310

Regular Paper

Network-Transparent Object Naming and Locating
in the GALAXY Distributed Operating System
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This paper describes the concepts and mechanisms for realizing network-transparent object naming and
locating in distributed systems. Multiple global naming contexts and descriptive naming based on hierarchical
names are important features for increasing the flexibility of naming for human users. The proposed mechanism
for locating objects by means of their system-wide unique identifiers, which are used by many existing
distributed operating systems, makes it possible to locate any object in the system right at an accessing node. It
can be applied to general global flat name spaces. This paper analyzes the efficiency of this locating mechanism
and its variations in comparison with conventional object locating mechanisms. This paper also describes the im-
plementation issues of object naming and locating in the GALAXY distributed operating system now being de-

veloped by the authors.

1. Introduction

Naming plays an important role in the design of any
operating system. Especially in the case of distributed
operating systems, where a large number of objects are
distributed throughout the system, the need to assign
global names to all the objects makes naming an impor-
tant issue. Locating objects is an important function of
naming mechanisms. Because the naming mechanism
supports references to objects, it directly influences
both the ease with which users refer to objects, and the
efficiency of object locating.

This paper discusses the concepts and mechanisms
for realizing network-transparent object naming and
locating in distributed operating systems. Multiple
global naming contexts and descriptive naming based
on hierarchical names are used in our approach. These
are desirable features of names in distributed operating
systems, because they lead to better efficiency, flexibili-
ty, and usability. We also discuss a mechanism for
locating objects by means of their system-wide unique
identifiers, which are used in many existing distributed
operating systems. Unlike conventional locating
mechanisms, this mechanism allows any object in the
system to be located exactly at an accessing node,
without the need to inquire from remote nodes where
the object exists. This makes the object locating
mechanism very fast and also improves the overall
system performance by reducing the network traffic.
Our naming and locating mechanisms aim at transparen-
cy with respect to the physical location and structure of
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objects. This is one of the most important requirements
in distributed operating systems. The concepts and
mechanisms proposed in this paper are developed in the
GALAXY [9, 12, 24] distributed operating system that
we are now implementing, and are applicable to other
distributed/ non-distributed systems.

2. GALAXY’s Objects

There are several ways of considering objects. In the
pure smalltalk-like view, objects represent physical en-
tities, such as boxes and cars. Thus in pure object-
oriented systems, all conceptual entities are modeled as
objects. An ordinary integer or string is as much an ob-
ject as is a complex assembly of parts, such as an air-
craft or a car. An object consists of some private
memory that holds its state. The private memory is
made up of the values of a collection of instance
variables. The value of an instance variable is itself an
object and therefore has its own private memory for its
state (namely, its instance variables). A primitive ob-
ject, such as an integer or a string, has no instance
variables. It only has a value, which itself is an object.
More complex objects contain instance variables, which
in turn contain other instance variables.

GALAXY is not a pure object-oriented system, and
hence the granularity of object identity is not at integer
or string level. In GALAXY, only the entities that need
to be identified at the operating system level, such as
processes, files, devices, and nodes, are viewed as ob-
jects. Thus GALAXY’s primitive objects are normally
very large in comparison with the primitive objects of
pure object-oriented systems. The main reason for the
choice of relatively large primitive objects in GALAXY
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is to facilitate the design and implementation of the
operating system. Granular primitive objects may be
used in the design of the data base systems or the
languages supported by the system on top of the
operating system level. This paper deals only with the
design aspects of the GALAXY distributed operating
system. Thus the naming and the locating mechanisms
discussed in this paper are mainly designed for objects
to be dealt with at the opeating system level.

The objects in our system basically have the follow-
ing two attributes:

1. Object Identity: Objects have an existence in-
dependent of their contents or values. Thus, two ob-
jects can be either identical, in which case they are the
same object, or they can be equal, in which case they
have the same contents or values. Identical objects are
known as replicas in GALAXY.

2. Object Type: Every object in GALAXY belongs
to a particular type. A type describes a set of objects
with the same characteristics. It describes the structure
of data carried by objects as well as the operations
(methods in object-oriented terminology) applied to
these objects. Users of a type see only the interface of
the type, that is, a list of methods together with their
signatures (the type of input parameters and the type of
the result): this is called encapsulation.

In GALAXY, each type of object is managed by a
special module dedicated to the type. We refer to such a
module by the general term object manager. For exam-
ple, process objects are managed by a Process Manager,
file objects are managed by a File Manager, and so on.

Object managers reside on all the nodes at which the
objects of that type exist; each one cooperatively
manages a subset of the objects on the node. When an
operation invocation message is issued to an object, the
corresponding object manager is invoked.

3. The Simple Naming Model

Names are used to designate or refer to objects at all
levels of the system architecture. They have various pur-
poses, forms, and properties depending on the levels at
which they are defined. However, an informal distinc-
tion can be made between two basic classes of names
widely used in operating systems: human-oriented
names and system-oriented names.

Human-oriented names are required to meet the
needs of human users for their own mnemonic names,
and to assist them in organizing, relating, and sharing
objects. Therefore, human-oriented names should be
flexible enough to allow a user to define his/her own
names rather than simply identify an object, and they
should be independent of the physical location and
structure of objects they designate. The facilities of
alias, context-based naming, and grouping are widely
used for human-oriented names. System-oriented
names are automatically generated by the system and
are used either by the users or by the system. In many
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Fig. 1 Simple naming model and the naming scheme of
GALAXY.

cases, system-oriented names are uniquely defined and
have a uniform format for management purposes. Both
human-oriented names and system-oriented names are
resolved within a global and distributed context, but
they have distinct naming and locating mechanisms in
many distributed operating systems [4, 7, 10, 11, 22].

Figure 1 shows a simple naming model for distributed
operating systems. In this naming model, a human-
oriented name is translated into a system-oriented
name, and a system-oriented name is translated into the
physical addresses of replicas. The GALAXY
distributed operating system is designed according to
the above naming model. The details of our naming and
locating mechanisms are described in the following sec-
tions.

4. Human-Oriented Object Naming

In GALAXY, human-oriented names are called exter-
nal names. Network transparency is one of the most im-
portant requirements of the naming scheme in
distributed operating systems. In addition, efficiency
and flexibility of use are equally important. Basically,
there are two approaches to global naming in conven-
tional distributed operating systems:

(1) Using a separate name space for each node

(2) Using a single global name space for all nodes.

