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We have designed, implemented, and experimented with two language systems based on algebraic specifica-

tion techniques: HISP [4, 5], and OBJ2 {3, 7].

One of the main purposes of HISP and OBJ2 is to support the so-called upstream software development pro-
cess in a rigid and formalized fashion; for example, in the interactive development of formal specifications. We
have experimented with these two language systems the writing of several kinds of small to medium-size soft-

ware specification,

In this paper, we review our experiences with these two language systems and envision desired features of
future algebraic specification and/ or programming language systems. The review will be done through analyses

of the following two important technical issues:
+ structuring of specifications and/or programs

« interactive derivations of specifications and/or programs with structure.

1. Introduction

Algebraic specification techniques are now con-
sidered as one of the most promising approaches to
specification writing in general. They were introduced
around 1975 as a method for specifying so-called
abstract data types [15, 18)]. Substantial research efforts
were invested in a wide range of areas from basic
algebraic semantics theory to the application to soft-
ware production processes.

HISP (Hierarchical Specification and/or Program
Processor) [4, 5] was designed according to the idea
that ‘‘a large part of software systems can be described
as a hierarchical structure of abstract data types.”’ The
idea was embodied as a language in which each soft-
ware module (description unit) is modeled as an
abstract data type with hierarchical structure. In HISP,
each software module is the result of applying one of
several module-building operations to already existing
modules. This basic feature of the language makes it
possible to write inherently hierarchically structured
software. Using this property, many mechanisms for
top-down software development are easily realized.
Parameterized types, in particular, are available in the
language by using these specific operations for module
building.

OBJ2 was designed and implemented in 1984 at SRI
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International by K. Futatsugi, J. Goguen, J.-P.
Jouannaud, and J. Meseguer [7] as a successor to the
previous OBJ family of languages [13, 14]. OBJ2 is an
algebraic specification based ultra-high-level specifica-
tion and/or programming language with a number of
innovative features. Besides its distinctive syntax, three
of the most important features are as follows:

« Its declarative, or denotational, semantics is de-
fined by order-sorted algebras. Order-sorted algebras
are a significant extension of the usual many-sorted
algebras.

» Its operational semantics is defined by the term-
rewriting with associative and/or commutative match-
ing.

« It provides parameterized modules with hierar-
chical structures.

Recently the latest version of OBJ, called OBJ3, was
released [17, 22] by SRI International. It is basically a
new implementation of OBJ2, but the term rewriting in-
terpreter has been greatly improved by the introduction
of associative and/or commutative pattern matching
and parameterized modules. We are now using this
latest version of OBJ, and all the OBJ examples in this
paper are written in it. We therefore refer to the
language not as OBJ2 but just as OBJ. Activities
relating to OBJ are already spreading worldwide, par-
ticulary in the U.S.A., the U.K., France, Italy, and
Japan [17]. A number of attempts have been made to
apply the language to several kinds of field, including
the development of formal specifications, rapid pro-
totyping, and hardware verification [26, 8, 11].

In this paper we will concentrate on the application
of algebraic specification and/or programming
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language systems to the interactive development of
specifications and/or programs, because this was the
main motivation for our research on HISP and OBJ2.
We discuss two technical issues here: the structuring of
specifications and/or programs, and the interactive
derivation of specifications and / or programs with struc-
ture. The environmental supports for these kinds of ac-
tivity are also considered.

In Section 2 we discuss the structuring issue. Sections
2.1 and 2.2 review the basic design decisions of the struc-
turing scheme for HISP and OBJ. A simple example is
shown in two languages to give an intuitive under-
standing of the difference between the structuring
methods in the two languages. Section 2.3 gives some
considerations on how to combine the two methods.

Section 3 discusses the issue of interactive derivation
of specifications and/ or programs based on the structur-
ing method of OBJ. Section 3.1 gives a tiny but sug-
gestive example of program derivation with structure in
OBJ. In Section 3.2 we first overview our experience in
the usages of important features of OBJ and envision
how we can exploit the powers of these attractive
features in future. Section 3.2 gives arguments about
the most desirable tools for future OBJ-like language
systems, and summaries of basic requirements for these
tools.

