terms of goodness of fit. The
sum of square error is given by

F=§] = ELX)P, a1)

where n is the total number of observed data, x;
calculated from s, — s, is the actual time-interval, and

Table 1 Estimated mean time between software failures for

DATAL.

Falure Actual Simplified Normalized Normalized

k. X i E[X\] E[XIt=5,_)]
1 9 5.16 5.25 5.24
2 12 5.32 5.40 5.53
3 11 5.48 5.59 5.94
4 4 5.66 5.79 6.35
5 7 5.86 6.00 6.50
6 2 6.06 6.22 6.78
7 5 6.28 6.47 6.87
8 8 6.52 6.73 7.08
9 5 6.78 7.03 7.43
10 7 7.05 7.35 7.66
11 1 7.35 7.70 7.99
12 6 7.68 8.09 8.04
13 1 8.04 8.54 8.34
14 9 8.43 9.03 8.39
15 4 8.86 9.60 8.87
16 1 9.34 10.24 9.09
17 3 9.88 10.98 9.14
18 3 10.47 11.80 9.31
19 6 1115 12.71 9.48
20 1 11.92 13.71 9.84
21 11 12.81 14.75 9.90
2 33 13.83 15.79 10.60
2 7 15.04 16.80 13.03
24 91 16.47 17.72 13.62
25 2 18.21 18.49 24.87
26 1 20.36 19.07 25.22
F 7180 7062 8121

182

Table 2 Estimated mean time between software failures for

DATA2.
Fe]l\illure Actual Simplified Normalized ~ Normalized
s X 2] EXlt=s.))
1 10 12.64 12.96 12.95
2 9 13.22 13.58 13.43
3 13 13.85 14.30 13.87
4 11 14.54 15.10 14.54
s 15 15.31 16.00 15.14
6 12 16.16 17.03 15.99
7 18 17.12 18.22 16.71
8 15 18.19 19.62 17.86
9 22 19.41 21.25 18.88
10 25 20.80 23.17 20.49
11 19 22.40 25.38 22.50
12 30 24.28 27.85 24.18
13 32 26.50 30.48 27.13
14 25 29.16 33.12 30.73
15 40 32.42 35.56 33.93
F 240 233 237
40
g 4
é 30
w
=]
-
W 20
>
ﬁ -
&
Z 104
w
: -4
0 T T T T T
0 100 200 300

SOFTWARE FAILURE OCCURRENCE TIME (DAYS)

Fig. 1 Estimated conditional mean time between failures for
DATA 1, based on the exponential software reliability
growth model.

MEAN FAILURE TIME (SEC.)

0 . " r .
0 100 200 300

SOFTWARE FAILURE OCCURRENCE TIME (SEC.)

T

Fig. 2 Estimated conditional mean time between failures for
DATA 2, based on the exponential software reliability
growth model.

J. HisHITANI, S. YAMADA and S. OsAk!

E[Xy] is the estimated mean time between the (k—1)-st
and k-th failures. From Table 1 (Table 2), we have
F=7180 (F=240) by the simplified method and
F=7062 (F=233) by the normalized method for
DATAI (DATAZ2). This means that for these data sets,
the normalized method fits better than the simplified
method in calculating the mean time between failures.

We also obtain the estimated conditional mean times
between failures, E[X|t=s,_(]’s, from Eq. (27), as
shown in Tables 1 and 2, where the total testing time ¢ is
equal to the actual (k—1)-st failure time s, (k=1,
2, -+, n; 5=0). Figures 1 and 2 show the relationship
between the total testing time ¢ and the estimated condi-
tional mean time between failures E[X|t=s,_,] for
DATAI and DATA2, respectively.

Further, Figures 3 and 4 show the software reliability
function S(x|¢) in Eq. (26) for DATA1 and DATA2, re-
spectively, where the total testing times are r=250
(days) and =296 (sec.) for DATA 1 and DATAZ2, re-
spectively.

1.0

SOFTWARE RELIABILITY R (x|t)
o
&

0 T
0 50 100

OPERATION TIME (DAYS) x

Fig. 3 Estimated software reliability function for DATA 1, using
the normalized method.