Early network operating systems such as Newcastle
Connection [3] and COCANET [20] used the first ap-
proach to global naming. They did not have the proper-
ty of location transparency, because the location of an
object had to be explicitly incorporated in its name.

Many recent distributed file systems, such as NFS
[21] and RFS [18], use the first approach along with a
method called remote mounting to achieve the goal of
location transparency in naming. In these systems, each
node in the network has its own root file system in
which remote file systems are locally mounted. The
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problem with these systems is that the same object may
have different absolute names when viewed from
different nodes. This lack of an absolute naming facility
can cause difficulties for distributed application pro-
grams, since processes running on different nodes are in
different naming domains. For example, an application
using several nodes to process a data file would run into
trouble if the file name were specified as /userl/pro-
jectl/datal; rather than opening the same file, par-
ticipating processes on nodes having identifiers rome
and paris would respectively open /rome/userl/pro-
Jjectl/datal and /paris/userl [ projectl/datal. Even if
the user were to explicitly specify /paris/userl/pro-
Jjectl/datal, the program would fail if rome did not
have paris’s file system mounted, or worse, had some
other node’s file system mounted under the name
[ paris. Thus, although systems using remote mounting
support transparency with respect to the location of the
accessing object (such as a process), they do not support
transparency with respect to the location of the accessed
object. This transparency problem of such systems may
be solved by mounting all the file systems of all the
nodes on the same position in the name hierarchy of
each node. However, in this case, if there are n nodes,
then n* mounts have to be performed. This makes the
management very difficult, especially for very large net-
works. Thus, this method does not work well for
systems having a large number of nodes.

Many recent distributed operating systems such as
DOMAIN [11], LOCUS [28}, ANDREW [13], PULSE
[10), ELXSI [15] and Saguaro [l] use the second ap-
proach to the transparent global naming of objects. In
these systems, requests from all the nodes are served by
first searching a global name space. Thus an object’s ab-
solute name is always the same, irrespective of the node
from which it is used for accessing the object. Although
many of these systems support transparency with
respect to both the location of the accessing object and
the location of the accessed object, the main problem
with them is the inadequacy of their name resolution
mechanisms. Their name resolution mechanisms suffer
from one or more of the following drawbacks:

(1) The overhead involved in name resolution is
high because directory objects are cached with page as a
unit.

(2) The fiat structure of the name caches affects the
search efficiency of large caches.

(3) Creation of name caches on a per-process basis
may cause duplication of cache creation overhead and
duplicate cache entries on the same node.

(4) The scalability of the mechanism is poor, which
limits its applicability to small networks.

To handle the transparency feature, we use the single
global name space approach in GALAXY. However, to
overcome the problems inherent in other systems that
use the single global name space, GALAXY supports
an efficient and scalable name resolution mechanism,
details of which are given in Section 6. In addition to

userl /“5"2 """ useri
projectl  project2 ----- projectj projectl  project? ----- Pprojectk
groupl  group2 ----- groupm groupl  group2 ----- groupx
filel file2 ----- filen filel  file2 ----- filey

Fig. 2 A typical name tree.

this, GALAXY also provides facilities for multiple
global naming contexts and descriptive naming. The
reasons for this are to increase flexibility and efficiency,
as discussed below.

4.1 Multiple Global Naming Contexts

To avoid the problems of inconvenience of use and in-
efficient resolution of long pathnames in a single global
name space, the first step taken in GALAXY is to pro-
vide users with flexibility in defining their own naming
contexts. A context is basically a pathname of a single
global name tree, starting from its root. For example,
for the name tree shown in Fig. 2, the pathname
/userl/projectl/groupl represents a typical context.
Similarly, the pathnames /, /userl, /user2/project2,
/userl/projectl/group2, and /user2/projectl/
groupl/filel, also represent other contexts for the same
name tree.

A GALAXY user can define his/her own contex-
tname for a particular pathname. For example, a par-
ticular user may specify that the pathname /userl/pro-
Jectl/groupl be designated as mycontextl. Now, when
that user wants to use the object with the pathname
/userl/projectl/groupl/filel, instead of specifying
the complete pathname, he/she can simply specify the
contextname mycontext! and the remaining com-
ponents of the object’s pathname, file/ in this case. To
facilitate this, the basic naming syntax of an external
name in GALAXY is

[Contextname) Pathname

where contextname is the name of one of the global con-
texts of the system and pathname is a list of component
names separated by ‘/’. For our example above, once
the contextname mycontextl has been defined, instead
of wusing the full pathname /userl/projectl/
groupl /[ filel to specify the external name of the desired
object, the external name for the same object may sim-
ply be specified as [mycontextl]filel. Depending upon
his/her needs, a particular user may specify several
such contextnames for his/her use.

Thus, GALAXY’s external names may be of two
types: absolute and relative. In its absolute form, an ex-
ternal name consists of the complete pathname of the
corresponding object starting from its root. On the
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other hand, in its relative form, an external name con-
sists of a contextname and a pathname that is relative to
the given context. Both forms are acceptable and may
be used to specify object names.

4.1.1 Management of Contextnames

For the management of user-defined contextnames,
we use the concept of node groups. In this method, the
entire system is hierarchically partitioned into small
groups of nodes. Each node group has a group leader,
which is responsible for maintaining the information
about the nodes belonging to its group. In addition to
other information, the leader node also maintains infor-
mation about all the contextnames defined at the nodes
belonging to this group. That is, the leader node main-
tains a group context table, which is a mapping of all
the contextnames and the corresponding nodes belong-
ing to its group. Thus, when a user defines a new contex-
tname, the information about that contextname is
stored in the local context table of the node at which the
contextname is defined and also in the group context
table of the leader node of the group to which this node
belongs. At the leader node, the mapping table contains
only the contextname and the corresponding node
number to which the contextname belongs. But the map-
ping table of the node to which the contextname
belongs contains the contextname and the system-wide
identifier of the directory file corresponding to the con-
textname.

Now when a user (say at node A2 in Figure 3)
specifies a contextname to be used, the search for that
contextname proceeds as follows:

Step 1: The context table at the local node (node A2)
is searched.

Step 2: If the contextname is not found in Step 1, the
group context table at the leader node of the
group (node A) is searched.

Step 3: If the contextname is not found in Step 2, the
group context table at the leader node of the
parent group (node D) is searched.

Step 4: If the contextname is not found in Step 3, the
group context tables at the leader nodes of the
groups that are first cousins of the group
whose leader is A (node B is the only first
cousin in Fig. 3) are searched one by one.