For the basic notions of the algebraic specification
techniques underlying HISP and OBJ, we refer the
reader to the classics of this field [1, 15].

2. Structuring

The most important issue in specification writing is
how to give a good structure to specifications. Well-
structured specifications have the following good prop-
erties:

* comprehensible: they are easy for readers to
understand.

« analyzable: their properties, such as consistency
and completeness, are easy to analyze.

+ reusable: they are easy to reuse for similar but
different problems.

There have been many proposals as to what con-
stitutes a good structure for software systems.
However, there now seems to be a consensus that ‘‘the
hierarchical structure based on levels of abstraction”’ is
the most promising [28]. The strength of algebraic
specification techniques derives exactly from this, for
they were originally invented to give rigid and formal
specifications for hierarchically structured abstract data
types.

HISP and OBJ2 have the same main purpose of giv-
ing good hierarchical structures to specifications
and/or programs. But their stategies for achieving this
goal are slightly different. We first review the basic
design decisions of these two languages. A simple exam-
ple is shown in two languages to give as intuitive under-
standing of the difference between the structuring
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methods in the two languages. After that, some con-
siderations on how to combine the two methods are
also given.

2.1 HISP in Brief

Some of the design decisions in HISP were inspired
by Clear [1] and OBJO [13]. In particular, algebraic
specification techniques based on initial algebra seman-
tics were adopted in line with these two languages.
Clear is not executable, but OBJO has executable opera-
tional semantics for interpreting equations as rewrite
rules [19, 6]. HISP has similar operational semantics.
This makes it possible to use HISP both for rather high-
level formal specification writing and for low-level pro-
gramming. Declarative semantics based on initial
algebra combined with the interpretation of equations
as rewrite rules provides one of the most promising
bases for formalization for a wide range of software
development processes.

One of the most important design goals of HISP is to
make a language for specifying software systems hierar-
chically. To achieve this goal, HISP provides the follow-
ing module-building operations. Clear’s specification
building operations (theory procedures) have the same
purpose with different appearances.

* Creation: Create a new module by declaring sub-
modules, sorts (data types), operators, and/or equa-
tions. Sub-modules can be considered as parameters.
The Sub-module relation is not transitive.

* Refinement: Refine an already defined module by
adding new sub-modules, sorts, operators, and/or
equations to the origin-module. The origin-module can
also considered to be a parameter. The origin-module
relation is transitive.

* Substitution: Substitute other modules for sub-
modules of a module. This realizes parameter instantia-
tion.

* Renaming: Rename sorts and/or operators of a
module.

* Realization: Realize operators of a module with
different equations from those of the original module.

origin-
module

sub-module, sub-module

sub-modulq

Fig. 1

INTSET in HISP.
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HISP has language constructs corresponding to these
module building operations.

In HISP, each software module is constructed only
by using the module-building operations. As a result,
the resultant system is fully modularized and
parameterized. The parameterization is accomplished
in two directions: the sub-module direction and the
origin-module direction. Moreover, the resultant
system has a hierarchical structure in these two direc-
tions.

We have written a number of examples in HISP and
checked them with the symbolic executor. While most

of the examples are small, there are two of moderate
size. One is a semantic definition of a rather small
ALGOL-like programming language, and the other is a
specification of a text formatter allowing simple for-
mula typing. We have constructed hierarchical descrip-
tions for these examples and have seen the prospective
usefulness of our method.

As a simple example, a generic, or parameterized,
data type SET, its refinement, and its instantiation in
HISP are shown below. /* ... */ indicates a com-
ment in HISP text. Figure 1 shows the overall structure
of the modules in this example.

