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Generation of Path Directed LALR(k) Parsers
for Regular Right Part Grammars

Youru ZHANG* and Ixuo NAKATA**

A regular right part grammar (RRPG) is a context-free grammar in which regular expressions of grammar
symbols are allowed in the right part of productions. An RRPG is called an ELR grammar if its sentences can be
analyzed by the LR-parsing method. An efficient method for building ELR parsers is given in this paper.

In order to identify the left end of a handle at reduction time, an LR state symbol is pushed onto the parser
stack only when the corresponding transition is from a nonkernel item of the state. In the case of stacking con-
flict, that is, if there are two corresponding transitions, one from a nonkernel item and the other from a kernel
item, the LR state symbol is pushed onto the parser stack. Furthermore, the path number that records the transi-
tion path is pushed onto the parser stack in order to solve the stacking conflict.

The grammar class of our method is larger than that of [2], [7] and ESLR(k). We discuss the relations be-
tween these methods and present some comments on a previous method [7]. Our method is simple and efficient,
and no grammar transformation or computation of lookback /readback states is necessary.

1. Introduction

A Regular Right Part Grammar (RRPG) (or an ex-
tended context-free grammar) is obtained by allowing
regular expressions on the right part of productions of a
context-free grammar. An RRPG is called an ELR(k)
grammar if S=*S is impossible and if S=*aAdz=afz,
S=*yBx=cafy, and first,(z)=first,(y) implies A=B,
a=yp, and x=y, where S is the start symbol and all
derivations are rightmost [4, 9]. According to Heilbrun-
ner [4, 5], there are two conditions equivalent to the
above definition, which are (1) an RRPG is called an
ELR(k) grammar if some unambiguous right linear
transformation yields an LR(k) grammar, and (2) an
RRPG is called an ELR(k) grammar if its ELR(k)
automaton is consistent. RRPGs have many advantages
over ordinary context-free grammars: the specification
of the syntax of a programming language is shorter,
easier to construct, and easier to understand; the corre-
sponding syntax-directed parser may also be shorter
and more efficient. The main problem with ELR parsing
of ELR grammars is to identify the left end of a handle
at reduction time. Several approaches to this problem
have been proposed [2, 4, 6, 7, 9, 10]. Heilbrunner’s [4)
and Madsen’s [6] methods require a transformation of
an ELR(k) grammar into an equivalent LR(k) gram-
mar. Purdom’s method [9] requires a transformation of
an ELR(k) grammar into an equivalent ELR(k) gram-
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mar to avoid stacking conflicts. The grammar transfor-
mation adds extra nonterminals to the grammar, and
therefore makes the resultant parser inefficient. Further-
more, it often destroys the semantic structure (such as
the priority and associativity of operators). Several
methods for building the ELR parsers directly from
ELR grammars have been given. Chapman’s method
[2] is based on adding readback states to usual LR
parsers. Nakata’s method {7] is based on lookback
states. Sassa’s method [10] is based on counter stacks.

The subject of this paper is the parser generation for
RRPGs. Our method does not require the transforma-
tion of grammars. It uses so-called path numbers in-
stead of readback states, lookback states, or counter
stacks. When the end of the right part of a production is
found, exactly one state entry is popped from the parser
stack, except when stacking conflicts have occurred
while reading the right part of the production, in which
case several entries may be popped until the correct
path number for the reduction appears. The grammar
class for which our method is applicable is larger than
that of [2], [7] and ESLR(k) (extended simple LR(k))
grammars.

The path method parser for a given grammar is con-
structed first by building an LR(0) automaton, which is
augmented with lookahead symbols, and finally by
adding some path actions to the pushdown machine if
necessary. Therefore, it is possible to take advantage of
the efficient lookahead algorithm of Park [8] in this
method.

Section 2 presents our terminology, some basic defini-
tions, and algorithms. The path method and the
algorithms for parser construction are presented in Sec-
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tion 3. Section 4 discusses the grammar class that cor-
responds to the path method. Section 5 presents an op-
timization algorithm and a parser generation algorithm
for the path method. Finally, in Section 6, the advan-
tages and efficiency of the path method are discussed.

2. Terminology, Definitions, and Basic Algorithms

We assume that the readers are familiar with the basic
notation and definitions of the LR(k) parsing theory
such as first,, follow,, lookahead, LR(k), LALR(k),
SLR(k) and rightmost derivation [1, 5]. In this paper,
all derivations are assumed to be rightmost derivations.

We use the definitions and notations of Chapman [2]
with minor modifications. In the following, we repre-
sent regular expressions by deterministic finite state
machines. A regular right part grammar is written as
G=(Vn, V1, S, Q, 9, F, P), where Vy is a finite set of
nonterminal symbols, Vris a finite set of terminal sym-
bols, Se Vy is the start symbol, Q is a finite set of right
part states, d: QX V—Q is the transition function
(where V=VyUVy), FCQ is a set of final states, and
PCVyXxQ is a set of productions. A production is
denoted by (A4, p), where Ae Vy is the left part and
pe Q is the initial state of the right part deterministic
automaton of the production. This is equivalent to the
conventional notation 4 —«, where « is a regular expres-
sion and p is the initial state of the deterministic
automaton for «. 9 is extended to the mapping 9’:
O x V*->Q as follows:

(g, 8)=q
3'(g, BX)=03(3'(q, B), X) where Xe V, e V*

If (A, p)e P, we write L(A, p)={aec V*|d'(p, o)
e F}. For each pe Q such that 34: (4, p)e P, we define
the set of states accessible from p by Q,={gql3ae V*:
q=9'(p, a)}. We assume that

1. the sets Q, and Q, are disjoint if p#=p’;

2. grammars are reduced and in augmented form,
that is, there is a single state goe Q such that (S, go)e P
and L(S, go)=1{S’$} for some S’e Vy and $e V1, and
that S’ and $ do not appear in any other places in the
grammar.

