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Third-Order Semi-Implicit Runge-Kutta Methods
for Time-Dependent Index-One
Differential-Algebraic Equations

TosHIYUKI KoTo*

We study the order of accuracy of implicit Runge-Kutta (IRK) methods applied to time-dependent differential
algebraic equations (DAEs) of index 1. A sufficient condition is derived for an IRK method to attain third-order
accuracy for DAEs. Furthermore, a third-order semi-implicit RK method is constructed on the basis of the con-

dition. Numerical experiments confirm the results.

1. Introduction

We discuss the accuracy of implicit Runge-Kutta
(IRK) methods applied to the system of differential-
algebraic equations (DAEs) of index 1

O=F(t, u(t), u'(t)), tela, bl

where F and u are m-dimentional vectors. In particular,
we are interested in the order of semi-implicit RK
methods for a DAE system of the form

A’ (1) + B(u(t)=g(1), (1.1.2)
where A(¢) and B(t) satisfy
L 0 c@t) 0
Poanen=(y | posoen=("" ]|
(1.1.b)

for some non-singular matrices P(¢) and Q(¢), and I,
and I, are identity matrices of order m, and m,
(m=m;+m,), respectively.

In order to integrate DAE systems numerically, a cer-
tain stability condition is required for IRK methods.
Furthermore, it is often observed that even a stable IRK
method does not attain the same order for DAE systems
as for purely differential systems [e.g. 2, 7]. Such reduc-
tion of order has been analyzed for an system of the
form

Y @)=f(y(1), z(1)), 0=g(¥(2), z(¢)),
(dg/9z)™" exists and is bounded. (1.2)

A complete characterization of the order of IRK
methods has been obtained by Roche [9]. However, the
system (1.2) can be transformed into a purely differen-
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tial system by the Implicit Function Theorem. Thus it is
also possible to integrate it with no reduction of order.
It is therefore important to study the system (1.1), in
which it is difficult to separate the differential part and
the algebraic part of the system.

Regarding the DAE system (1.1), Petzold [8] gives a
sufficient condition for an IRK method to attain a cer-
tain order. However, as far as a semi-implicit RK
method is concerned, the condition guarantees only sec-
ond-order accuracy at most. Although many semi-im-
plicit RK methods indeed show second-order accuracy
for (1.1), some numerical experiments suggest that
third-order semi-implicit methods exist.

Our main purpose in this paper is to clarify the ex-
istence of such semi-implicit methods. After a descrip-
tion of preliminaries in Section 2, we present in Section
3 a theorem that gives a sufficient condition for an IRK
method to attain third-order accuracy for (1.1). On the
basis of the condition we construct a third-order semi-
implicit RK method, for which experimental verifica-
tion is shown in the same section. The proof of the
theorem is given in Section 4. In the final section, we
make some comments on the results.

2, Preliminaries

Let (A4, B) be a regular pencil of m x m matrices, that
is, let A and B be m X m matrices such that det (4 + AB)
is not identically zero. For the pair (A, B) there exist
non-singular matrices P and Q such that

L o c o
) peo=(y )
0 E 0 L

[4, 10]. Here E is a nilpotent matrix of index k, that is,
E*=0and E*'#0 (If E=0, we consider k=1). The in-
teger k is called the index of the pencil (A4, B).

The system (1.1.a) is said to be (global) index 1 if the

PAQ=(
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pencil (A(¢), B(¢)) has index 1 for every te [a, b]. This
condition is equivalent to the existence of P(f) and Q(¢)
such that (1.1.b) holds. In this paper, we assume that
A(1), B(1), g(t), P(¢), Q(2), and Q(¢)~" are sufficiently
smooth functions.

We now introduce the concept of solvability of
(1.1.a) following Gear and Petzold [5]: The system
(1.1.a) is said to be solvable if for any g(?), there exist
solutions to the DAEs defined on [a, b], and solutions
that have the same initial value are identical.

