Research Contribution

Design Verification of Sequential Control Circuits
Based on Theorem-Proving Method

NAOYUKI YAMADA*, YASUHIRO KOBAYASHI*, YOSHIKATSU UEDA**, SATOSHI MATSUDA***

SHOUICHI MUTO*** and JUNICHI YOSHIZAWA***

VSEQ (Verifier for SEQential controller) is a design verification system for sequential control circuits in an
electric power substation. Instead of using the prevailing simulation techniques, it verifies the design by using a
theorem-proving method, which does not need any test data generation and guarantees reliable verification.
Thus VSEQ realizes a theorem-proving method dedicated to the design verification of sequential control cir-

cuits.

This paper shows that use of domain characteristics in the formulation of the verification problem and also in
control of the proof process leads to a theorem-proving method that is efficient enough for practical design

verification.

1. Introduction

Design verification is indispensable to almost all
engineering design work and is considered to be a key
technique for improving reliability, especially in the
fields of power plants and electrical power circuits.

This paper describes a system for design verification
of sequential control circuits in electric power substa-
tions based on a theorem-proving method. Compared
with widely used conventional techniques involving
numeric simulation, the application of a theorem-prov-
ing method to design verification has two potential ad-
vantages: it does not require any test data generation
and it gurantees reliable verification. In addition, a
theorem-proving method is able to handle the verifica-
tion of design specifications that are described rather
abstractly, with little relationship to their functionality,
and to which symbolic simulation [1] is not easily ap-
plied. Therefore, this method is considered to be one of
the most promising techniques for verification of large
and complicated designs.

A theorem-proving method was first applied to
design verification by Wagner [2] in the field of logic cir-
cuit design. The verification of an 8-bit multiplier using
the theorem prover called FOL (First-Order Logic) [3]
has revealed the usefulness of this approach. Since
then, intensive research has been undertaken in two
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directions: one looking at the development of interac-
tive systems [4], and the other at automated systems [5],
[6]. Although both approaches have contributed to the
establishment of a theorem-prover-based verification
technique, comparable to a simulation-based one in
some cases, there is still an inefficiency problem in their
verification process. This stems from the fact that
previous approaches rely on general-purpose theorem
provers that do not accept domain dependent
refinements.

Our approach to design verification through the ap-
plication of the theorem-proving method is, then, to
develop a domain-specific theorem prover. The use of
domain knowledge in the formulation of the verifica-
tion problem and also in the control of the proof proc-
ess leads to a theorem-proving method that is efficient
enough for practical verification. VSEQ (Verifier for
SEQuential controller) is a design verification system
that uses a theorem prover dedicated to the design
verification of sequential control circuits.

Section 2 briefly describes a problem domain and
defines a problem to be solved. Section 3 describes the
design verification method with emphasis on techniques
for improving the efficiency of the theorem-proving
method.

2. Domain Characteristics

Figure 1 shows a simplified one-line diagram of an
electric power substation that converts high-voltage elec-
tric power (275 kV) into low-voltage power (66 kV).
The substation is composed of one transformer, circuit
breakers (CBs), disconnecting switches (DSs), buses,
and cables. In this substation, open/ close operations of
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Fig. 2 Example of interlock circuit.

the CBs and DSs are of great importance and no
misoperation is permissible, since it would directly pro-
duce adverse effects on the transmission system as well
as the other substation components. Usually, the opera-
tion conditions for these components are well defined.
The condition for the DS 89A, for example, is stated as

if the voltages fo both terminals of 89A are equal,
or either terminal of 89A is disconnected,
then 89A is operable.

In order to realize these operation conditions, name-
ly, operation interlocks, sequential control circuits (or
interlock circuits) are designed. A part of the interlock
circuit for the components in the high-voltage side of
Fig. 1is given in Fig. 2. The Interlocking of each compo-
nent is implemented by linking its open and close
swiches with arbeit contacts and/or break contacts of
control relays attached to the other components. Usu-
ally, expert designers tend to design compact circuits by

making use of commonly usable subcircuits and aux-
iliary relays. It is therefore not an easy job to figure out
the control logic the circuits realize, let alone verify
them.

The design verification problem here is to verify the
designed sequential control circuits against the design
specifications expressed as interlock conditions. From
the viewpoint of verification, this problem has the
following three characteristics:

(1) Design specifications are the results of interpreta-
tion of the circuit description.