An LR(0) automaton for an RRP grammar G is a 6-
tuple (Q, V, P, qo, Next, Reduce), where V, P are as in
G, and Q is the set of states of the LR(0) automaton
(boldface letters are used to distinguish the LR
automaton states from the right part states), goe Q is
the start state, Next: Q X ¥—Q is the transition func-
tion and Reduce: Q—2° is the reduce function. In the
following, an LR(0) item is defined to be a right part
state ge Q, and an LR(0) state is defined to be a set of
items.

We will use the following standard conventions:

ab, ---eVr S,A,B, ---eVy
X, Y, 2 VE X, Y, ZeV
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Fig. 1 Representation of the regular right part grammar GI1.

Fig. 2 LR automaton for grammar Gl.

&
te JVs a, B, e V*
=1
p,q,r, ---€Q p,qr €@
¢ =empty set ce V°

Define a relation | on items by
plq iff 34: d(p, A) is defined and (4, q)e P.

In other words, ‘‘plq’’ means that there exist two pro-
duction in P as follows:

The above notation is the same as that used in Fig. 1.
The closure set of an item set is defined by the reflex-
ive transitive closure {* as follows. For an item set R

closure(R)={qlpe R: pl*q}.
Thus an LR(0) automaton is given by putting
qo=closure({go})
Next(q, X)=closure(succ(q, X))
suce(q, X)={rlqge q: r=34(q, X)}
Reduce(q)= {reduce(q)| ge qNF}
reduce(g)=(A, p) where (A4, p)e P,
Jae V*:q=9'(p, ).
Next: Q x ¥—Q can be extended to the mapping Next’:
Qx V*-Q as follows:
Nexr’(q, €)=q
Next’(g, SX)=Next(Next'(q, 8), X)
where Xe V, e V*
Each LR state has two parts: the kernel and the
nonkernel. These are defined as follows:
kernel(go)=¢
nonkernel(go) =q,
kernel(Next(q, X))=succ(q, X)
nonkernel(q)={g!pe kernel(q), pl *q}

Note that kernel(q) N nonkernel(q) # ¢ is possible.
Example. A grammar Gl is defined with the set of
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productions {S—B$, B—(aBlc)b}. The right part
automaton of grammar Gl and its LR automaton are
shown in Fig. 1 and Fig. 2, respectively. We use ““|*’ to
separate the kernel and the nonkernel of an LR state. In
Fig. 2, the annotations ‘‘ss(a)’’ and ‘‘s(b)”’ denote
“‘stack and shift a’* and ‘‘shift b,”’ respectively, which
will be defined later in this section. “‘#(B, p;)’’ means
reduction by the production (B, p;). ““{$}=accept” in
Fig. 2 means the transition by $ from p, to the special
state ‘‘accept’’.

The behavior and properties of an LR(0) automaton
can be understood in terms of transitions. If q=Next(p,
X), the transition from p to q by X is represented by
p—*q. We often write: p— - - - —~q if 3ae V*: Next'(p,
a)=4q.

In order to deal with multiple possible cases involved
in a transition, we introduce a refinement of the Next
relation called Goto. It represents a transition from a
pair (a state, an item) to another pair (a state, an item).

Definition 2.1 Goto: Q x O x V—=Q X Q is defined as
follows:

Goto(p, p, X)=(q, q), if g=Next(p, X), pep,
and g=d(p, X). O

The transition Goto(p, p, X)=(q, q) is represented
by (p, P)—*(q, ¢). In order to show whether the transi-
tion is from a kernel item or a nonkernel one, we write

(. p)—*'X(a, q) if pe kernel(p), and (p, p)~*'" (q, 9)
if pe nonkernel(p). We often write:

0, p)~Xq, @) if 3Xe V: (p, p)~*X(a, 9);
@, P)~N4, q) if 3Xe V: (p, p)—*"™a, q);
®, p)~(a, g) if 3Xe V: (p, p)>*(, 9).

Here, K means kernel and N means nonkernel.

Definition 2.2 We write p—*/%q if all the transitions
from p to q by X are from the kernel items. O

Definition 2.3 We write p—*/¥q if 3pe nonkernel(p):
Goto(p, p, X)=(q, ) O

Example. In Fig. 2, we have (qo, p3)~""(ps, ps)
=5 &(py, ps)=""*(ps, pe).

In general, a transition from a nonkernel item is
caused by reading the first vocabulary symbol of the
right part of a production, and a transition from a
kernel item is caused by reading the rest. Simple and
efficient algorithms for identifying the left end of a han-
dle at reduction time were given in Purdom [9] and
Nakata [7], but the grammar class for which this
method is applicable is smaller than that of our method.

Basic ELR Parser: Parsing actions of a basic ELR
automaton are described in terms of a relation
(moves to) defined on configurations. A configuration is
a member of (QUIK)*xQx(VV¥), consisting of the
parser stack, the current state and the input string:
(Poco . . - Pa-10tn~1, Pny XZ). When a reduction to a
nonterminal 4 occurs, it can be considered that, after
popping up the handle, A4 is placed temporarily in front
of the input string and then shifted onto the stack.

Table 1 Example of parsing for Gl1.