Let o(£)=Q(¢) 'u(t). Using (1.1.b), the system
(1.1.a) is rewritten as

(I. 0 (C(t) Ojv(t)

(t)+
0 o)”() A

I, 0
+[y Jewn e wun=pPwgw. @b
This system has a solution v(¢) determined by an initial
value v, constrained by vox = (P(@)g(a))w for k=m,+1,
m+2, ..., m. Here vy represents the kth compo-
nent of the vector v,. Therefore the system (1.1) is
solvable, and a solution u(¢) is determined by an initial
value u, satisfying (Q(a)™'uo)wy=(P(@)g(a))w for
k=m+1, m+2, ..., m. By the assumption that
A (t) and B(?) are sufficiently smooth, the solution u(¢)
is also sufficiently smooth.
Let #(>0) be a step size and let

a=t<hi< <t <" <tN=b, t,,=t0+nh

be a partition of [a, b]. Then an s-stage IRK method for
(1.1) is formulated as follows [8]:

At DU + B(t. YUi=g(t,,),

§
U=u,+h Y, a;U}, ti=t,tch, i=1,2,...,5s,
J=1

S
Unsr=u,+h > bU!, (2.2
i=1
where u, is given by the initial value u(a) of a true solu-
tion u(t) of (1.1), and a;, b;, and c¢; are the parameters
of the IRK method. As usual, it is assumed that
Ci= Zj=| ai;.
For notational convenience, we define the matrix A
and the vectors b and ¢ by

A=(a)(1 =i, jss), b=(by, by, ..., b)),

> CS)Ta
respectively. When the matrix A is lower triangular, the

method is said to be semi-implicit.
Let V/=0Q(t,;)"'U.. Then the equations of (2.2) yield

(g g] Vit [C((;"") Z)Q(tn,.-)"un

s Ctw) O
+h,—§ aij( 0 IZ]Q(th)_lQ(t,._j)Vj/

=P(t,)g(tn), i=1,2,...,s. @2.3)

c=(C1, C2y - . -

Since Q(,.) "' Q. ,)=1+ O(h), V!’s (or U!’s) are deter-
mined from u, if the matrix A is non-singular. On the
other hand, when Q(#) is a constant matrix, A must be
non-singular for those values to be obtained. Thus, we
can compute #,+; from u, by (2.2) for any system of the
form (1.2) if and only if A is non-singular. Hereafter A
will be assumed to be non-singular.

An order of the IRK method for the DAE system
(1.1) is defined as follows:
Definition. The differential-algebraic order of the IRK
method is at least r if

u(t)—u,=O(H), for any fixed t(=t,)e [a, b].

In order to characterize the differential-algebraic
order of IRK methods, other preliminaries are required.
First, we define the stage order of an IRK method. For
an IRK method, let q(i), i=1, 2,. .., s, be integers
such that

2.4

W(tn+1) — wW(t,) — i ayw' (L, )| =OHOYY)  (2.5)
i=1

for any sufficiently smooth function w(¢). From the
Taylor expansion of w(t), (2.5) yields

Z;a,-,-c}‘"‘=c§‘/k, k=1,2,...,q(). 2.6)
-

The stage order of the IRK method is defined by
g=min {q(i), 1=i=<s}.

Let R(z) denote the stability function of the IRK
method, that is,

R@)=1+zb"(I—zA) ‘e, e=(1,1,...,1)". 2.7
It follows from (2.7) that
y=lim R(z)=1—b"Ae. (2.8)
72—

Using the above notation, Petzold [8] (see also
Brenan et al. [2]) shows that if | y| <1, then there exists
an integer r such that (2.4) holds, and r is greater than
or equal to

min {p, g+1}, 2.9

where p is the order of the IRK method applied to
purely differential systems.

For any semi-implicit method, the stage order q is
equal to 1, because g(1) is equal to 1. Thus (2.9) does
not exceed 2 for any semi-implicit method. However, it
should be noted that some semi-implicit methods show
third-order accuracy for (1.1) in numerical experiments.

3. Statement of Results

In this section, we present a sufficient condition for
the differential-algebraic order of an IRK method to be
greater than or equal to 3. We also construct a third-
order semi-implicit RK method.