In most design verification problems, the design
specifications are given as functional descriptions that
are defined as behaviours describing the relations be-
tween the primary inputs and outputs. However, the
design specifications of this problem are not described
in such a way. Instead, they are given as the results of in-
terpretation through functional definitions of circuit
descriptions that consist of component types, compo-
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nent status, and their connectivities. For example, the
specification ““The voltages of the two terminals A and
B are equal’’ is mapped to the circuit description in
which the two terminals A and B are connected through
one or more components and the status of the corre-
sponding components are all closed (or working). This
characteristics makes it difficult to directly apply the
simulation-based verification method, which pro-
pagates the signal according to the structure.

(2) Design specifications are not directly related to
the designed control circuit.

Information concerning this verification is illustrated
schematically in Fig. 3. The vertical direction in this
figure corresponds to the abstraction level of the infor-
mation. As mentioned above, the design specifications
for control circuits are a kind of functional descirption
of the objective system (the main circuit in this case),
which can be obtained through the application of a
functional definition to circuit descriptions. On the
other hand, information about the designed control cir-
cuit to be verified specifies the control logic, which
prescribes the component status of the objective
system. This means that another level of the description
exists between the information presented for verifica-
tion. The representational gap requires a mechanism
that reduces the initial verification to one that can be
performed between the adjacent levels of descriptions.

(3) The behaviour of both the objective system and
control circuit can be treated statically.

Another characteristic of this problem is that the
design specifications are concerned only with the static,
discrete ON/OFF status of the components of the objec-
tive system, and that the control logic of the designed in-
terlock circuit can in turn be determined by the discrete
ON/OFF status of its components. This suggests that
the logic used for theorem-proving does not require any
contrivance to handle dynamic situations.

3. Design Verification system VSEQ

3.1 System Organization

The basic idea of design verification based on the
theorem-proving method is that if the proposed design
is correct, the design specifications can be logically deriv-
ed from that design. Usually, this method is applied to
verification between adjacent levels of descriptions that
are related by some axioms conerned with the abstrac-
tion. It is possible to apply a theorem-proving method
to descriptions that are not adjacent; however, it causes
an unnecessary expansion of the search space and can-
not be expected to provide efficient verification.

As shown is Fig. 3, the verification of sequential con-
trol circuits in an electric power substation involves
three distinct description levels: design specifications,
components statuses of the objective system, and circuit
descriptions of the designed interlock circuit. However,
as shown in Fig. 2, most components of the interlock
circuit are derectly related to the statuses of com-
ponents in the main circuit via their contacts.
Therefore, it is straightforward to extract the control
logic of the designed interlock circuit from its circuit
description.

The overall information flow in VSEQ is shown in
Fig. 4. The circuit descriptions of a control circuit con-
sist of component types of the desined sequential con-
trol circuit and their connectivities. These data are
transferred from the data base of the CAD system. A
logic extraction program extracts the control logic from
the circuit descriptions of the control circuit, where con-
trol logics are groups of components statuses of the
main circuit that are realized by the control circuit.

The circuit descriptions of the objective system in-
clude the component types and their connectivities and
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Fig. 4 Information flow in VSEQ.

are considered to be correct information in this verifica-
tion. Functional definitions are group of interpretation
rules that relate functions to circuit descriptions and
components statuses, and are also treated as correct in-
formation in the verification. The design specifications
are given by the user at each verification. Eventually,
the design verification problem comes down to proving
the design specifications against the circuit descriptions,
components statuses (i.e. control logic), and functional
definitions. These descriptions correspond to the adja-
cent two levels of design descriptions.

3.2 Control Logic Extraction

As shown in Fig. 2, the operation interlock of each
DS (disconnecting switch) is implemented in such a way
that the operation switches (ON/OFF) and its driving
motors are connected to arbeit and/or break contacts
of control relays attached to the other components.
Therefore, for a operation switch to be active, all the
other contacts should be closed to give a connecting line
from the positive pole to the negative pole (for example,
from the R-phase to the T-phase in the case of an alter-
nating current). As a result, the control logic can be ex-
tracted in the following steps:

(1) Enumerate all possible lines related to the
specified operation switch from the positive pole to the
negative pole.

(2) Extract the component status that closes the cor-
responding contacts.

(3) Delete the cases that cannot be realized electrical-
ly.

(4) Select the logic concerned with the component
status of the objective system (main circuit).

In step (2), the following operational relations be-
tween the status of control relays and their contacts are
used:

(@) An arbeit cantact is closed when the corre-
sponding relay is closed (working).

(b) A break contact is closed when the corre-
sponding relay is open (not working).