S = BS = aBb = acbb$

parser | current | input action
stack state | string
qo achb$ | stack shift a
Qs Ps cbb$ | stack shift ¢
Qoapsc Ps bb§ | shift b
qoapach ps b8 | reduce by #(B, p3) (reduce cb to B)
qoa - BbS | shift B
qoaB P4 b$ | shift b
qgaBb Ps $ | reduce by #(B, p3) (reduce aBb to B)
qo BS [ stack shift B
qoB pP1 $ | accept

There are four different kinds of ~ moves:
(P00 - - - Pn-1Qta—1, Pa, X27)
= shif(PoCo « + . Pa—10n—1.X, Pa+1, 2)
if pn—'X/KPM-I
- Po-10tn—1, Py XZ)
b= sack shifi(PoQo + + « Pa—10n—1PoX, Pa+1, 2)

lf pn—’X/an+1

(Pocto . .

(poao s oo Po-1Gn-1y Pny Z)
"reduce(pﬂao e o+ Poo. .. Pn-20n-2, Pa-1, Az)

if 3(A, p)=reduce(q)e Reduce(p.)
and ge kernel(pa)

(Poxo - « - Pa-1Cta=1, Pay 2)
"'e—reduce(poa9 <o s Pa-10n-1, Pa, AZ)

if 3(4, p)=reduce(p)e Reduce(p,)
and pe nonkernel(p,) O

The above parser is similar to the basic ELR parser in
[7]. A parsing example is shown in Table 1.

A basic ELR parser constructed as above may be
nondeterministic if there exist states p, g Q, p1, p.€ p
and Xe V such that both (p, p1)—*™q, q\) and (p, p2)
—X/K(q, q,) exist. Such a case is called a stacking con-
flict.

3. Resolution of Stacking Conflicts by the Path
Method

There remain two problems: the resolution of stack-
ing conflicts of parsing actions and the resolution of par-
sing conflicts in inadequate states. A state is called inade-
quate if it has reduce/reduce conflicts or shift/reduce
conflicts [1]. The latter problem can be solved by
lookahead sets as in usual LR(k) parsers. Park, Choe,
and Chang [8] have given an efficient algorithm for
finding lookahead sets from an LR(0) automaton, and
this can be applied to our LR(0) automaton. Therefore,
we will not discuss this problem further in this paper.

Stacking conflicts can be resolved by conflict-remov-
ing grammar transformation [9]. In this paper a new
method is proposed in which stacking conflicts are
resolved indirectly at reduction time by using path
numbers. We will explain and define the term path
number later.
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Fig. 3 Representation of G2 and the LR Automaton for G2.

Example. The right part automaton of the grammar
G2 and its LR automaton is shown in Fig. 3. There exist
both transitions (ps, pe)—<'%(ps, ps) and (ps, p3)—"(pa,
Da), and therefore there is a stacking conflict. The
numbers on transitions are path numbers, which will be
explained in the following section.

3.1 Outline of the Path Method

The first idea for resolving stacking conflicts is as
follows. At shift time, if a stacking conflict occurs,
select the stack shift action from the two possible ac-
tions, as in [7). For example, we select ss(c) for the tran-
sition p;—‘p4 in Fig. 3 from the two possible actions,
s(c) for (ps, pa)—>'*(p4, ps) and ss(c) for (ps, ps)—""(ps,
Dp4). By this ss(c) action, an irrelevant state symbol
would be pushed onto the parser stack for transition
(P3, Ps)—<'%(pa, ps). Therefore the remaining problem is
to identify these irrelevant state symbols at reduction
time.

We use a parsing process for ““S=A$=cAa$=cc-
caa$”’ of G2 in Table 2 to explain the outline of our
path method. The transitions from po to pe are as
“po—Ps—Pa—Pe—Ps’’ and the configuration is
(Pocpscpaca, ps, a$) when the transition reaches to ps.
The above transitions in detail are as follows:

(Pa,p3) | = | (P3,Ps) | = | (Pasps) | - this path disappears
(P3,73) | = | (Paspe) | = [(P4psY | = [ (perps) |
(P4;p3) | = | (Pa;pa) | — this path
(pa4,p3) | = disappears

It is clear that the state which indicates the left end of
the handle ‘“cca’’ is ps and the transition path for ‘‘cca”
is the second of the above paths. p4 in the stack is the
relevant state for the third path (which may indicate the
left end of a handle), and is irrelevant for the second
path. In order to identify the irrelevant state p4 for the
current handle cca, the parser has to distinguish these
transition paths. We use a number to show the path in-
formation. If p is the j* kernel item in p we say that the
path number of (p, p) is j. For example, ps and ps are
the first and second kernel items in pq, respectively. We
replace all kernel items with their path numbers and
delete all nonkernel items for the above transitions as
follows:

Y. ZHANG and 1. NAKATA

[®)] 5 [(Ps:1) | 5 [(Pa,1) | = this path disappears
(p3) | = |(Pe,2) | = | (Pes1) | =] (ps,1)
-

(Ps) (Ps,2) | — this path
(ps) | — disappears

The second path, which begins as the second path, is
changed from the second to the first path and ends as
the first path. We rewrite the above transitions as
follows. Here the underlined state symbols are pushed
onto the stack. The “—2»"* means that a new handle
begins as the second path. The ¢ 22 means that the
path number has been changed from 2 to 1. The *“(ps, 1)
>’ means that reduction takes place along the first path.

c ¢ < a
_‘_.__. —
=1 % e =[]
2, —

The result of the above transitions is shown in line §
of Table 2, where the reduce action is triggered with the
path number=1. In line 6, state p4 is popped because
the attached number (=2) is not equal to 1. Then the
parser changes the current path number from 1 to 2 in
line 7. Finally in line 8, p; indicates the left end of the
handle since the attached path number (=2) matches
the current path number.

3.2 Formalization of the Path Method

In this subsection, we summarize the above discus-
sions and formally present the path method.