Theorem. Assume that an IRK method satisfies

@) p=3, (i) bTA'e?=1 (iii) (be)"A"'e?*=2/3 and (iv)
lyl<l,
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where ¢’=(c?, ¢, . .., c®)7 and be=(b,c\, b:cs, . . . ,
bsc)”. Then, the differential algebraic order of the
method is greater than or equal to 3.

Remark 1. Let 6=Ac—c?/2. Since condition (i) im-
plies that b’e=1/2 and b7c¢*=1/3, conditions (i), (ii),
and (iii) are equivalent to the conditions

(i) p=3, (il BTA"'6=0, (iii)’ (bc)"A"'6=0.

Thus if g=2 for an IRK method, then conditions (i),
(ii), and (iii) are automatically satisfied (cf. (2.6)). This
agrees with Petzold’s results.

Remark 2. Inthe case of the DAE system (1.2), con-
ditions (i), (ii), and (iv) form a sufficient condition for
an IRK method to be convergent of order 3 [9]. Thus,
an IRK method satisfying the conditions of the theorem
is third-order for (1.2). On the other hand, numerical ex-
periments show that condition (iii) cannot be omitted to
attain third-order for the system (1.1).

When s=2, although several IRK methods (for exam-
ple, Radau ITA) satisfy the conditions of the theorem,
there is no such semi-implicit method. This can be easily
verified by computation. We here consider 3-stage
diagonally implicit Runge-Kutta (DIRK) methods,
represented by the array

C| i o
Cy ‘ a o
C3 ; a an» o
I
_ i .
i b b b 3.1

The condition (i) implies that
bi+b:+by=1, bici+be;+bic;=1/2,
bict+brci+bici=1/3,
biac+ byax ¢ +acy) + by(ay ¢+ a0+ ac)=1/6.
(3.2)

From (3.2), on the assumption that (c;—a)(c;—a)
(c2—¢3) #0, by, by, by, a2, ay and as are represented by
a(=cy), c; and c;, that is,

_1/3—(C2+C3)/2+C2C3 _1/3‘(C3+0[)/2+C3C¢

b

@—c)a=c) ' (@-cla—a)
_1/3_((X+C2)/2+(1(.‘2
T (@)
a’—a+1/6
an=c—a, asz=m, an=C—a—as.

(3.3)

Using these relations, conditions (ii) and (iii) can be
reduced to
(@*—a+1/6)c;=(a’—3a*/2+a/3) (3.4a)

and

T. Koto

Table 1 Parameters of DIDA3.

4.358665215084590D — 1
ay= 2.820667392457705D— 1
a,= 4.838154663299224D — 2
a,=  7.988541035008544D —2

a

b= 2.689623426019636D +0
b,= 1.826116589129458D +0
by=—3.515740015114909D +0

= 4.358665215084590D — 1
;= 7.179332607542295D — 1
;= 5.641334784915367D 1

(a—1/3)c2c3— (e —2a/3)(c:+c3) + (2 ~ 402/ 3)=0,
(3.4b)

respectively.

Method (3.1) with p=3 is L-stable if and only if « is
equal to the reciprocal of the second zero of the 3-
degree Laguerre polynomial (see Butcher {3], p. 248).
Noticing that an L-stable method satisfies y=0, we
choose a as the value, that is, «=0.435866 . . . . Then
(3.4) possesses the unique solution c;=(14+a)/2,
c;=1—a, which, together with (3.3), determines a
DIRK method satisfying the conditions of the theorem.
In Table 1 we present the method, called ‘“DIDA3’’.

Similarly, letting c;=(1 +«)/2 and ¢;=1 for the same
«, we obtain a method satisfying every condition of the
theorem except (iii). This is known as Alexander’s
method, and is characterized by a special stability pro-
perty (see Alexander [1], Theorem 5, p. 1012). Alex-
ander’s DIRK method shows numerically second-order
accuracy for (1.1).

Now, we consider the two-dimensional problem

A(u’ (1) +B(Du()=g(1)(t>0), u(0)=(1, 1/2)7,

A(t)z(l —t]’ B(’)Z( 1 —(1+t))’

0 0 —1/2 1+4/2.