BOOL ::
create /* create a new module */
sort Bool /* declaration of a specific */
/* kind of data called sort */
op true, false: -> Bool /* declaration of operators */
not _ : Bool -> Bool
_ and _ : Bool, Bool -> Bool
_ or _ : Bool, Bool -> Bool
eq var ?b?:Bool /* declaration of equations */
/* as expected */
end
ANY :: /% dummy sub-module as a parameter */
create
sub BOOL /* declaration of a sub-module */
sort Any
op _ =a _: Any, Any -> Bool
/* predicate for identity check */
end
SET ::
create
sub BOOL, ANY
sort Set
op emp: -> Set /* empty set */
_ # _ : Any, Set -> Set /* canonical form of Set */
/* e.g. a set of 1, 2, 3 is */
/* represented as */
/¥ 1#2#%3%#emp */
add: Any, Set -> Set /* add Any to Set x/
remove: Any, Set -> Set /* remove Any from Set */
is-emp?: Set -> Bool /* is Set empty? */
in: Any, Set ->Bool /* is Any in the Set? */

eq var s, t: Set; x, y: Any
( remove(x, emp) = emp )
( remove(x, y # s)
= if x =a y then s

else (y # remove(x,s)) fi )
add(x,s) = x # remove(x,s) )
is-emp?(emp) = true )
is-emp?(x # s) = false )
in(x, emp) = false )
in(x, y # s)
= if x =a y then true

else in(x,s) fi )

AN

end
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SET-C :: /* SET with common operator */
refine SET /* SET-C is defined by refining */
/* the module SET */

op common: Set, Set -> Set /* the Set of common elements */

/* of two Sets */

eq var s, t: Set; x: Any
( common(s, emp) = emp )
( common(s, x # t)
= if in(x,s) then (x # common(s,t))
else common(s,t) fi )
end

INT :: /* INTeger */
create

sub BOOL

sort Int

op /* as expected */

eq /* as expected */
end

/* parameter instantiation is realized by */
/* substitution and renaming */
INTSET :: SET-C(* ANY <- INT; Any <- Int;
_=a _ <~ _ =int _ %)
(% Set <- IntSet; common <- c %)
/* (% ... %) is the HISP’s
/* renaming construct
/* which can rename sorts and
/* and operators

2.2 OBJ in Brief

The main features of OBJ can be summarized as
follows [7, 8, 17]:

* OBJ has three kinds of entity at its top level: ob-
jects, theories, and views.

* Objects declare new sorts of data, and define new
operations by equations, which become executable code
when interpreted as rewrite rules. In other words, an ob-
ject encapsulates executable codes.

¢ OBJ’s term rewriting rules use matching modulo
associativity, commutativity, identity, and/or idem-
potency.

« Theories also declare sorts, operations, and equa-
tions, but these are used to define the properties of
modules. That is, they define properties that may be
satisfied by another object or theory.

+ Objects and theories are modules in the usual
sense. Modules can import other previously defined
modules, and therefore an OBJ program is conceptual-
ly a graph of modules. Modules can be parameterized,
and parameterized modules use theories that define

both the syntax and semantics of their interfaces.

* A module can import other modules in three
different ways. The three ways of importation are infor-
mally explained as follows:
protecting: import other modules as they are; the most
restricted way of importation.

4.|,|u_‘!.?.il‘.9...‘ SET-C '.m....‘.’.?.i!‘ﬂ.

protecting

parameter instantiation

protecting

Fig. 2 INTSET in OBJ.
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extending: import other modules by allowing new data
items to be added to the modules, but forbidding new
“‘meaning’’ to be added to already existing data items.
using: import other modules by modifying them freely.