Table 2 An example of parsing for G2.
S = A$ = cAa$ = cccaa$

parser current input
stack state or | string action
path number
1 Po cccaal | stack shift po, “1” and ¢
2 | poc ps ccaa$ | stack shift ps, “2" and ¢
1
3 [ pocpac P caa¥ | stack shift pg, (2,1),
1 2 “2” and ¢
4 | pocpscps ¢ Ps aa$ | shift a
12 2,2,1)
5 [ pocpacpa ca P a$ | reduce by (4, ps)
1 2 2,(21) current path=1

6 | pocpacps ca 1 AaS$ | pop ps and “2” , because
1 2 2,(21) the path number of
pais 2 (#1)
7 [ pocpac ca 1 Aa¥ [ change current path
12 (21 from 1 to 2
8 ( pocpacca 2 Aad | ps indicates the left end,
1 2 because the path number
of p3 is 2. Pop cca.
9 [ pac pa Aa$ | shift A
1
10 [ pgcA Ps a$ | shift a
1
11 | pocAa ps $ | reduce by (A4, p3)
1 current path=1
12 [ pocAa 1 AS | po indicates the left end,
1 because the path number
of pp is 1. Pop cAa.
13 Po A$ | shift A

14|po A P1 §$ [ accept
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The path transition functions are defined as follows:
Definition 3.1 Path: Q X O—Integer.
Path(p, p)=/, if the item p is j* kernel item in p. O
Definition 3.2 PathBegin: Q x V-2,
PathBegin(p, X)={Path(q, ¢)|3pe p: (p, p)
—~*Nq, @)} O
Definition 3.3 Path Change: Q X J/—2!nteger Integer,
PathChange(p, X)= {(Path(p, p), Path(q, g))I3p
e p: (p, p)~"'¥(q, ¢), and Path(p, p)#Path(q, g)} O
Definition 3.4: PB={PathBegin(p, X)Ipe Q, Xe V}
PC={PathChange(p, X)Ipe Q, Xe V}
PT={Path(p, p)!pe Q, pe kernel(p)} O
We will use the following conventions:

Pbe PB Pce PC
He (QxPB x PC)UPCUW)*

Definition 3.5: Right: PC—2imeeer,
Right(Pc)={il3j: (j, He Pc} O
According to [1, 2, 7, 8], we can define the LALR(k)
k

lookahead set la,: Q x Q—|JV' as follows:
i=1
Definition 3.6:

laq, @)= Follow(p, A)
Pe LB(q, 9), (4, p)=reduce(q)

Here, LB(q, ¢)={plpe nonkernel(p), (p, p)— -
—(q, q)} (see [7] p. 154), and Follow,(p, A)={t|3aec V¥,
ze V¥, S=*aArz, Next'(qo, a)=p} (see [2] p. 38). O

Part, Choe, and Chang have given an efficient
algorithm for computing the lookahead set in [8] (p.
163).

Definition 3.7: LA,= {la(q, ¢)lqe Q, ge qNF}.

Ladq)= |J ladg, g) O
qe gNF

It is now possible to describe a PELALR(k)
automaton (a Path directed parser for an ELALR(k)
grammar), which is usually shown by a parsing table,
and is interpreted by the PELALR driver routine.

A PELALR(k) automaton is a 10-tuple (Q, V, P, qo,
Goto, Reduce, PB, PC, PT, LA,), where Q, V¥, P, qo
and Reduce are as in the LR(0) automaton and Goto,
PB, PC, PT, and LA, are defined in Definition 2.1, 3.4,
and 3.7, respectively.

We will propose in Section 5 an algorithm for
generating the PELALR(k) automaton from an RRP
grammar.

Parsing actions of a PELALR parser are described in
terms of a relation + (moves to) defined on configura-
tions. A configuration is a member of ((Q X PB x PC)
UPCU)* x (QUPT) x (VV¥), consisting of the parser
stack, the current state or path number, and the input
string. There are ten different kinds of — moves:

1. (H,p, X)+u(H Pc X, q, 2)
if p—»*/Xq, where Pc=PathChange(p, X). Here
firsti(Xz)é Lay(p)

2. (H, P, Xz)l—slackshiﬂ(H (P, Pb! PC) X’ q, z)
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if p—*/Nq, where, Pb=PathBegin(p, X) and
Pc=PathChange(p, X). Here first{Xz)e La«(p)

3. (H’ q, z)'-ﬁ(A.P)(Hv i! AZ)
if there is ge kernel(q) such that firsti(z)e la(q, q),
i=Path(q, q), where (4, p)=reduce(q).

4. (H, q, 2)~ua.n(H, q, A2)
if there is pe nonkernel(q) such that first«(z)e la(q, p),
where (A, p)=reduce(p).

5. (HPca, i, AZ)\ panchange(H o, i, AZ)
if i¢ Right(Pc).

6. (H Pc «, i, AZ)F‘pa/hc;.g,,ge(H a, j, Az)
if ie right(Pc), in other words 3(j, i)e Pc.

7. (H(p, Pb, Pc) a, i, AZ)F pop(H Pc @, i, A7)
if i¢ Pb.

8. (H (p’ Pb; PC) a, i: AZ)’_rEduce(Hv P, Az)
if ie Pb and i¢ Right(Pc).

9. (H, q, $)F .. accept
if 3ge q such that $ e lai(q, ), where (S, go)=reduce(g).

10. otherwise error. u]

A PELALR(k) machine constructed as above may be
nondeterministic since (1) move 6 is nondeterministic if
a(j, i), U2, He Pc for ji #j,, and (2) move 8 is nondeter-
ministic if ie PbNRight(Pc). We will give a condition
in Section 4 to guarantee that the above moves are deter-
ministic.