Thus, the searching process continues like this in a
hierarchical manner until the location of the desired
contextname is found. For example, in Fig. 3, if a user
at node A2 wants to use a contextname defined at a
node, say H3, which belongs to the group whose leader
is H, then the searching sequence will be

A2->A->D->B—>E->F->G—->H->H3
and a message will be returned from node H3 to node
A2,

Note that the efficiency of this scheme lies in the pro-

per grouping of the nodes. For example, nodes that
very frequently interact and use each others’ contex-
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(a) An example of hierarchica! node groups.

Contexts Node Nos.
C1,C2,C3 Al
C4 A2
Cs,C6 A3
Cc7,C8 A

(b) A group context table

maintained by the
leader node A of the
node group comprising
nodes A, Al, A2, and
A3. Similar tables are
maintained by all the
leaders of all the node
groups.

Contexte | ST B4

C1 ID for C1
C2 ID for C2
c3 ID for C3

(c) A local context table

maintained at node Al,
consisting of contexts
defined locally and
their corresponding
IDs. Similar tables are
maintained by each
node for the locally de-
fined contexts.

Fig. 3 Management of contexts by the method of node groups.

tnames are placed in the same group. Groups that
frequently interact are placed close to each other by
making them close relatives. On the other hand, groups
that never or rarely interact with each other are made
distant relatives.

4.1.2 Problem of Duplicate Contextnames

Since the users of GALAXY are given full freedom to
assign their own contextnames to the various contexts
of the single global name space, there is a possibility
that two or more users may assign the same contex-
tname to different contexts of the name space. For exam-
ple, in the name space of Fig. 2, userl may assign a
name mycontext to the context [userl/projectl/
groupl and user2 may assign the same name mycontext
to a different context /user2/projectl/groupl. With
this type of contextname assignment, an external name
[mycontext]filel may now refer to both of the objects
[ userl [ projectl/groupl/filel and [ user2/ pro-
Jjectl/groupl | filel. The problem is to decide which ob-
ject is actually being referred to by the user.

To solve this problem, that is, to identify contexts uni-
quely, a contextname is used along with the user_id
(login name) of the user who defines it. Thus our
previous basic syntax for specifying an external name
changes to the form

[user_id: Contextname]Pathname

The default user_id is the user specifying the external
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name, and need not be specified along with the contex-
tname when the user wants to refer to a context defined
by himself/herself. With this addition, if user! and
user2 specify /mycontext]filel, this will now be inter-
preted by the system as /userl/projectl/groupl/filel
and /user2/projectl [ groupl/filelfor userl and user2
respectively. But if userl wants to use the object
/user2/projectl]/groupl/file2, then he/she must
specify user2’s identification name along with the con-
textname as [user2:mycontext]file2.

Note that the specification of user_id along with the
contextname is necessary only when the same names are
assigned to different contexts by different users. Ob-
viously, the system does not allow the same user to
define two contexts by the same name, and a particular
user must assign unique names to the various contexts
defined by himself/ herself.

The system primitives in GALAXY that provide its
users with full flexibility for context based naming are
given in Fig. 4.

4.2 Descriptive Naming

Flat names with attributes are widely used in daily
life. Personal names are a typical example of this type
of naming. However, owing to the problem of uni-
queness of name representation and difficulty in address
mapping, most operating systems use hierarchical
names instead of flat name spaces: UNIX [19], NFS [21],
Sprite [14], LOCUS [28], V system [5] are a few ex-
amples of such systems. In hierarchical names, it is easy
to represent the hierarchical structure of objects and to
manage them as a group. However, hierarchical names
cannot easily represent various relations among objects,
and require a large overhead to resolve. In order to in-

« CreateContext(Contextname, ContextID)
Used to create 8 new context. The unique ID of the context is returned by the
system,

- DeleteContext(Contextname)
Used to delete the context specified by Contextname,

- LinkContext(Contextnamel, Pathname, Contextname2)

Used to link Ci 2 to Cont: 1 under the directory specified by
Pathname.
- Resolve(Path C D)

Used to get the ID of Pathname in the context specified by Contextname.

- Bind(Pathname, Contextname, ID)
Used to register Pathname in the context Contextname with ID.
If Pathname includes the directories that do not exist, this primitive returns an
error.

- Unbind(Pathname, Contextname, ID)
Used to unbind Pathname in the context Contextname. The unique ID that was
gi d with the unb: d name isr

+ d

- UnbindDirs(Pathname, Contextname, ListofIDs)
Used to unbind all names under the directory specified by Pathname in the context
Contextname. A list of unique IDs that were registered with the unbound names is
returned.

- ChangeWorkingContext(Contextname)
This primitive changes the current working context to the specified context.

- ChangeWorkingDirectory(Pathname)
This primitive changes the current working directory to the specified Pathname.

Fig. 4 GALAXY'’s system primitives for context-based naming.

corporate the advantages of hierarchical names and to
overcome their disadvantages, GALAXY uses the
hierarchical names as a basis and provides a facility for
attaching naming attributes with links between two com-
ponents of a hierarchical name. Naming attributes are
the properties of the object being named. Such proper-
ties are represented as labels attached to the links be-
tween directories. By linking names, it is possible to
define the semantic structure of objects. Such informa-
tion is useful for some kinds of utility programs and ap-
plication programs.

For example, in the name tree of Figure 5(a), the ex-
ternal name [Cl]typl has the following attributes as-
signed to it:

L1: TYPE=SOURCE; L2: LANG=FORTRAN;
L3: SIZE< =1K;

which signifies that all the files x1, x2, . . . , xn, x11, and
so on that are descendants of the directory object corre-
sponding to the specified external name have the above-
mentioned properties. Thus the picture of the type of
object being referred to, say, by the name [C1]typl/x1
will be clear to the user when he/she knows about the at-
tributes listed above. If attribute-based naming is not
used then this simple name does not signify anything to
its users. Without the use of attribute-based naming, an
attempt to assign meaningful names to objects will
result in longer names. For example, Figure 5(b) shows

typl L1: TYPE =SOURCE; L2: LANG = FORTRAN; L3: SIZE < = 1 K;
x1 x2 xn
x11

(a) Example of attribute assignment to an external name.

x11

(b) Name tree that signifies the same attributes as Fig. 5(a)
without using attribute-based naming.