« Views express bindings of actual modules to re-
quirements, and are used to combine modules into large
program units. They define the bindings of the entities
declared in some theory to entities in some other
module, as well as an assertion that the other module

obj BOOL is
sort Bool . ---~ sort declaration
op -~-- as expected
eq --- as expected

endo

theory ANY is
protecting BOOL .
--~ by protecting it

sort Any .
op - =a _ : Any Any -> Bool .
endth
obj SET[X :: ANY] is
protecting BOOL .
sort Set .
op emp : -> Set .
op _#_ : Any Set -> Set .
op add : Any Set -> Set .
op remove : Any Set -> Set
op is-emp? : Set -> Bool .
op in : Any Set -> Bool .

var s t : Set .
var x y : Any .
eq remove(x,emp) = emp .
eq remove(x,(y # s))
= if x =a y then s
else (y # remove(x,s)) fi .

eq add(x,s) = (x # remove(x,s)) .
eq is-emp?(emp) = true .
eq is-emp?((x,s)) = false .
eq in(x, emp) = false .
eq in(x, add(y,s))

= if x =a y then true else in(x,s) fi .

endo

--- SET with Common operator
obj SET-C [X :: ANY] is
using SET[X]
op common : Set Set -> Set .
var s t : Set . var x : Any .
eq common(s, emp) = emp .
eq common(s, (x,t))
= if in(x,s) then (x # common(s,t))
else common(s,t) fi
endo

satisfies the properties declared in the theory. That is,
views indicate how to instantiate a parameterized
module with an actual module.

As an example of OBJ code, the code for modules
that define the parameterized SET is shown. This exam-
ple is intentionally made to correspond to the previous
SET example in HISP. In OBJ, --- begins a comment,
which ends at the end of a line. Figure 2 shows the
overall structure of the modules in this example.

--- object BOOL is defined as follows

--~ theory ANY is defined as follows
--- importing the object BOOL

--- operator declaration

--- canonical form of Set

--- variable declaration
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obj INT is --- INTeger
protecting BOOL .
sort Int .
op --- as expected
eq --- as expected
endo

--- parameter instantiation is realized by
--- substitution and renaming
obj INTSET is
using SET-C[INT] * (sort Set to IntSet,
op common to ¢)

K. FuTtATsuGt

--- % (...) is OBJ’s renaming construct

endo

2.3 HISP Versus OBJ

As can be seen by the above parameterized SET exam-
ple, OBJ can simulate a large part of HISP’s module
building operations by using parameterized modules.
However, the basic ideas underlying the two languages
are different, as summarized below.

« HISP’s module-building operations are based on
methodology-oriented considerations. As a result there
are no serious considerations as to whether algebraic
models exist for the modules obtained by using some
module-building operations.

« OBIJ’s parameterized module is based on seman-
tics-oriented considerations. As a result, all modules ob-
tained by using parameterized modules have algebraic
models.

Because of these differences in basic design
philosophy, HISP provides a large amount of freedom
in constructing modules, whereas OBJ postulates rigid
rules that users must obey in order to make new
modules. This implies the following differences in the
usage of the two languages.

» In HISP any sub-module can be freely replaced
with a syntactically similar module. This is, of course,
sometimes a very dangerous operation. For example, an
inconsistent pseudo-Boolean algebra with the equation
(true=false) can be easily substituted for Boolean
algebra, and this make the whole specification
nonsense.

« In OBJ a sub-module that can be replaced should
be declared with the conditions that specify what kinds
of module can be substituted for the original module.
Theories play important roles in stating the conditions.
The replacement of a sub-module is guaranteed to be
safe, if it can be validated that the substituted module
satisfies the required conditions.

Generally speaking, OBJ’s philosophy of providing
clear and safe module-building operations should be ad-
vocated. In addition, OBJ’s constructs for module
structuring are powerful enough for many applications.
However, there still seem to be good arguments for mak-
ing it possible to write more flexible interfaces between

modules. For example, we occasionally encountered a
situation in which we thought it better to make a sub-
module a formal parameter, without knowing how we
could specify the conditions for actual parameters. Of
course, once the conditions for the actual parameters
are understood, it is better to write them in a rigid form
similar to the OBJ style. Anyway, we think it is better
for users to do more flexible structuring than is possible
in the present OBJ, especially in a methodology-
oriented fashion. For that purpose, the following
dichotomy of concerns might be a good candidate to be
adopted.

» semantics-oriented language: The language itself
has semantically simple and clear constructs. This im-
plies that the language does not contain powerful but
dirty module-building operations.