The language recognized by the PELALR parser for
a grammar G is

L(G)={ze V¥ (e, qo, 2) * accept}.

In the following, the action of pushing Pc(e PC)
onto the stack is called the ‘‘path-change’’ action, and
the action of pushing Pb(e PB) is called the ‘‘path-
begin’’ action.

4. The Grammar Class

Several methods (including our path method) that
build a parser directly from an ELR(k) grammar have
been proposed. However, the grammar classes for
which these methods are applicable are smaller than the
class of ELALR(k) grammars. We can define
ELALR(k) grammars as follows, using the same
method as that for ELR(k) and LALR(k) grammars
found in Heilbrunner [4, 5]. An RRPG is called an
ELALR(k) grammar if its ELALR(X) automaton is con-
sistent, and its ELALR(k) automaton is obtained from
the ELR(k) automaton by merging states with equal
cores. In other words, the parsing conflicts in inade-
quate LR(0) states can be resolved by using LALR(k)
lookahead symbols if the RRP grammar is an
ELALR(k) grammar. In this section, we show that the
grammar class of our method is larger than those of [2],
[7] and ESLR(k), as indicated in Fig. 4.

A PELALR parser (a Path-directed parser for an
ELALR(k) grammar) can be constructed from any
RRP grammars if the following conditions are satisfied:

Conditions of a Path-directed parser (CP for short):

(i) It is an ELALR(k) grammar, and
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PELALR(k)

Fig. 4 The relation of several grammar classes.

(ii) there does not exist a transition p—*q such that
there exist p,, p,e p, g q and Goto(p, p,, X)=Goto(p,
P X)=(q, q), where (a) pi#p, or (b) p=ps
p1€ kernel(p) and p.e nonkernel(p). O

Lemma 4.1: For all (j, /)e PathChange(p, X), there
does not exist (j/, )e PathChange(p, X) for j' #j, if
CP(ii) holds. Therefore, the move + pauncnange fOr case 6
can be uniquely defined.

Proof: From Definition 3.3 and CP(ii). 0

Lemma 4.2: For all pe Q, Xe V: PathBegin(p, X)N
Right(PathChange(p, X))=¢, if CP@i) holds.
Therefore, the move + ,eqc. for case 8 can be uniquely
defined.

Proof: From Definitions 3.2, 3.3, 3.5 and CP(ii). O

Theorem 4.1: The PELALR parser for an RRPG
grammar G parses all sentences of the grammar correct-
ly if, and only if, the condition CP holds for G.

Proof: First, let us assume that the condition CP
holds.

Let (po; po)=*'" (p1, p1)—>*/%- - - > %/X(p, p,), where
Dne F and reduce(p,)=(A, po). If n=0, then the final
state p,e nonkernel(po). Therefore there would not be
any problem in determining the left end of the handle
by the move +44,, of case 4. Thus assuming 7>0,
which means that p,e kernel(p,), we will prove in the
following that the left end p, can be uniquely decided by
the PELALR parser.

1. Since the given RRP grammar G is an ELALR(k)
grammar, the parsing conflicts in inadequate states can
be resolved by the lookahead set la(p,, p.). In other
words, when p, appears as the current state, the move
w4, py Can be accurately defined, therefore the resul-
tant configuration is (H, Path(p,, p,), Az2).

2. The current path will always keep the value to

Path(pi, p) (0<i<n) until (po, PathBegin(p,, X)),
PathChange(po, X)) appears at the top of the stack. We
will prove this using an inductive method as follows:
Basis: When i=n, the configuration and the current
path are (H, Path(p., p.), Az) and Path(p,, p.), respec-
tively.
Inductive step: When j=i, 0<i=<n, we can assume that
the configuration and the current path could be replac-
ed by (H’, Path(p;, p)), Az) and Path(p,, p)), respec-
tively. Therefore, we will check four cases for moves 5,
6, 7, and 8.

(a) Let H'=H” PathChange(p;-1, X)) «, and

Path(p;, p,) ¢ Right(PathChange(p;-1, X))).
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Referring to Definition 3.3, Path(p;, p))
=Path(p;-1, p;-1), with move 5, (H’, Path(p;,
Pj), AZ) ’_Pnthhnngt (H”(X, Path(Pl-h p,l—l)’ AZ)

(b) Let H’=H” PathChange(p;-i, X)a, and
Path(p;, p)e Right(PathChange(p;-1, X))).
According to Definition 3.3, to our assump-
tion, and to Lemma 4.1, (Path(p;-1, pj-1),
Path(py, p;))e PathChange(p;-1, X;), hence, for
any Path(q, g)=Path(p;-1, p;-1), (Path(q, g),
Path(py, p;))e PathChange(p;-1, X)) does not ex-
ist.

Following move 6, (H’, Path(p;, p), Az)
b panchange (H” o, Path(py-1, pj-1), A2).

(©) Let H'=H" (pj-1, PathBegin(pj-1, X)),
PathChange(p;—:, X)), and Path(p;, p))
¢ PathBegin(p;-1, X)).

Along with move 7, (H’, Path(p;, p;), Az)
+0p(H” PathChange (pj-1, X)) @, Path (p;, p)),
Az). Hence the next step will be (a) or (b).

(d) Let H’=H" (pj-1, PathBegin(pj-:, X)),
PathChange(p;-1, X))o, and Path(p;,, p))
e PathBegin(p;-1, X)).

According to Lemma 4.2, Pathbegin(p;—i, X)) Right
(PathChange (pj-1, X))=¢.

If j>1, and in accordance with our assump-
tion, (-1, pj-1)=>*'*(p;, p)). Since Path(p;, p))
€ PathBegin(pj-1, X)), (0)-1» @)~ *""(py, p)) ex-
ists. This is contrary to Lemma 4.2.