Note that a parallel connection of contacts cor-
responds to the logical ‘OR’ and a serial connection, to
the logical ‘AND’. The arbeit and break contacs of the
same control relay cannot be closed simultaneously.
These cases are deleted in step (3).

The extracted control logic for DS 89A in Fig. 2 is ex-
pressed in predicate calculus form as follows:

(OR (AND (STATUS 89B OFF) (STATSU 52A OFF)
(STATUS 89AE OFF))

(AND (STATUS 89B ON) (STATUS 89BA ON)

(STATUS 52B ON) (STATUS 89BB ON)))

The first element of the OR expression corresponds to
the logic of the second vertical line from the left in Fig.
2, and the second element to the first vertical line.

3.3 Theorems and Axioms

VSEQ uses the theorem-proving method in first-order
predicate calculus. Therefore, all the information need-
ed for verification is represented in predicate calculus
form. In line with the discussion above, the informa-
tion used for verification includes design specifications,
circuit descriptions, functional definitions, and control
logic.

Design specifications are represented by introducing
appropriate predicates. The specification (an operable
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(IF (AND (COMP-TYPE $X $P)
(NORESISTANCEP $P)
(STATUS $X close))

(IF (AND (COMP-TYPE $X $P)
(NORESISTANCEP $P)

(IF (CONNECTED (PORT $X $P)(PORT $Y $Q))

(COMP-TYPE $Z $R)
(STATUS $Z close)
(NORESISTANCEP $R)

(V-EQUIVALENT (PORT $X 1)(PORT $X 2)))

(HAS-NR-LOOP (PORT $X 1)(PORT $X 2))) ;
(V-EQUIVALENT (PORT $X 1)(PORT $X 2)))

(HAS-NR-LOOP (PORT $X $P) (PORT $Y $Q))) ; then they constitute a closed loop.

(IF (AND (CONNECTED (PORT $X $P)(PORT $Y $Q))

(HAS-NR-LOOP (PORT $Z 2)(PORT $Y $Q)));
(HAS-NR-LOOP (PORT $X $P) (PORT $Y $Q))) ; constitute a closed loop.

; If the component is closed,
then the voltages of both
terminals are equal.

.o

If both terminals of a component
constitute a closed loop,
then their voltages are equal.

s we

; If two terminals are connected

; If terminal p of x is connected

; to terminal 2 of z and z is closed
; and terminal 1 of z has a closed

; loop to terminal q of y then both
; terminals p of x and q of y

Fig. 6 Examples of function definitions.

condition, in this case) for the DS 89A shown in section
2, for example, is represented as,

(OR (V-EQUIVALENT (PORT 89A 1) (PORT 89A 2))
(ONE-TERMINAL-OPEN 89A)).

The circuit descriptions are given by the types of each
component involved and their connectivities. These are
represented by using the predicates ‘COMP-TYPE’,
‘CONNECTED’, and ‘MULTI-CONNECTED’. Some
examples from the circuit in Fig. 1 are shown in Fig. 5.

As mentioned earlier, functional definitions are
necessary to relate functions to circuit descriptions and
component status. In fact, a group of functional defini-
tions is provided that correspends to each predicate ap-
pearing in the design specifications. The representation
of these definitions is more flexible than that of cirtuit
descriptions. It is desirable to adopt expressibe defini-
tions; however, this requires rather a complex control in
the proof procedure. The proper method of representa-
tion should be determined in light of the trade-off be-
tween expressiveness and efficiency. Some of the defini-
tions for the predicate ‘V-EQUIVALENT’ in the above
design specifications are shown in Fig. 6. These are first
converted into a conjunctive normal form and supplied

to the theorem prover.

In principle, these definitions should be provided by
the user. If the application domain is specified,
however, it is possible to prepare the necessary defini-
tion beforehand. Currently, VSEQ has nearly 70 defini-
tions inherent in the verification of sequential control
circuits of electric power substations.

3.4 Theorem-Proving Program

VSEQ embodies a resolution-based theorem prover
with a connection graph method (7, 8, 9] as its main con-
trol strategy. A connection graph method is selected for
two reasons. First, it offers such an efficient procedure
that in each proof step, the applicability of resolution
of each resolvent is inherited from its parent clauses,
and no further searching for it is needed. Second, its
control mechanism is so simple that it is easy to aug-
ment with other methods that make the proof process
efficient. A proof procedure and its refinements are de-
scribed in detail by Yamada et al. [9].