* methodology-oreinted environment: Module-
building or object-manipulation operations that are not
necessarie explained clearly by the semantics of the
language should be taken care of by the language’s en-
vironment. The set of such operators takes the form of
a special library constructed according to a specific
methodology.

The idea of a ‘‘methodology-oriented environment’’
also provides a good standpoint for another but related
issue of extensible/reflective language systems.

Once the meaning of some module-building opera-
tions can be understood and its semantics can be de-
fined simply and clearly, it is better to attach constructs
that support the module-building operation to the
language. This kind of evolution of language is
necessary in order to get usable language systems. For
this purpose, the language itself should perhaps be ex-
tensible enough to allow new constructs to be attached.
In other words, the language should be reflective and its
entire syntax and semantics should be explainable by
the language itself.

This requirement sometimes conflicts with the condi-
tion that the language itself should have simple and
clear semantics. In perticular, HISP and OBJ are based
on algebraic semantics, and the language constructs are
basically restricted to first order. That is, the user can-
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not explicitly declare an operator with an operator as a
argument. Higher-order functions can be handled by
module-building operations or parameterized modules
only in reasonably restricted manners. We believe that
attaching higher-order features to the language should
be done with great care. We still think that it is worth-
while to restrict the language to first-order constructs
and to pursue its potential merits.

However, we also think that the language should be
extensible and reflective, for the above-mentioned
reasons. To resolve these conflicting requirements, it
would be reasonable to make the environment or
language system extensible and reflective, instead of the
language itself.

3. Derivation with Structure

One of the most promising applications of algebraic
specification and/or programming language systems is
interactive specification and/or program derivations
that make use of the hierarchical structure of modules.
We are now trying to use OBJ as the basic language for
formalizing so-called software development processes
[27, 25] and have obtained promising results.

In this section, we will show a tiny but suggestive ex-
ample of program derivation in OBJ. The example is a
small program, but we think this example contains
several important derivation steps that are also mean-
ingful for more general specification and/or program
developments.

Based on the example, we discuss the desirable en-
vironmental support for these kinds of derivation in
OBJ-like languages.

3.1 An Example of Interactive Derivation

The problem considered is to derive, from a simple
and clear definition in OBJ of sorting, a reasonably
efficient sorting program, also in OBJ.

First comes the definition of sorting:

(somng)  ((sorTiNgat)

paraNeter

SORTINGq2

"

. i o
using using pajameter  using

[
SEQ

associative,

Fig. 3 Derivation of SORTING in OBJ.

obj SEQ[X :: TRIV] is sorts Seq .
--- the object substituted for X
--- must be an instance of theory TRIV
subsorts Elt < Seq .
--- elements are sequences
op nil : -> Seq .
op (_ _) : Seq Seq
-> Seq [assoc id: nil prec 10]
--- concatenation operation of sequence
endo

--- total ordered set
th TOSET is sort Elt .

op _<_ : Elt Elt -> Bool .

vars E1 E2 E3 : Elt .

eq E1 < E1 = false .

cq E1 < E3 = true if E1 < E2 and E2 < E3 .

cq (E1 < E2) or (E2 < E1)

= true if E1 =/= E2 .
--- if E1 is not equal to E2

endth

obj SORTING[X :: TOSET] is
--- the object substituted for X
--- must be an instance of theory TOSET
extending SEQ[X]
--- importing the SEQ[X] by extending it

op sorting_ : Seq -> Seq .
op unsorted_ : Seq -> Bool .
vars S §’ S’’ : Seq .

vars E E’ : Elt .
cq sorting S = S if (unsorted S) =/= true .
--- cq stands for Conditional Equation
cq sorting (S E S’ E’ §’’)
= sorting (S E’ E S’ S§’’) if E’ < E .
cq unsorted (S E S’ E’ S’?)
= true if E’ < E .
endo

From the three conditional equations in this object, it
is clear that

if sorting(S) = T then
1. T is permutation of S
2. there are no subsequence E S’ E’ of T
such that E’ < E

This is the most basic definition of sorting over a total
ordered set.