9(1)= (Sino(t))- @3.5)

The matrices A(¢) and B(¢) satisfy

poanen=(; o). roswon=("? 7).
0 0 0 1

where
1+1¢/2 t)
1/2 1/

Therefore (3.5) is an example of DAEs of the form (1.1),
which has the true solution

u()=1+¢t/2)e "+1tsin (1),

(2 1) o

ue(t)=e~'/2+sin (2).
3.6)
To find the accuracy of DIDA3 and Alexander’s
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Table 2 Numerical Results for Problem (3.5).

method\N 4 8 16 32 64 128 256 512 rg
DIDA3 3.32 4.24 5.16 6.07 6.97 7.88 8.79 9.70 3.02
Alexander 2.16 2.79 3.40 4.01 4.62 5.22 5.82 6.42 2.02

method, we integrated problem (3.5) from ¢=0to =1
with the step size h=1/N (for various values of N).
More specifically, we measured the accuracy by the
number of correct significant digits of the first compo-
nent of the numerical solution at =1, that is, the value
of

—loglolum(l)—u(lwl . (37)

For each method, assuming that those values (obtained
for various values of A) fall on a straight line for —logo
(h), we calculated the slope by the method of least
squares. The slope r.r is considered as an effective
differential-algebraic order of the corresponding
method.

The results are displayed in Table 2. All the
numerical experiments were conducted by double-preci-
sion arithmetic on an FM11 AD2+ computer.

4. Proof of Theorem

In this section, we will prove the theorem. For
simplicity, we describe the proof in the case m;=m,=1,
which is essentially the same as in the general case. We
also assume that 4 is sufficiently small.

Since (2.2) is regarded as an application of the IRK
method to

P(O)A(t)u’ (1) + P()B()u(t)=P(1)g(1),

we can assume that P(¢) is the identity matrix without
loss of generality.

For a true solution u(¢) of (1.1), we define ¢,, n=0,
1,...,by

do=1u(a),

=g, t+h Y, a; D}, Gar1=¢,+h D bid. 4.1
J=1 i=1

D/ =u'(tn),

Since ¢,’s are regarded as numerical solutions of the
differential equation

' (H)=u'(1),
from condition (i), we obtain
u(tn)—¢n=0(h3)- (4-2)

Therefore, in order to prove the theorem, it suffices to
show that

d(@)=u(a),

bn—tn=O(R’). 4.3)

The estimate (4.2), together with the definition of &,,
yields

u(ty) = Di— W*ouu” (1) + O(h), 4.4

where J(;) represents the ith component of the vector
d=Ac—¢c?/2, that is,

6(,,=i} a;c;—cif2.
=
On the other hand, since u(?) is a true solution of (1.1),
we have
At Ju’ (tn,) + Bty Yu(tn) = g(tn.)- 4.5)
Substituting (4.4) into (4.5) and noticing that
B(t,,)=B(t,) + O(h),
we obtain
A(t)D] + B(t,)Bi=g(tn,) + W6, B(t)u" (1,) + O(H).
4.6)
Now, we introduce several variables. First we put
Au,=¢,—u,, AU/ =&]—-U!, AU=¢,—U.
From (2.2), (4.1), and (4.6), they satisfy
At )AU! +B(t, )AU=R6,Btu" (t)+ O, (4.7)

AU=Au,+h Y a;AU},
j=1

Atpry=Au,+h Y, b,AU;. 4.8)
i=1
Furthermore, let
(AYn, A22)"=Q(tn)" ' Autn,
MY, AZ)'=Q(t,)"'4U.

AaY!, AZ)H"=Q(,)"'aU;

Multiplying each equation of (4.8) by Q(¢,)~', we have

AY=Ay,+h > a,4Y], 4.9.3)
Jj=1
AYp=AY+h D, biAY], (4.9.b)
i=1
AZ=Az,+h Y, a;AZ], (4.10.a)
j=1
AZy1=Az,+h D, biAZ!. (4.10.b)
i=1
Moreover, a simple computation shows that
O(tn) ™' Q) =1—c:hQ(t) ™' Q" (t) + O(h?)
_ (1 +O0(h) —chR,+ O(hz)j
O(h) 1+omy

where R, is the (1, 2)-component of Q(t,)~'Q’(t).
Thus, noticing that
o=, <)o)
n,, 0 0 n,t ’