-
o

SOFTWARE RELIABILITY R (x|t)
=3
]

0 T
0 50 100
OPERATION TIME (SEC.) x

Fig. 4 The estimated software reliability function for DATA 2, us-
ing the normalized method.

Reli L-:uyA nt M

5. Conclusion

Using as a basis a software reliability growth model
described by an NHPP, we have discussed methods of
assessing software reliability from failure time data. In
particular, we have focused on the mean time between
software failures and the software reliability as reliabil-
ity assessment measures, and have proposed normalized
methods of failure-occurrence time distributions. For
analytical illustration, we have adopted an exponential
software reliability growth model based on an NHPP.
In general, the mean time to software failure cannot be
accurately obtained, because the software failure times
in the software reliability growth model have improper
distributions. We have therefore proposed simplified
and normalized methods for obtaining the mean time to
software failure. We have also applied the normalized
method to the software reliability function. Further,
numerical examples of the mean time between software
failures and the software reliability function have been
given by analyzing actual software failure time data,
and the simplified and normalized methods have been
compared in terms of goodness of fit. As a result, we
have confirmed that the estimation result given by the
normalized method corresponds closely to the actual
data.

In this paper, we have adopted the exponential soft-
ware reliability growth model for analytical illustration.
Of course, the normalized method can be used with
other software reliability growth models based on
NHPP’s. For example, if we adopt a delayed S-shaped
software reliability growth model [11] with mean value
function

H(t)=M(t)=a[l—(1+bt)e "] (@>0, b>0), (32)

then we can obtain the mean of Gs (¢) in Eq. (14) as

a
| Y 1/21:1 ‘a—.u ' u* e "du
> (33)

E[Sk]E_ ’
b swu""e‘"du
0

es Based on Software Reliability Growth Model with Normalized Method 183

by using mathematical approximation. The mean time
between software failures can then be obtained from
Eq. (17).

In future, we will analyze more actual sets of data on
software failure-occurrence time and study the
applicability of the normalized method.

References

1. RAMAMOORTHY, C. V. and Bastani, F. B. Software reliability-
Status and perspectives, IEEE Trans. Softw. Eng. SE-8, 4 (July 1982),
354-371.

2. GoEL, A. L. and Okumorto, K. Time-dependent error-detection
rate model for software reliability and other performance measures,
IEEE Trans. Reliab. R-28, 3 (Aug. 1979), 206-211.

3. JeLINski, Z. and MORANDA, P. B. Software reliability research,
in Statistical Computer Performance Evaluation, ed. Freiberger, W.,
Academic Press, New York (1972), 465-484.

4. LitTLEwooD, B. Theories of software reliability: How good are
they and how can they be improved?, IEEE Trans. Softw. Eng. SE-6,
5 (Sept. 1980), 489-500.

5.. MORANDA, P. B. Event-altered rate models for general reliability
analysis, IEEE Trans. Reliab. R-28, 5 (Dec. 1979), 376-381.

6. Musa, J. D. The measurement and management of software relia-
bility, Proc. IEEE, 68, 9 (Sept. 1980), 1131-1143.

7. Musa, J. D. and OkuMoTO, K. A logarithmic Poisson execution
time model for software reliability measurement, Proc. 7th Int. Conf.
Software Engineering (1984), 230-238.

8. YaMaDA, S. and Osakl, S. Software reliability growth modeling:
Models and applications, IEEE Trans. Softw. Eng., SE-11, 12 (Dec.
1985), 1431-1437.

9. ASCHER, H. and FEINGOLD, H. Repairable Systems Reliability:
Modeling, Inference, Misconceptions and Their Causes, Marcel Dek-
ker, New York (1984).

10. YAMADA, S. Software Reliability Assessment Technology (in
Japanese), HBJ Japan, Tokyo (1989).

11. YAaMaDA, S., OHBA, M. and Osaki, S. S-shaped reliability
growth modeling for software error detection, IEEE Trans. Reliab.,
R-32, 5 (Dec. 1983), 475-478.

12. Musa, J. D., IaNNINO, A. and OKkuMOTO, K. Software Reliabil-
ity: Measurement, Prediction, Application, McGraw-Hill, New York
(1987).

(Received December 18, 1989; revised May 8, 1990)