-=-- check that this code really works by
-~- doing reduction in, say, SORTING[INT]
--- For example, you can check that the term:

--- sorting $ 4321654321 .
--- is reduced to (or has the simplest form of)
-— 11223344565

--- in the object SORTING[INT]

The secret of the simplicity of the above sorting opera-
tion is that it uses the associative pattern matching of
OBJ. This fact is specified by an assoc attribute of the
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operation for concatenation of a sequence. The OBJ
term-rewriting interpreter can execute this sorting opera-
tion. But, as may be expected, it is inherently very in-
efficient.

As a first step toward a more efficient sorting opera-
tion, we fix one of the two elements compared for resolv-
ing reversely ordered pairs. This will split the sequence
into two subsequences such that there is no reversely or-
dered pair between the two elements of the two subse-
quences. As a result, it is possible to call the sorting
operation recursively for the two subsequences. This is
a typical instance of the application of the divide and
conquer rule. For this, we introduce marked sequence
and mark the fixed element of the sequence.

obj MSEQ[X :: TRIV] is sorts Seq NeSeq .
sort MarkedSeq .
subsorts Elt < Seq < MarkedSeq .

op nil : -> Seq .
op @ : -> MarkedSeq .
op (_ _) : MarkedSeq MarkedSeq ->
MarkedSeq [assoc id: nil prec 10]
op (_ ) : Seq Seq -> Seq [assoc prec 10]
endo

obj SORTINGq1[ELT :: TOSET] is

extending MSEQ[ELT]

op filter_ : MarkedSeq -> MarkedSeq .
op notYet_ : MarkedSeq -> Bool .
var Ms : MarkedSeq .

vars S S1 S2 S3 : Seq .
vars E E’ : Elt .
cq filter Ms = Ms if (notYet Ms) =/= true .
cq filter (S1 E @ S2 E’ S3)
= filter (S1 E’ E @ S2 S3) if E’ < E .
cq notYet (S1 E @ S2 E’ S3)
= true if E’ < E .
op sorting_ : Seq -> Seq .
op divide_ : MarkedSeq -> Seq .
eq sorting nil = nil .
eq sorting E S = divide(filter E @ S) .
eq divide S1 E @ 52
= (sorting S1) E (sorting S2)
endo

The fact that the new sorting operation is correct with
respect to the original one is checked by showing that
the following equation holds by induction:

sorting.SORTING(S) = T
if sorting.SORTINGq1(S) =T

This fact can be tested by reducing several kinds of
term, using the OBJ system. The system can also be
helpful for verifying facts that can be reduced to
statements that are inductive on the nested structure of
terms [11].

--- test in a sample object,
--- e.g. SORTINGqi[INT], that the new
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--- sorting is correct with respect to

--- the original sorting

--- For example, you can check that the term:
--- sorting 54321654321 .

--- is also reduced to

——- 112233446565

--- in the object SORTINGq1[INT]

We then proceed to define the filter operation without
using associative pattern matching. If we can do so, we
can use a normal Lisp-like list instead of a general se-
quence. This greatly improves the efficiency of the sort-
ing operation.

obj SORTINGqQ2[ELT ::
extending SEQ[ELT]
sort filterSt .
op __.@_ : Seq Seq Elt Seq -> filterSt .
op filter_ : filterSt -> filterSt .
vars S §’ S§'’ : Seq .
vars E E’ : Elt .
eq filter (S S’ E @ nil) = (S S’ E @ nil) .
eq filter (S S’ E @ (E’ §’')) =
if E’ < E then filter ((E’ S) S’ E @ S’’)
else filter (S (E’ S’) E @ S’’) fi .
op sorting_ : Seq -> Seq .
op divide_ : filterSt -> Seq .
eq sorting nil = nil .
eq sorting E S
= divide(filter (nil nil E @ S)) .
eq divide (S S’ E @ §’?)
= (sorting S) E (sorting S?)