Fig. 5 An example to illustrate the advantage of attribute-based
naming.
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the name tree that must be defined in order to signify
the same attributes for objects x1, x2, ..., xn, and so
on as specified above. Note that in this case the
pathname is SOURCE/FORTRAN/SIZE_LE_I1K/x1
as compared to the previous pathname typ1/x1 for the
same object x1 having the desired properties. Thus the
descriptive naming facility allows users to define the
semantic structure of objects without the necessity of us-
ing long object names. Short object names in turn con-
tribute to efficient name resolution and are easy to use.

Xerox’s Clearinghouse [16] is an example of an
operating system that supports descriptive naming
based on attribute name, attribute type, and attribute
value. Its primary application is to store a profile of
users. In Clearinghouse, the above 3-tuple is provided
to allow attributes to be assigned to names. In addition,
the hierarchical name structure consists of only three
levels. GALAXY’s approach is more general in the
sense that the tree-structured names may have n levels
of hierarchy and attributes can be attached to one or
more levels. In this case, the object specified by a
pathname possesses the attributes of all its component
names.

The system primitives in GALAXY that provide its
users with full flexibility for attribute-based naming are
given in Fig. 6. Note that these primitives are similar to
LISP functions.

S. System-oriented Object Names

In GALAXY, every object has a unique identifier for
system-oriented names called Unique ID (henceforth
referred to as ID). An object’s ID is unique in the entire
system. In GALAXY, one object can have multiple
replicas. All replicas of an object use the same ID, ir-
respective of their locations. An ID identifies an object,
but its structure and management mechanism are irrele-
vant to the contents, external name, or physical ad-
dresses of the object’s replicas.

The IDs of all the objects in the system are stored in a
system-wide table called ID Table. The ID Table con-
tains all the information necessary for accessing the cor-
responding objects. In particular, an ID Table entry
(called an IDTE) contains information on the type of
object, the access control list for the object, the location
of the object’s replicas (replica list), and the locations in
which copies of this IDTE exist (copy list). The replica
list helps in returning all the locations of the desired ob-
ject when the object is to be located for accessing. The
copy list links all the IDTEs of the same object together
so that any modification can be consistently made to all
the copies through this link.

5.1 Generation of Unique IDs

In order to guarantee the uniqueness of each ID, the
ID format consists of two fields: time stamp (TS) field
and node number (NN) field. Each field consists of
eight bytes. The TS field contains the time stamp as-

- PutProperty(Externalname, Label, Value)
Used to assign a label and the corresponding value to the specified external name

« GetProperty(Externalname, Label, Value)
Used to get the value corresponding to the Label for the specified external name

- RemoveProperty(Externalname, Label, Value)
Used to remove the property specified by Label for the specified external name

- GetProperties(Externalname, ListofProperties)
This primitive returns a list of (label, value) pairs for the specified external name.

Fig. 6 GALAXY'’s system primitives for descriptive naming.

signed to the ID by the node that has created the ID.
The NN field contains the number of the node at which
the ID is created.

The value of the TS field is created in the following
way in order to guarantee the uniqueness of the TS,
even if the node operates in a stand-alone manner and
even if it crashes and is restarted:

1. The value of the hardware timer is set to the
variable T.

2. The node’s logical time, which is stored in a par-
ticular location on the disk, is set to the variable S.

3. The logical time S is obtained by the equation

S=max {T, S}+R

where R must be much larger than the time required to
store S on the disk.

It may be observed that even if the unit of time for in-
crementing the TS field is 1us, the time period
represented by the TS field is 2% us = 3 x 10° years. Ob-
viously, this time period is dominant over the life-time
of the system. Similarly, the NN field is long enough to
assign unique numbers to all the nodes.

6. Name Resolution

As shown in Fig. 1, and external name is first mapped
to its corresponding ID, which in turn is mapped to the
physical locations (node numbers) of the replicas of the
object concerned. In this paper, we define name resolu-
tion as the process of mapping an external name to its
corresponding ID, and object locating as the process of
mapping an ID to the replica locations of the concerned
object. In this section we will discuss the name resolu-
tion mechanism of GALAXY. The object-locating
mechanism of GALAXY will be discussed in the next
section.

6.1 Name Cache for Directory Entries

In conventional operating systems, directories are
used to map an object’s name to its physical location.
Thus, in these systems, a directory entry consists of a
component name and the corresponding object descrip-
tor pointer, such as inodes in UNIX [19] and vnodes in
NFS [21]. In GALAXY, on the other hand, a directory
entry is a (component name, ID) pair, which maps the
name of a component of an object to its system-wide
unique ID. These directories are regular GALAXY ob-
jects that are distributed among the various nodes of
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the system and can be replicated and migrated just like
any other object. In addition, name caches are used in
GALAXY at each node, for caching necessary directory
entries. At a particular node, a separate name cache is
created for each context that corresponds to an object’s
name cached on that node. The name cache structure is
the same as that of the hierarchical directory structure
of the name space. A particular node’s name cache con-
sists of those directories and directory entries that cor-
respond to the contextname and the component names
of the pathname of an object that was recently (see the
life of a name cache entry, described later in this sect-
ion) used to access the object from the node. For exam-
ple, as shown in Fig. 7, if an object with external name
[Cla/b/c was recently accessed from the node, then the
node will have a name cache for the context [C], which
will have the following directories and directory entries
corresponding to this object: (a) a directory for [C]
having an entry for a; (b) a directory for {C]a having an
entry for b; and (c) a directory for [C]a/b having an en-
try for c.

Although the name cache directories of a particular
node appear to be similar to regular directories, they
differ from them in the following aspects:

1. They normally contain very few entries in com-
parison with the corresponding regular directories,
because only the entries required at a node are cached in
the name cache of that node.

2. The name caches are always resident in the
memory.

As shown in Fig. 7, in addition to the (component
name, ID) pair, an entry of the name cache directory
has the following fields:

1. Life of the entry: This is used to keep track of the
access pattern of a name cache entry from that node.
When a new entry is created in a name cache directory,
the value of the field for that entry is initialized to a con-
stant value L. Whenever a name cache entry is accessed,
its life is reinitialized to L. That is, all cache entries are
initially assigned a constant life and a particular cache
entry gets a new life every time it is accessed. If the cur-
rent time becomes greater than the life of a particular
name cache entry, then that entry is called a dead entry.
3. Next directory’s memory location pointer: 1f the
component name of an entry of a name cache directory
represents another directory object that is also cached
in the same name cache, then the field points to the
memory location of that directory in the same name
cache. This field is used to trace the components of an
object’s pathname in the name cache.