If j=1, (po, PathBegin(po, X1), PathChange(po,
X)) will appear at the top of the stack. Thus
our recursive proof ends correctly.

3. When (po, PathBegin(ps, Xi), PathChange(po,
X)) appears at the top of the stack, the current Path
number will be set to path(pi, p1) (e PathBegin(p,, X)),
which means that po indicates the left end of the handle
and the move ke is taken.

Second, let us assume that the condition CP does not
hold.

The parsing conflicts in inadequate states cannot be
resolved by the lookahead sets if CP(i) does not hold,
and the move - panchange OF - requce Cannot be uniquely de-
fined if CP(ii) does not hold. O

An RRP grammar is called a PELALR(k) grammar if
and only if the condition CP holds. Let us compare our
condition with those of [2] and [7].

[2)’s conditions are as follows:

1. It is an ELALR(k) grammar.

2. There does not exist a transition p—*q such that
there exist pi, p:e P, g q and (p, p1)T(q, 9), (p, P2)
T(q, g) where (a) pi#p; or (b) pi=p, pic kernel(p)
and p.e nonkernel(p). Here (p, p)T(q, g) means
3Xe V: Goto(p, p, X)=(q, q). C

The transition relation T is similar to our Goto rela-
tion. However, T ignores the vocabulary information.

[7)’s conditions are the same as CP. It is, however,
pointed out by Grass [3] that the method fails to build
correct parsers for some kinds of PELALR(k) gram-
mars. Therefore, [7]’s conditions have to be modified as
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follows:

Corrected conditions for the method of [7]:

1. The condition CP.

2. Stacking conflicts can be resolved by using
lookback states LB(q, ¢)={plp—"— - -—q} at q if
there is no p and r such that both p and r belong to
LB(q, ¢) and p—"-- - —r—ok...5q. O

Our condition is actually less restrictive than the
above conditions. For example, G1 cannot be parsed by
[2)’s method, and G2 cannot be parsed by [7]’s method.

According to Fig. 2 and [2], (ps, 23)T (P4, ps), (D3, Ps)
T (ps, ps), and p;# p,. This is contrary to the second of
[2)’s conditions.

According to Fig. 3 and [7], LB(ps, Ds)= {Po, P3, Pe}
because

(o P3)~"(D3, P)~"%(Pa, P)~""*(Ds> Ds)

3, P3)= "N (Da, P~ (pa, Ps)~"%(ps, Pe)

(D4, P3)="™(Da, P)="5 (D4, D)™ ¥ (s, Do)
In other words, po—"p;—*ps—*ps, and po, ps,
psc LB(ps, pe). This is contrary to the second of [7]’s
corrected conditions.

Next, we will show that the grammar class of the
PELALR(k) grammars is larger than that of ESLR(k).
We can define ESLR(k) grammars as follows, using the
same method as that for ELR(k) and SLR(k) grammars
found in Heilbrunner [4, 5]. An RRPG is called an
ESLR(k) grammar if S=*S is impossible and if
S=*aAz=afiz, S=*yBx= afy, and follow,(A) Nfollow,
(B)# ¢ implies A=B, a=y, and x=y.

Theorem 4.2: An RRP grammar G is not an ESLR(k)
grammar if the condition CP does not hold.

Proof: If G is not an ELALR(k) grammar, it clearly
is not an ESLR(k) grammar. Therefore we assume that
the grammar G is an ELALR(k) grammar but CP(ii)
does not hold. In other words, 3p, qe Q, Xe V, pi,
P2€ P, ge q satisfying (p, p))—*(q, ) and (p, p2)~*(a,
q). We will prove that G is not an ESLR(k) grammar by
checking three cases for p, and p, as follows:

1. pi, p.e kernel(p)

In this case, p, #p,. Since g=4ad(@, X)=0d(p,, X), ac-
cording to assumption 1 of Section 2, 3(4, p)e P: p1,
D2, g€ Q,. We assume 3re Q,NF and 3fe V*: r=9'(q,
). There is a production in Q of the form

ot @ X . 7~
o~ =00
az @ 5%

satisfying o) # a2, and there is a transition in Q as

follows:
b

Since p, and p; are in the same LR state p, the following
derivations exist:
S=*aAw=aa, Xfw
S=*pAv= pa, Xpv=aa, Xfv
and follow(A)Nfollow(A)# ¢
If G were an ESLR(k) grammar, then it would be true
that a=y, and hence that o) Xf=a,Xf, which con-
tradicts ) Z o,

2. pi€ kernel(p), p:€ nonkernel(p)
In this case, p, may be p,. Since p.e nonkernel(p), p: is
an initial state in Q for some production (A4, p.) and this
production is of the form

(A —EX
a

satisfying a#¢€, and there is a transition in Q as

X
P(-pipilppa- - C-ql--)a
X

satisfying p’{ * p, (p’ may be p,). According to the defini-
tion of {, 3(B, p)e P: d(p’, B)e Q, and pl*p, ((B, p)
may be (4, py)). Since p’, pi, p,, and p are in the same
LR state p, the following derivations exist:
S=*yAw=yaXfw
S=*3Bv=*3Av\v=5Xpviv=yaXpvv

and follow(A)N follow(A)# ¢

If G were an ESLR(k) grammar, then it would be true
that y=4 and hence that X=X, which contradicts
aF#E.

3. p1, p2€ nonkernel(p)

In this case, p, # p.. According to assumption 1 of Sec-
tion 2, this case is impossible. O

Furthermore, the grammar G3 shown in Fig. S is a
PELALR(1) grammar but is not an ESLR(k) grammar
for any k>0; the grammar G4 shown in Fig. 6 is an
ELALR(1) grammar, but is not a PELALR(k) gram-
mar for any k>0.