Although the theorem-proving method with the con-
nection graph method is efficient, there are still in-
efficiencies in its control when it is applied to practical
verification problems. Such a theorem-proving method
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can be made more efficient by introducing domain
knowledge, as well as a formulation of the problem,
into its control.

Generally, there are two approaches to realizing an
efficient theorem-proving procedure: one is to restrict
the search space to a small one by decomposing the
original search space, using domain knowledge; the
other is to develop control strategies that eliminate un-
necessary resolution steps. VSEQ takes both ap-
proaches, as we explain below.

3.4.1 Decomposition of Search Space

Design specifications for operation interlock oftern
involve more than one condition combined with the
logical ‘OR’. In these cases, the designed interlock cir-
cuit embodies more than one possible configuration,
producing the corresponding logical ‘OR’ in the ex-
tracted control logic. As shown in the previous section,
the design specification of 89A, for example, is de-
scribed with two conditions; one requires “‘V-
equivalent’’ and the other, ‘‘One-terminal-open”’. If
the designed sequential control circuit is correct, these
conditions are satisfied by the control logic extracted
from the circuit. The corresponding control logic is
shown at the end of section 3.3. In this case, the condi-
tion ‘‘V-equivalent”’ is satisfied by the second OR-ele-
ment and ‘‘One-terminal-open’’ by the first OR-ele-
ment. In real verification, however, the correspondence
between the specification and the control logic cannot
be used beforehand. Therefore, the search space of the
theorem-proving problem involves all these specifica-
tions and control logic.

Suppose for simplicity that two literals denoted a and
b constitute an OR expression in the design specifica-
tions, and that the extracted control logic is composed
of two clauses C and D, each of which is expressed in
the form of the logical ‘AND’ of more than one literal
(C=(AND cl c2---cm), D=(AND dl d2---dn)),
where each ci and dj correspond to a component status
of the objective system. Then, the search space except
for the circuit description and functional definitions
consists of (NOT a), (NOT b), (OR C D), or equivalent-
ly,

(NOT a), (NOT b), (OR cl d1), (OR cl d2),- - -(OR cl
dn),

(OR cm dl), (OR cm dl), (OR cm
d2), ---(OR cm dn).

In this search space, a deduction from (NOT a) to (OR
(NOT c1) (NOT c2)- - -(NOT cm)) does not yield a con-
tradiction, but some combination of dj (j=1, n), even
when the specification a is satisfied by the control logic
C. This implies that the refutation process would be
rather complicated.

However, from Fig. 2 it is easy to find that each
clause of the control logic excludes the others, since
they are supported by different contacts of the same con-

trol relay. In light of this exclusiveness, which is
represented as (OR (NOT C) (NOT D)), the search
space given above can be decomposed into

(NOT a), (NOT b), cl, c2,:--cm
(OR (NOT d1) (NOT d2)- - -(NOT dn))

and (NOT a), (NOT b). (OR (NOT cl) (NOT c2)
-+ +(NOT cm)),
dl, d2,---dn.

In other words, verification by theorem-proving in
this case can be divided into two cases, in each of which
a straight forward deduction from one literal in the
specifications can be expected to generate a refutation.
The possibility of the decomposition is tested before add-
ing the control logic to the initial connection graph by
the following procedures:

(1) Convert the control logic into a disjuctive nor-
mal form.

(2) Check the exclusiveness of each pair of AND-

elements in the converted form.
It is easy to prove that like the splitting rule of Davis
and Putnam [10], the unsatisfiability of the search space
does not change through this decomposition based on
the model theory.

3.4.2 Control Strategy

Although the connection graph method does not re-
quire an search at each resolution step by inheriting
resolution links from parent clauses, as mentioned
above, a mechanism that selects the resolution link
should be supplied. A link selection in the resolution
procedure based on the connection graph method is
realized by the following three steps:

(1) Selection of a clause

(2) Selection of a literal in the selected clause

(3) Selection of a resolution link in the selected
literal.

VSEQ adopts a linear deduction method for the selec-
tion of the clause. That is, the proof procedure started
from a negation of the theorem to be proved, the resol-
vent becomes a parent clause of the next resolution, and
so on. However, the option of selecting a literal and a
resolution link at each resolution step remains. Reflec-
ting the characteristics of design verification, VSEQ im-
plements the predicate-ordering and axiom-ordering
mechanisms for literal and a resolution link selection, re-
spectively.