New cache entries are created on a particular node at
the time of locating an object one or more of whose
pathname components or whose contextname is not
cached on that node. The details of this are given in Sec-
tion 6.2. A dead entry of a name cache is no more
useful for the local node, and may be removed. Such en-
tries are replaced by new entries while searching the
space for new entries in the name cache. All the dead en-
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name entry location pointer
1 2 3 4

(a) The fields of a name cache entry.
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(b) A name cache for context {C] containing entries for the
pathname components of the object [C] a/b/c.

Fig. 7 The structure of a name cache.

tries of a cached directory have the same possibility of
being replaced, and hence the first dead entry en-
countered during the search operation is replaced by the
new entry. If there are no dead entries to be replaced,
new space is allocated for the new entry. Since only
necessary entries are placed in the name caches of a par-
ticular node, we assume that the space cost for the name
caches at a particular node is low enough to put a size
limit on the name caches.

6.2 The Name Resolution Mechanism

The basic mechanism used for name resolution in our
approach is the method of remote pathname expansion
[23]. However, the use of a name cache at each node
helps to improve the efficiency of our name resolution
mechanism. When an object is accessed from a par-
ticular node by using its external name, the pathname
components of the external name are searched for in the
local name cache corresponding to the context of the ex-
ternal name. The pathname components are searched
for one by one in the name cache directories, just as in
regular directories. For example, if a name [C] a/b/c is
to be searched for, then the search is performed in the
name cache for context [C]. In this name cache, the
directory for ‘[C})’ is first searched for the component
name ‘a’, then the directory for ‘[C]a’ is searched for
the component name ‘b’, and finally the directory for
‘[Cla/b’ is searched for the component name ‘c’. As
shown in Fig. 7, the next directory’s memory location
pointer field of a name cache entry provides the address
of the next directory in the name cache to be searched.

If the pathname of the desired object consist of n
component names of which n, were found in the local
name cache, then for the remaining (n—n;) com-
ponents, the searching has to be continued somewhere
outside the local name cache. Therefore, the ID corre-
sponding to the last component name found in the local
name cache is extracted from the name cache and is
searched for in the local ID Table to obtain the location
of the corresponding object. This ID will certainly be
available in the local ID Table due to our policy of
replicating IDTEs at various nodes (discussed later in
Section 7.2.1). A message is now sent to one of these
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nodes with the remaining (n—n) pathname com-
ponents for remote pathname expansion. The remain-
ing pathname components are searched for in the rele-
vant directories at the new node. The object locating
operation continues in this way until all the pathname
components have been resolved and the desired object’s
ID has been extracted. During the course of remote
pathname expansion, the ID and the IDTE of the ob-
jects corresponding to the remaining pathname com-
ponents that were not found in the client’s name cache
are accumulated in the message used for remote
pathname expansion. This accumulated information is
finally sent from the server node (the node on which the
desired object is located) to the client node, where it is
used to make new entries in the local name cache and
the local ID Table for future use.

In case of a compiete miss, when a name cache corre-
sponding to the desired object’s external name context
is not found on the client node, the hierarchical node
group method of Section 4.1.1 is used for searching the
node (say N) in which the ID corresponding to the con-
cerned context is stored. In this case, the name resolu-
tion process starts from node N instead of the client
node, in a similar manner to that discussed above. As
before, the information accumulated during the name
resolution process is finally sent from the server node to
the client node, where it is used for creating the
necessary name cache and name cache entries and also
for making necessary entries in the local ID Table for
future use.

6.3 Name Cache Consistency

In our approach, the use of a (component name, ID)
pair instead of a (component name, physical location)
pair in a name cache entry reduces the number of cases
in which a name cache entry becomes stale. For exam-
ple, a name cache entry does not become stale when an
object’s location changes on account of the migration
of that object. Thus, in our approach, a name cache en-
try may become stale only in the following two cases:

(@) When an object has been deleted from the
system but its name mapping is still present in a name
cache.

(b) When a component of a directory has been
deleted or renamed, but the old component name is still
present in a name cache.

In GALAXY, for updates of type (a), we use the
method of on-use consistency control, and for updates
of type (b) we devised a method called the gradual in-
validation method.

For updates of type (a), stale cache entries need not
be updated at the time of directory updation, because
such entries will never cause a name to be mapped to the
wrong object and can be detected at the time of use.
The best approach is therefore to use on-use consistency
of name caches for such types of updates. In this case,
if a user tries to access the deleted object from a node
on which the stale name cache entry is present, then our

317

mechanism will extract the corresponding ID from the
name cache. When the ID Table is searched for the ob-
tained ID, this ID will not be found in the ID Table, in-
dicating that the desired object does not exist and hence
that the stale cache entries corresponding to this object
must be deleted from the node’s name cache. For on-
use invalidation of such cache entries, there is no need
for an object manager to maintain a list of names of the
objects being managed by it.

For updates of type (b), the method of gradual in-
validation is used for maintaining name cache consisten-
cy. The basic gradual invalidation method is similar to
the broadcast method for strict consistency in the sense
that when a directory is updated, a message is sent to all
other nodes to invalidate their corresponding name
cache entries. However, to avoid the cost of broad-
casting in a large network, in this method, the in-
validate message is not broadcasted to all the nodes at
one time, but is gradually propagated to all the nodes.

GALAXY uses a modified form of the basic gradual
invalidation method. Note that in GALAXY the in-
validate message need not be sent to all the nodes of the
system. This is because when a directory entry is up-
dated, the IDTE corresponding to the ID of the up-
dated directory entry can be used to determine the
nodes on which that directory entry is possibly located.
It was mentioned in Section 5 that the copy list of an
IDTE consists of all the nodes on which the IDTE is
replicated. Moreover, as discussed later in Section
7.2.1, an IDTE is replicated at a particular node only if
either the corresponding ID is present in one of the
directories on the node or in the name cache of that
node or if that ID is being used by a process running on
that node. Thus the list of nodes extracted from the
copy list of the IDTE is always a superset of the set of
nodes that contain the updated entry either in their
name cache or in their replicated directories. In
GALAXY, therefore, the update message for a direc-
tory update of type (b) is multicast only to the nodes pre-
sent in the copy list entry of the corresponding IDTE.
This greatly reduces the scope of multicasting.
However, since an IDTE may be replicated on several
nodes, instead of sending the update message to all
these nodes at a time, the message is gradually pro-
pagated.

Because of the use of the gradual invalidation
method, temporary inconsistency of the name cache en-
tries exists during the time required to propagate the
message from the node at which updating took place to
the node at which the stale name cache entry is located.
We will now show that this type of temporary incon-
sistency of the name cache entries does not have any
serious adverse effect on the user jobs running in their
own consistent environments.