It is clear that PB can be recorded compactly and
efficiently, whereas PC cannot. In Section 5, we will pro-
pose an optimization algorithm to remove some of
these ‘‘path-change’’ actions.

N\

#l:

s

b
@ @@

#3: (B )

Fig. 5 Representation of the regular right part grammar G3.
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#1 : is the same as #1 of G3.
#2: is the same as #2 of G3.
d

Fig. 6 Representation of the regular right part grammar G4.

5. Optimization and Parser Generation

In this section, we use the grammar GS5 in Figs. 7 and
8 to explain our optimization algorithm.

In a PELALR parser, path actions must be executed
even if there is no stacking conflict. It is therefore in-
efficient. If there is no stacking conflict, the basic ELR
parser is the most efficient. We want to optimize our
path method in which the path actions are executed
only when stacking conflicts occur. We mark all state-
item pairs in the transition paths that contain stacking
conflicts, and we only add path actions for these transi-
tions. For example, we do not add path actions to the
transition (po, p3)—’(ps, pe) in Fig. 8.

When a stacking conflict occurs, the ‘‘path-begin’’ ac-
tion records the start position of the handle for the cor-
responding transition from the nonkernel item.
Therefore, it is not an eliminable action. A ‘‘path-
change’’ action is necessary only when Path(p, p)
#Path(q, g) for a transition (p, p)—*'%(q, q). We can
eliminate this action if p becomes the Path(q, ¢)" item
of kernel(p) as a result of a rearrangement of the kernel
items in kernel(p). For example, we set ps, ps, ps to the
first kernel items in ps, p7, Ps, P, and set py, ps to the
second kernel items in p1, p3, Ps, P71, Ps, respectively, as
in Fig. 8.

We summarize the above discussion and show an op-
timization algorithm in Algorithm 5.1. The set Con-
flict_pair is used to mark state-item pairs in some transi-
tion paths containing stacking conflicts. Path(p, p):=i
means that the kernel item p is set to the i kernel item
in p. Path(p, p): =0 means that the kernel item p can be
set anywhere in p. We define the function Path as
follows:

Definition 5.1: Path: Q—2'neser,

Path(p)= {Path(p, p)!pe kernel(p), Path(p, p)=0}
o

Algorithm 5.1. Optimization of PELALR parsers

Input: The LR(0) automaton for an RRP grammar G

Qutput: The optimized PELALR(0) automaton for
the LR(0) automaton
Method:

1. Mark all state-item pairs in some transition paths
containing stacking conflicts.

(a) Conflict_pair:=¢;

(b) For all stacking conflicts (p, p;)—*'™(q, ¢,) and
(p, p)—*""(@, ¢2), add (p, p») and (g, ¢) to Con-
flict_pair.

(c) V(p, p)e Conflict_pair, add all (r, r)’s such that
@, N—=*(, p) or (p, p)—*(r, r), to Conflict_pair.

2. Set different numbers for all marked final paris.
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e orl \P¢ #(E,pa)
Path(Pc,Ps) =2

P PilPo Ysra
p7 ss(a)

Fig. 8 PELALR(0) automaton for G5 based on Algorithm S.1.

(a) path_number:=1;

(b) For all (q, g)e Conflict_pair, if ge F
then Path(q, ¢): =path_number + +; else Path(q, ¢): =0;

3. Adjust the order of kernel items that have been
marked.
for ¥(p, p), (4, g)e Conflict_pair, Xe V, (p, p)—*'X(q,
q)

if Path(q, g)¢ Path(p) then

if Path(p, p)=0 then Path(p, p):=Path(q, q)

else if Path(p, p)=0 then Path(p, p): = path_number + +;

4. Compute PB.

for vpe Q, vXe V, PathBegin(p, X)={Path(q, q)
Ipe p: (0, P)~*™a, 9), (4, g)e Conflict_pair}

5. Compute PC.

for vpe Q, vXe V, PathChange(p, X)= {(Path(p, p),
Path(q, 9)) | pep: (0, p)~"*(a, q), Path(p, p)=
Path(q, g), and (q, g¢)e Conflict_pair} ©

The optimized PELALR(0) automaton for the gram-
mar GS is shown in Fig. 8. The marked state-item pairs
are indicated by asterisks. In Fig. 8, there are no ‘‘path-
change’’ actions at all. However, the ‘‘path-change’’ ac-
tions of G2 cannot be removed by Algorithm 5.1.

In order to remove irrelevant path actions, we slightly
modify the moves of PELALR parsers as follows:

1. Add “Pc¢ is not pushed if Pc=¢’’ to the
MoOve i,

2. Add “Pb is not pushed if Pb=¢” to the
MOVE F gack shift

3. Rewrite step 3 of the movet 44, ) as follows:
(@ 3.1: (H, q, 2)Fua,n(H, i, A2)
if there is ge kernel(q) such that first:(z)e la«(q, q),
(q, q9)e Conflict_pair and i=Path(q, g), where (4, p)
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=reduce(q).
(b) 3.2: (H (p, Pb, Pc) o, q, 2)F x4, n(H, p, A2)
if there is ge kernel(q) such that firsti(z)€ lai(q, q)
and (q, g)¢ Conflict_pair, where (4, p)=reduce(q).

In order to simplify the representation of PELALR
parsers, we leave the form (p, Pb, Pc) even if there is no
Pb or Pc.

It is now possible to describe a PELALR(K) parser
generating system based on the preceding algorithms
and definitions.

Algorithm 5.2: PELALR(k) Parser Generation

Input: An RRP grammar G.

Output: The PELALR(X) automaton for G.