TOSET] is

endo

That new filter operation is correct with respect to the
original one is checked by showing that the following
equation holds by induction:

filter.SORTINGq2(S) = T
if filter.SORTINGqi(S) = T

This fact can be tested if we reduce several kinds of
term by using the OBJ system.

--- test in a sample object,

--- e.g. SORTINGG2[INT], that the new
--- filter is correct with respect to
--- the original filter.

It is clear that the sorting operation obtained is effec-
tive for an ordinary Lisp-like list. We can substitute the
definitions of a sequence simply by overwriting the
previous SEQ with the following SEQ. This can be
done simply by feeding this code into the OBJ system:

-~- sequence which has Lisp-like
--- last-in-first-out list structure

obj SEQ[X :: TRIV] is
sort Seq .
op nil : -> Seq .
op (_ _) : Elt Seq -> Seq [prec 10]
op (_ .) : Seq Seq -> Seq [prec 10]

--~ append
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var E : E1t . vars S S’ : Seq .

eq (nil S) =8 .

eq ((E 8) 8’) = (E (S 8%))
endo

--- check that this code really works
--- faster than original one by doing
--- reduction in, say, SORTINGq2[INT]

We have just shown the skeleton of our interactive
stepwise derivation of a sorting object in OBJ. As a mat-
ter of fact, the derivation was not straightforward, but
interactions with the OBJ system make it much easier to
invent, test, and verify in almost all steps of program
derivations.

3.2 Toward Interactive Derivation Environment

As can be imagined from the previous example of the
derivation of an efficient sorting object, the most
challenging and promising application of OBJ-like
languages might be interactive derivation of specifica-
tions and/or programs. Parameterized modules and
subsorts are two of the most attractive features of the
present OBJ language, and these features are used in
very distinctive ways in the derivation processes. We
first explain our experiences in the usages of these
features and envision how we can exploit the powers of
these attractive features. On the other hand, object
management and validation tools are two of the most
desirable tools for future OBJ-like language systems.
We also try to summarize the basic requirements for
these tools.

3.2.1 Parameterized Modules

Parameterized modules are useful in almost all
phases of software development. They offer us a way of
abstractly constructing such structures as list, queue,
stack, and table, so that economy in the length of texts
is obtained; of more significance is the fact that
parameterization enhances maintainability, reusability,
and encapsulation of abstract data types, since the
mechanism enables conceptually identical operations,
such as popping of integer stacks and of token stacks,
to be made identical.

Theoretically, objects, theories, and views constitute
parameterization in OBJ and contribute greatly to its ex-
pressive power. However, in our experiments, views
and nonptrivial theories were seldom used as intended.
Part of the reason for this is that we currently lack a
usable mechanism for determining whether an object is
an instance of a theory, and are therefore discouraged
from defining intricate theories. Another application of
parameterized objects is to allow higher-order program-
ming within a first-order setting [10]. This application
also involves the subtle problem of how to identify
proper theories.

In spite of these problems, parameterized modules of
OBJ are the most promising tools for formalizing

specification and/or program derivation processes [8,
27]. The previous example of the derivation of a sorting
program gave an intuitive feeling that parameterization
would be very usable in this setting. To make this intui-
tion more concrete, however, we need tools that allow
us to define suitable theories and views.

In summary, we need to develop the following in
order to allow more extensive use of parameterization:

+ reasonably efficient mechanisms for checking
whether an object is an instance of a theory.

¢ semi-automatic mechanisms to search for objects
that are suitable to be substituted for a formal
parameter module.

* a mechanism that is more flexible than the present
theory/view mechanism for stating the interface condi-
tion between modules; this might be an augmentation
of the theory/view mechanism.

3.2.2 Subsorts

Our experience teaches us that the subsort concept is
very powerful and convenient, but that we must learn
more about how to use it.