Ct.) 0

B(t)=| :

)Q(fn,i)_',

and letting
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(s $) =B(t)u" (1),
we can rewrite (4.7) in the form
(A +0MNA Y +(—cihR,+ O AZ!
+(Ct)+0OM)NAY,+Oh)AZ;
=hSunn+ O,
O(MA Yi+(1+O0r)AZi=H6;,(+ OR),
In the remainder of this section, we will prove that
A Ynir| =(1+0WM) 1 Ay, | +Oh) 1 Az,| +O(h*), (4.13)
Az | =OM) Ay, + 11142, +OR). 4.149)

Note that Au,=0, since ¥, is given by the initial value of
the true solution. The proof of the theorem immedi-
ately follows from the following lemma (cf. (4.3)).

4.11)
4.12)

Lemma. I[f (4.13) and (4.14) are satisfied, then
lAunll = Cll Auoll + O(H3). 4.15)
Proof. By a similar argument to that in part b) of the

proof of Theorem 7 in Hairer et al. [6], we obtain
1Ay, <(1+0M) | Ayol +O(h) | Azl + O(H),
1| Az,| =OM) | Ayol +(14+O(R)) | Azl + OH).

Since Au,=Q(t,)(Ay., Az,)", these estimates yield
(4.15). Q.E.D.
Let

AY=AY, AYs, ..., AY),
AY' =AY, AY}, ..., AY!),
AZ=(A2,,AZ,,...,AZ),
AZ'=(AZi, AZ, . .., AZ)".

Since (4.11) yields
AY' =—C(t,)4 Y+ O(h),
from (4.9.a) we have
(I+hC()A)A Y=Ay,e+Oh).
Thus we obtain
14Y;l =(1+O0Mh) | Ay, +Oh?. (4.16)

On the other hand, (4.10.a) and (4.12) are rewritten
as

hAZ' =AY (AZ—Az,.e) 4.17)
and
AZ=0MA Y+ WL+ O, (4.18)

respectively. Substituting (4.18) into (4.17), we have

hAZ'=A" (Oh)AY+ R, — Az.e)+OR%). (4.19)
Hence, by (4.10.b), we find
AZpr1=A2,+hb7AZ’

=(1—-b"A"'e)4z,+ON)AY
+hb"A '8, + O(H).

T. Koto

Note that y=1—b"A"'e from (2.8). We obtain the es-
timate (4.14), using (4.16) and condition (ii)’.
We can rewrite (4.11) as

AY' =—(C(t.)+O0h)NAY+(hR,C+Oh)AZ’
+O(h)AZ+h*on,+ OR). (4.20)

where C=diag (¢, ¢z, . . . , ¢5). Substituting (4.20) into

(4.9.b), we obtain
AYni1 =AY, +bTh{ —(C(t:) + O(h)A Y +hR,CAZ’
+O(h)AZ’ + OW)A Z+ h*6n.} + O(hY), (4.21)

From (4.9.a), (4.20), (4.18) and (4.19) it follows that

AY=A4y,+hAAY’
=Ay,+0h)Az2,—h(C(t))+ Oh)AA Y+ O(R).

This, together with (4.16), yields
1AYl =(1+0Mh) Ay, +O(M) 1 Az, | + OH®).  (4.22)

On the other hand, using (4.19) and condition (iii)’, we
obtain

b’CH’AZ’ = h(bc)" A~ (O(M)A Y+ h*6¢,— Az.€) + O(h*)
=h(bc)’ A~ (O(M)A Y —Az,e)+O(h%). (4.23)

Noticing that 76 =0 from condition (i), we finally ob-
tain the estimate (4.13) from (4.21), (4.22), (4.23),
(4.18), and (4.19).

5. Concluding Remarks

In this paper, we deal only with linear DAE systems.
However, the present method can be at least theoretical-
ly applied to a certain non-linear system by combining a
technique of linearization of the system [e.g. 8], though
in that case several problems remain to be solved for
efficient implementation of the method. The most essen-
tial problem is how one can efficiently solve the
algebraic equations arising in the evaluation of the im-
plicit formula.
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