Method:

1. Build the LR(0) automaton.

2. Build the PELALR(0) automaton by Algorithm
5.1, check the condition CP(ii).

3. Compute the lookahead sets by using the method
in Park [8], and check the condition CP(i).

4. Write out the PELALR(k) automaton. O

6. Conclusion

Nowadays, the advantages of regular right part gram-
mars are well known. This paper shows a method of
conceiving ELR parsers for regular right part gram-
mars. In our method, the ELR parser is directly built
from a given ELR grammar, and no grammar transfor-
mation is necessary. Therefore, it is not necessary to
rewrite the semantic rules attached to each production.
The grammar class of PELALR(k) grammars is larger
than that of ESLR(k) grammars, that of [2]’s method,
or that of [7]’s method, and is the same as that of {10]’s
method.

Generally speaking, when a single production derives
a long string, the path method is more efficient than [10]
’s method. Two practical examples, G6 (Figs. 9 and 10)
and G7 (Figs. 11 and 12), are given in order to compare
the efficiency of the two methods. We will compare the
number of push/pop operations while the two different
parsers run through the long string “‘if x then x elsif x
then x else x’’ and the short string *‘i+i*/”’. We assume
that all the operations of the following list have the
same unit cost.

+Pushing an LR state symbol;

*Pushing a counter;

*Pushing less than eight ‘‘path-begin’’ symbols;

*Pushing a ‘‘path-change’ symbol;

*Reducing . . . by [10)’s method;

*Moves S, 6, 7, and 8 of the path method;

Tables 3, 4, 5, and 6 give details of the process of the
two parsing methods applied to the two above-mention-
ed strings. In order to parse the long string, [10]’s
method has to push/pop the parser stack 32 times
(Table 3), while the path method only has to push/pop
the parser stack 9 times (Table 4). Even in the case of
the short string, [10]’s method has to push/pop the
parser stack 31 times (Table 5), while the path method
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S — S%
S — if z then S {elsif z then S} [else S] | z
S—iztS {lztS}leS]|z (for short)

Fig. 9 Representation of the regular right part grammar G6.

S}:accept

@ P11

Fig. 10 PELALR(0) automaton for G6 based on Algorithm 5.1.

S ES
EsE+ E|E+E|i

@0 —@

Fig. 11 representation of the regular right part grammar G7.

Gae)ia(ps. o) = (8 + /4

= Path(ps,ps) = 1

la(p3, ps) = {$/+}
Path(pa,ps) = 1

Fig. 12 PELALR(1) automaton for G7 based on Algorithm 5.1.

only has to push/pop parser stack 22 times (Table 6).
These results seem to show that the path method
generates more efficient parsers than [10}’s method
does. Unfortunately, we have not been able to prove
this conjecture.

An ELR grammar is more concise than the corre-
sponding LR grammars. However, the parser genera-
tion for the ELR grammar is more complex because a
single production can potentially derive a string of in-
finite length [2, 4]. Unfortunately, it is impossible for
ELR parsers to avoid some overhead actions. For exam-
ple, grammar transformations [4, 6], readback states
[2], or counter stacks [10] are necessary. The basic ELR
parser with no overhead action is the most efficient in
terms of both time and space, even more efficient than
the ordinary LR parser [9]. According to Aigorithm
5.1, the efficiency of the path method is the same as that
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Table 3 A process for parsing G6 by [10])’s method.

if z then z elsif z then z else z §

parser kurreni input umber ofaumber of
stack state string shifts ducti
1 po patzlzizes§ 2
2 | pol p1 | ztziztzezd | 6
1
3 | polP1Zp2tpsz Pio Iztzez§ T
1 2 3 1
4 | poip1zp2t pP3 Slztzez$ 10
1 2 3
5 [ polp1zp2tp3Spalpszpetprz P10 ez$ 1
1 2 3 45 6 7 1
6 [ PoiP12pP2tp3 Sp4lpszpet p7 — Sexd 3
1 2 3 45 6 7
7 [ Poip12p2tpaSpalpszpetprSpaepez | p1o § i
4 5 6 7 8 9 1
8 ['poip1zp2tpsSP4lpszpetprSpac Ps 5% 2
3 45 6 7 8 9
9 [ PoiP12P2tp3Sp4lpszpetprSpaepsS | po 3 1
1 2 3 45 6 7 8 9 10
10 Po S 2
11 [ poS P11 $ | accept
1
B+ 4=32

Table 4 A process for parsing G6 by the path method.

if z then z elsif z then z else z

parser urrentf input umber offnumber of|
stack state string shifts [reductiong
1 po |iztziztrez 1
2 [ pol P1 ztzlztzez$ 1
3 [ poiztpaz P1o Tzrtzezd 1
4 | poizt P3 Slrtzezd 1
5 | poiztSlztprz P1o exd 1
6 | poirtSlzt p7 Sezx$ 1
7 | poiztSlztSepsz | p1o $ 1
8 [ poiztSlztSe Ps S 0
9 [ poiztSlztSeS Po $ 1
10 Po S$ 1
11 | poS P11 $ [ accept
5+ 4=9

of the basic ELR parser, if stacking conflicts do not oc-
cur. When stacking conflicts occur, some overhead ac-
tions are necessary. The latter actions of the path
method are very few, because (1) the ‘‘path-begin’’ ac-
tions can be compactly and efficiently performed and
(2) the “‘path-change’’ actions can be mostly removed
by Algorithm 5.1. The reason is that we can use one
number to represent information for several kernel
items that in the same transition path.

Finally, the optimization algorithm of [7] is also ap-
plicable to our path method. As a result, further path ac-
tions can be removed. On the whole, we think our path
method is useful because of its wide applicability and
efficiency.
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