We tentatively divide the usage of subsorts into two
classes. In one class come partial operators and er-
ror/exception handlings. It is a moot point whether we
should consider all the error cases in higher-level
design, which OBJ is intended to cover. A more subtle
question is whether the error handlings are bunched in
every object concerned. Our experiments suggest that
the answer to both is yes. Errors have to be considered
at some point of derivation, so we need a way to denote
them. As to where to describe an error handling, the
nearer to the cause of the error, the better. When we
need, for instance, error message listings, they are easy
to establish entirely within the normal structure of OBJ
objects.

In the other class come operator inheritances. So far
the use of subsorts for this purpose has been limited to
cases in which the taxonomical order is clear, as in
graphical entities. It may be presicely these cases that re-
quire operator inheritances, multiple or not. With this
proviso, subsort declarations are very useful in
establishing inheritance hierarchies with semantically
clear guidelines about dos and don’ts. Furthermore, the
subsort concept helps us to formalize clearly the rela-
tionships between commonly used data types and to
create a taxonomy for them.

The awkwardness we encountered in describing er-
rors in OBJ results from the inadequacy of the support
mechanism for incremental object building, as dis-
cussed below. That said, subsorts provide an elegant,
rigorous, and judicious mechanism for handling errors,
and for making operations partial.

To develop a safer and more extensive usage of the
subsort mechanism, we need to explore the following
issues:

» practical knowledge on how to define errors in the
usage of subsort mechanisms.
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* mechanisms for supporting incremental definition
of subsort relations, especially for identifying and
recovering inconsistencies that may be introduced by
defining a new subsort relation.

3.2.3 Object Management Tools

A supporting mechanism for describing the evolution
of an object (module) and managing the evolution pro-
cess will be the most important environmental
mechanism in OBJ-like language systems. It is not
enough that we can simulate identical results with, for
example, the existing parameterization mechanism. It is
crucial that almost every realistic programming deriva-
tion is incremental in some way. Among previous ex-
periments, those describing GKS [2] and Quick Draw
[26] are in this sense exceptional, in that they have had
rather detailed requirement/design documentations
and in that the main efforts have been to formulate the
target systems in algebraic settings, not to decide what
to do. Abstract data types per se, although useful in
many respects, do not provide a natural way of support-
ing such incremental derivation processes. For this pur-
pose, we would like to incorporate a stepwise refine-
ment method in OBJ [25].

Considering these factors, we think that the follow-
ing functions will be especially necessary for future ob-
ject management tools:

« to allow users to declare correspondences (OBJ’s
view-like correspondences) between modules that
establishe a refinement relation.

* to maintain refinement processes that allow users
to undo and/or re-do the processes.

3.2.4 Validation Tools

The most important tools for any of the above-men-
tioned issues are validation and checking tools for ob-
jects, theories, and views. Candidates for valida-
tion/ checking include the following:

* Anobject A is an instance of a theory B through a
view C (as mentioned in Section 3.2.1).

* An object A is an refinement of an object B
through a view C.

¢ A set of equation has noetherian and Church-
Rosser properties as a set of rewrite rules.

All of the checking candidates require the implemen-
tation of some kind of induction [9, 20, 21, 24]. It is im-
possible to check such statements completely
automatically, and we must pursue an appropriate com-
promise by adopting an interactive validation style.

4. Conclusion

We have reviewed the basic mechanisms of HISP and
OBJ, which support structuring and derivation with the
structure of specifications and/or programs. We
pointed out the merits of these mechanisms, as well as
problems and options for future improvements.

The motto of ‘“putting theories together to make

K. FUTATSUGI

specifications’’ [1] is still the most important one in for-
mal specification development. Clearly, OBJ, and
HISP may be the only languages that provide mean-
ingful module-building operations and have been really
implemented and used (even if only in laboratories).
Among these three languages, OBJ is no doubt the best
as a usable specification and/or programming
language. Although there is much room for improve-
ment, as we have discussed (see also Goguen and
Winkler [17]), successive versions of the new OBIJ,
namely, OBJ2 and OBJ3, seem to have opened up the
new field of practicing by ‘“putting theories together to
make specifications’ with more realistic software
systems.
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