The problems that may occur in our mechanism ow-
ing to the inconsistency of name cache entries fall into
the following types:

(1) A name has already been deleted by a user work-
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ing on a remote node, but the corresponding update has
not yet been made in the local name cache. In this case,
a local user may still access the object by using the
name.

(2) A name has already been changed (the object
has been renamed) by a user working on a remote node,
but the corresponding update has not yet been made in
the local name cache. In this case, a local user may still
access the corresponding object by using its old name.
We will discuss how to detect and cope with these prob-
lems.

In problem (a), if a name has been deleted because of
the deletion of the object pointed to by that name, then
the name cache inconsistency does not cause any prob-
lem for normal applications. This is because the use of
the deleted name by the local user returns the ID of the
deleted object, but when the system uses this ID to
locate the object, he system realizes that the object has
already been deleted. Thus, although there is some
delay involved in informing the user that the desired ob-
ject no longer exists, the name cache inconsistency does
not cause the user any serious problem.

Another reason for problem (1) may be that a name
has been deleted to prevent access to the object by that
name. This is similar to problem (2) and may be handl-
ed in the same way as that problem.

In problem (2), it is quite logical to permit the local
user to access the object by using its old name. This is
because the local user’s view (environment) does not
change until he/she is informed about the change
made. Thus, as long as a user on another node is
unaware of the change made in the object’s name,
he/she will be allowed to access the object by its old
name. However, when the name cache entry corre-
sponding to the changed name is invalidated, the use of
the old name by a user on that node will return an error
to the user indicating that the old name is no longer
valid. Thus the user will become aware of the change
made and will know that from now on he/she cannot
use this name to access the object.

Thus the temporary inconsistency of the name cache
entries due to the use of the method of gradual invalida-
tion does not cause any serious problem to the users,
although in some cases it degrades the efficiency of
detecting and informing the users about the correct
status of object names within the system.

6.4 Name Resolution Efficiency

The efficiency of our name resolution mechanism is
highly dependent on the degree to which locality is ex-
hibited in the use of external names for locating objects
from a particular node. In our mechanism, an external
name is cached at a node in which it was recently used,
and its cached pathname is used for subpath expansion
in the near future for all other pathnames belonging to
the same context. Thus if a significant level of locality
exists in the use of pathnames of a particular context,
then a high cache hit ratio will result, allowing local

resolution of several names and a significantly long sub-
path expansion at the client node itself for many other
object names.

Measurements made by Sheltzer [23] and Cheriton
[5] clearly show that a high degree of locality exists in
the use of pathnames for locating objects. In case of the
V system, over about 24 days of 24-hour operation, an
average cache hit ratio of 99.70% was recorded [5].
With the same amount of locality, our name resolution
operation will be very efficient, because almost all the ex-
ternal names can be resolved at the client node. In fact,
we expect an even better cache hit ratio than that of the
V system, because in the latter, a prefix cache is created
on a per-process basis, and a desired name is searched
for only in the®process’s own cache. On the other hand,
in GALAXY, centralized name caches are used for all
the processes running on that node, and remain
available for use by other processes even when the proc-
ess that created them no longer exists. The use of cen-
tralized name caches may appear to be slightly in-
efficient from the point of view of the time required to
search the cache. However, this problem will not nor-
mally occur in GALAXY, because of the use of
separate name caches for each context. Even if the
search efficiency is slightly degraded, the overall efficien-
cy is improved by the increase in the cache hit ratio for
all the processes of the node.

6.5 Name Resolution with Object as Unit

In many distributed systems, the unit used for name
resolution is a group of objects rather than an in-
dividual object. For tree-structured names, subtrees are
often used as the unit of name resolution. The mount
tables in NFS [21] and RFS [18], and the prefix tables in
Sprite [14, 30] are examples of such subtree-based name
resolution mechanisms. In these systems, the name
resolution can be performed with an object as a unit by
specifying a single object name as a subtree name in the
name resolution mechanism. However, this approach re-
quires a significant overhead. One important advantage
of group-based name resolution is efficiency, but it
degrades network transparency, and the flexibility of ob-
ject replication and migration. For example, in LOCUS
[28], the unit of name resolution is a file system called
file group and replicating a file to another node requires
the establishment of a file group. The zone of DO-
MAIN [11] and the domain of ELXSI [15] are similar
concepts and mechanisms used for name resolution.

It is obvious from the name resolution mechanism dis-
cussed above that in GALAXY, the unit of name resolu-
tion is taken as a single object instead of a group of ob-
jects. Thus any object can be replicted or migrated to
any node in the system independently of any other ob-
ject. That is, the replication or migration of a particular
object does not require the concomitant establishment
or mobility of any other object.



Network-Transparent Object Naming and Locating in the GALAXY Distributed Operating System 319

7. Object Locating

In this section we will discuss GALAXY’s object
locating mechanism, which deals with the process of
mapping an object’s ID to its replica locations.

7.1 Conventional Object Locating Mechanisms

The following types of object locating mechanism
can be conceived in distributed operating systems.

(1) Broadcasting

As shown in Fig. 8(a), in the method of broadcasting,
an access request for the desired object is broadcasted
to all other nodes if it is not found in the local node.
The node currently holding the desired object then
replies to the accessing node. In this case, the amount of
network traffic generated for each request is directly pro-
portional to the number of nodes in the system and is
prohibitive for large networks. However, because of its
simplicity, the broadcasting method is used when the
number of nodes is small, the communication speed is
high, and the remote access request generated is not
very frequent. Amoeba [26] uses this method for
locating a remote port.

(2) Searching the creating node first and then broad-
casting

This method is based on the assumption that it is very
likely that an object will remain at the node where it was
created (although it may not be always true). Thus, as
shown in Fig. 8(b), the node at which the desired object
was created is first accessed, and in case of a failure, the
request is broadcasted to other nodes. This method of
locating an object is used by Cronus [22].

(3) Chaining

In this method, links are maintained to keep track of
the present location of a particular object. When an ob-
ject is migrated from one node to another, a pointer is
maintained at its previous node to point to the object’s
new node. When an access request for a particular ob-
ject is generated, the creating node is first accessed and
the chain is then traversed until the current object loca-
tion is reached. From the current object location, a rep-
ly is sent to the accessing node. The mechanism is il-
lustrated in Fig. 8(c). The object locating cost in this
case obviously depends on the frequency of object
migration in the system. This method is used in
DEMOS/MP [17], which was the first system to imple-
ment process migration. In practice, the method has the
following two major disadvantages: (1) the object
locating cost is directly proportional to the length of the
link, and grows considerably as the link becomes
longer, and (2) it is difficult, or even impossible, to ac-
cess an object if an intermediate node in a link fails.