(i) Predicate-ordering mechanism

Generally speaking, two types of clause are used in
verification problems. One is a ground clause and the
other is a clause containing variables. Design specifica-
tions, circuit descriptions, and control logic are
represented by ground clauses, whereas function defini-
tions are represented by clauses with variables. A
theorem-proving process in design verification starts
from the negation of each design specification and tries
to find a contradiction in the proposed design (the con-
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trol logic in this case) by using functional definitions.
Accordingly, the resolvents using functional definitions
contain variables. On the other hand, an investigation
of the termination procedure indicated that if the
design to be verified is correct, that is, if the corre-
sponding theorem is provable, the ground clauses con-
tribute to terminating some branches of the proof proc-
ess. Furthermore, if the design contains any errors, that
is, if the corresponding theorem is not provable,
ground clauses do much to reject some of the branches.
Therefore, irrespective of success or failure, the
theorem-proving process is made efficient by preferen-
tially selecting the resolution links that connect to
ground clauses.

The priority mentioned above can be determined by
inspecting the relation between literals (or equivalently
predicates) in the clauses of functional definitions. Each
definition consists of positive and negative literals, if
converted to a conjunctive normal form. Thus, it is
possible to link the predicate of a positive literal to the
predicate of a negative one in the same clause. Applying
this process to all the definitions, we obtain tree struc-
tures that are denoted as predicate trees. The predicate
tree obtained from the functional definitions given in
Fig. 6 is shown in Fig. 7. In this figure, one arc that
starts from and ends at the same predicate corresponds
to a recursive definition, like the last one in Fig. 6. For
each leaf predicate in this predicate tree, if the theorem
is provable, the corresponding ground literal should
exist and vice versa. In VSEQ, the above-mentioned
predicate trees are constructed before starting the proof
procedure, and are used to prioritize literals during
literal selection in the proof procedure.

(ii) Axiom-ordering mechanism

VSEQ applies axiom ordering for the selection of the
resoution link. The fact that a literal has more than one
resolution link indicates that more than one definition
has the same literal as its concluding parts. Therefore,
by giving a priority to each of those definitions, an ap-
propriate resolution link is selected. When a recursive
definition is used, this ordering mechanism has the most

effect. Axiom ordering corresponds to the processing
mechanism of PROLOG, which tries to select clauses in
the order in which they are input.

In addition to the mechanism mentioned above,
VSEQ implements the following mechanisms, like other
general-purpose theorem provers:

(a) A mechanism for checking infinite loops

(b) A mechanism for checking tautologies

(¢) A mechanism for evaluating attached pro-
cedures.

3.5 Verification Example

VSEQ is implemented in VOS 3LISP (Common Lisp)
and is currently being run on the HITAC M-series com-
puter.

It has been applied to the verification of several se-
quential control circuits (interlock circuits) of an elec-
tric power substation like the one shown in Fig. 1. The
sequential control circuit for the operation interlock of
the component in Fig. 1 was three times as large as that
shown in Fig. 2. It involved switches, relays, and their
contacts, and the number of components was around
150. In this circuit, a total of 21 design specifications
were specified, one for each disconnecting switch.
VSEQ verified all of these specifications automatically.

One of the more complicated verifications was the
one referred to in section 3.3. In this case, there were 76
clauses with 181 literals and 579 resolution links in the
initial connection graph. VSEQ verified this case with
only 59 proof steps within 30 seconds. An investigation
of the proof history revealed that every unnecessary
proof step was pruned in the first stage by the
mechanism described in the previous section. Thus the
verification process was found to be comparable in
efficiency to that of a human expert.

By inserting intentional design errors, we affirmed
that VSEQ could detect the following errors:

(1) Design errors due to the misuse and/or incor-
rect connection of components.

(2) Design errors due to roundabout circuits.

Through these applications, VSEQ was confirmed to
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be satisfactory for practical use.
4. Conclusions

A system called VSEQ that is based on a theorem-
proving method has been developed for verifying the
design of sequential control circuits. The main features
of this system are as follows:

(1) It formulates the design verification of sequence
control circuits as a theorem-proving problem based on
a description of the objective system.

(2) It embodies efficient theorem-proving by decom-
posing the search space and by providing an efficient
control scheme using domain knowledge.

Currently VSEQ is applicable to the design verifica-
tion of sequential control circuits with contacts when
they can be treated statically. It is now being extended
to hanhdle dynamic information.

Through the application of VSEQ to a realistic prob-
lem it was seen that verification efficiency is improved
by using knowledge about the domain characteristics in
the verification formulation and also in the control of
the proof process. The development of such a domain-
specific theorem prover is a key to realizing a powerful
design verification tool in other engineering domains.
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