(4) Hint cache and broadcasting

In this method, each node maintains a cache that con-
tains the present location of the object. Therefore, the
accessing node first searches the cache in the local node
for the desired object. If the object is not found at the
local node, the method of broadcasting is used to locate
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the object. Figure 8(d) illustrates this mechanism. This
method of object locating is used in V system {4, 5] and
DOMAIN [11].

7.2 Object Locating Mechanism in GALAXY

Unlike any of the above-mentioned approaches,
GALAXY allows any object in the system to be located
by using the information stored in the local node. Thus,
as shown in Fig. 8(e), a direct accessing method is used
in GALAXY for locating objects. In this method, the
accessing node directly sends its request for the desired
object to the current object location. This direct object
locating mechanism of GALAXY is described in the
following section.

7.2.1. Replication Policy for IDTEs

As discussed in Section 5, GALAXY’s system-wide
ID Table contains the IDs and the locating information
of all the objects in GALAXY. In a usual non-
distributed system, the ID Table can be managed in a
centralized manner. But in a distributed multiple-host
system such as GALAXY, it is not efficient and reliable
for some central node to keep the entire ID Table. Con-
versely, it is also not realistic for every node to have a
copy of the entire ID Table. Thus, in GALAXY, each
node has a partial copy of the ID Table. The copy of the
ID Table of a particular node contains entries for the
following IDs:

(1) IDs that are contained in the directories on the
node or in a name cache of that node. The presence of
these IDTEs in the local ID Table of a node is necessary
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Table I Management of reference counts in the IDTE.

Reference Count | Increment Decrement

Directory entry Name definition Name Deletion

(DRC) Directory migration (in) Directory migration (out)

Name cache entry creation | Name cache entry deletion

Accessing process | Process creation Process deletion

(PRC) Process migration (in) Process migration (out)

for the direct locating of the directory file objects dur-
ing the name resolution process. This is because, when
the pathname of an external name has been partially
resolved at a node (say N), then the remaining
pathname components are sent to the next directory
location for which the IDTE corresponding to the next
directory must be available at node N; otherwise the
location of the next directory file object cannot be
known at node N. To ensure the presence of these
IDTE:s in the node’s ID Table, at the time of directory
migration (in) or name cache entry creation at the node,
the IDTEs corresponding to the concerned IDs are
migrated into this node from the storage node of the
concerned directory.

(2) IDs that are being used by the processes running
on the node. These IDTEs are necessary in a node’s ID
Table for the direct locating of the objects being used
by the processes of that node. Note that in GALAXY,
when a process accesses an object for the first time, it
uses the object’s external name, which is resolved by the
system, and the corresponding ID is returned to the
process and is also entered into the ID Table of the proc-
ess’s node. Thus subsequent accesses to the same object
by this process are made by using the object’s ID.
Therefore, in GALAXY, each process maintains a list
of the IDs being used by the process, which is called the
context of the process. When a process migrates from
one node to another during the course of its execution,
all the IDTEs corresponding to the objects belonging to
the process’s context are also migrated to the process’s
new node and entered into the ID Table of that node.
This facilitates the direct locating of the object being
used by a process, no matter how many times and to
which node the process migrates during its course of ex-
ecution.

The availability of the entries for these two categories
of IDs in the copy of a particular node’s ID Table en-
sures the direct locating of any object from any node
when the object’s ID is given. Direct locating of any ob-
ject from any node is also possible if the entries for the
IDs of all the objects are maintained in the copy of the
ID Table of each node. However, this will lead to an
enormous system overhead in terms of the space and
consistency control of ID Table entries. To avoid such
overheads, GALAXY ensures that each node maintains
only the minimum required 1D Table entries. For this
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purpose, each IDTE also has two kinds of reference
count: Directory Reference Count (DRC) and Process
Reference Count (PRC). The DRC indicates the
number of local directories that contain the ID. The
local name cache directories also contribute to the value
of DRC. The PRC is the number of local processes that
use the ID. Both DRC and PRC are managed locally.
These two reference counts are managed as shown in
Tale 1. An IDTE whose DRC and PRC are zero is re-
garded as unused. The unused IDTEs are actually
deleted by a special daemon process, which is a part of
the ID manager.

Since an IDTE is replicated at different nodes, it is
necessary to maintain the consistency of all the replicas
of an IDTE. In GALAXY, an incremental updating
mechanism is used to maintain the consistency of all the
replicas of an IDTE. The details of this mechanism ha-
ve been presented in a separate paper [9]. In this paper,
we assume that the consistency of IDTEs is maintained
at all times.

7.2.2 The Basic Object Locating Mechanism

In the basic method, the object locating process sim-
ply consists of accessing the local ID Table for the given
ID and extracting the corresponding IDTE of the
desired object from the ID Table. As discussed in Sec-
tion 7.2.1, due to the specific replication policy of
IDTEs at different nodes of the system, this method
does not require any network communication and the
object locating operation is performed locally. All the
node numbers present in the replica list field of the ex-
tracted IDTE are the locations of the desired object’s
replicas. Therefore, depending upon the type of access
operation (READ/UPDATE), the client’s access re-
quest is sent to one or all of these nodes. When the re-
quest can be serviced by accessing a single replica, it
becomes necessary to select one node from the replica
list in order to send the access request. In our method,
the node number whose value is nearest to that of the
client’s node is selected for servicing the access request.
This selection policy is based on the assumption that
node numbers are assigned in our system according to
the network topology. That is, the difference between
the values of the node numbers of distant nodes is
larger than the difference between the values of the node
numbers of nearby nodes. Sufficient gaps are left be-
tween node numbers at the time that the node number
values are assigned to various nodes, in order to
facilitate future expansion of the network.

It may be noted here that the replica list in the IDTE
contains only the list of node numbers as the location of
the replicas. Although this information is sufficient to
send the access request to the desired object’s node, it is
not sufficient to access the object, since the object’s
physical device address (memory location, disk address,
etc.) is not yet known. Thus at each node in GALAXY,
a separate local object table is maintained, which con-
tains information on the physical device addresses of all
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the objects present on that node. In particular, a local
object table contains the following information for
each local object: the object’s ID and the physical
device address of the object. In order to facilitate
efficient searching and management of the local object
table, instead of maintaining a single local object table
for all the objects on a node, a separate local object
table is maintained for each type of object that resides
on that node, and each local object table is managed by
the relevant object manager of that object type.
Therefore, once the access request reaches the desired
object’s node, the relevant object manager searches the
local object table corresponding to the type of the
desired object to find the physical device address of the
desired object.

7.2.3 Advantages of ID- and ID Table-Based

Locating

The use of IDs and the ID Tables in the object
locating process has the following advantages over the
conventional methods, which use direct mapping from
names to physical locations of the objects such as node
number, inode, and disk address:

1. Uniqueness: An ID identifies an object uniquely
in the entire system. Unlike external name, the same ID
is never used to identify more than one object during
the entire life of the system (see Section 5.1). Therefore,
even if an object is removed, its ID will not be used
again to identify some other object. This avoids the
problem of accessing different objects with the same ID
at a different time or at a different node.

2. Flexibility: 1IDs are system-wide unique and
valid, and do not change even when the physical loca-
tion of objects changes. Thus, if objects are migrated in
the system, there is no need to update the name caches
or directories. Only ID Tables must be updated. Thus,
the multicache consistency problem is simplified to the
consistency of ID Table entries.

3. Efficiency: An ID Table is like a cache, which
makes the locating operation very fast for objects
whose ID is known. Moreover, it contains information
about the object’s replica locations and its access con-
trol information. Thus the accessibility of the object
can be verified at the local node, and the nearest replica
can be chosen if accessing is permitted. This helps to im-
prove the overall efficiency of the system by reducing
the network traffic.

4. Uniformity: An ID Table is a mapping from an
object’s ID to its replicas that contains the same type of
information on all the objects in the system, irrespective
of their types. Thus the use of IDs and ID Tables
facilitates the design of a uniform object management
mechanism that simplifies several design aspects of the
system, such as consistency control, object migration,
object replication, and access control.

GALAXY is not the first system to make use of
system-wide unique identifiers in distributed systems.
Other systems such as Distributed Smalitalk [2, 8] and

Jasmine [31] also use system-wide unique identifiers to
identify their objects uniquely in the entire system.
However, GALAXY’s design is unique in the sense that
it facilitates direct locating of all the replicas of the
desired object from the client node of the system by us-
ing the object’s ID and the ID Table. For example, in
Jasmine, objects are located by one of two methods: ex-
panding ring broadcast or expanding ring multicast [31].
Both these methods require querying from all the nodes
for the desired object in the worst case. Thus the reliabil-
ity and efficiency of the object locating operation of
Jasmine is very poor. On the other hand, Distributed
Smalltalk uses the concept of proxy Object and Remote
Object Table for its object locating mechanism.
Howeve, it does not deal with object replicas and
discusses the locating of only one copy of an object. In
GALAXY, the nearest replica location of the desired ob-
ject is always supplied to the user as a result of the ob-
ject locating operation.

7.2.4 Cost of Updating ID Table

In GALAXY, an IDTE needs to be updated when an
object migrates from one node to another, or when an
object is replicated at a new node, or when an object is
deleted.

When an object migrates from node A to node B, the
IDTEs corresponding to this object must be updated to
reflect the object’s new location in order to facilitate the
direct locating of the migrated object. The cost of this
update operation basically depends on the number of
copies of the concerned object’s IDTE at the time of ob-
ject migration. If there are m copies of the concerned
IDTE, then, excluding the local copy, an update
message must be sent to the remaining (m—1) copies
from node A. Thus the total cost of updating, including
the reply messages, becomes 2(m — 1) messages.

In GALAXY, the number of copies of a particular
IDTE basically depends upon the usability of the corre-
sponding object from the various nodes of the system.
In the worst case, when the concerned object’s usability
encompasses all the n nodes of the system, then m=n
and the total update cost is 2(n — 1), where 7 is the total
number of nodes in the system.

However, in a large distributed system, not all the ob-
jects are of equal importance to all the users of the
system. In fact, in such a system, a particular user nor-
mally has access permission for only a very small subset
of the set of objects available in the system. Moreover,
in a large distributed system, a user normally uses only
a very small subset of the set of nodes available in the
system. These observations indicate that the usability of
a particular object is normally limited to a very small set
of nodes in the system, with few exceptions. Thus the
value of m for most of the objects will be very small in
comparison with n. Therefor, the cost of updating
IDTEs will also be normally small for most of the ob-
jects. In addition, we have seen in Section 2 that
GALAXY assigns IDs only to very large objects such as
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processes, files, nodes, and devices. These objects are
not moved as frequently as fine-grained objects in pure
object-oriented systems. Thus the update operation of
IDTEs does not occur so frequently in GALAXY.
These arguments indicate that the cost of updating the
ID Table is also low in the replication or deletion of an
object. Thus the management overhead of the ID Table
is not very large.

7.2.5 Variations of the Basic Object
Mechanism and their Evaluation
Several variations of the basic object locating
mechanism were conceived and evaluated. These
mechanisms are discussed below, along with the results
of their evaluation. The following parameters have
been used for the purpose of evaluation:
N=total number of nodes in the system
L=cost of searching the local object table
G=cost of searching the ID Table
M=cost of network communication
f=nprobability of existence of an object in the creating
node
g=probability of existence of an object in the accessing
. node
The locating cost is defined as the cost of determining
the location of the node in which one of the replicas ex-
ists.
(1) Basic Method
In this method, the location of the desired object is di-
rectly obtained by referring to the ID Table. Thus, the
locating cost is simply given by

C1=G

Locating

(2) Broadcasting

The broadcasting method is included here only for
comparison with other methods. In this method, the
local object table is first searched, and if the desired ob-
ject is not found there, a request is broadcasted. Hence
the cost of object locating for this method is given by

G=Lg+{L+(N-1)(L+2M)}(1~g)

(3) Searching the local object table first

In this method, the local object table is first searched
for the desired object. If the object is not found in the
local object table, the ID Table is searched to determine
the nodes in which the replicas of the object exist. The
cost of this locating mechanism is given by

C=Lg+(L+G)(1—g)

(4) Using the number of the creator node for hints
on locating
In this method, if the desired object is not found in
the local object table, the object table of the node that
created the object is searched. If both searches fail, that
is, if the desired object’s ID is in neither the local object
table nor the object table of the creating node, then the
usual object locating procedure is performed by access-
ing the ID Table. The cost of this locating method is

given by
Cio=Lg+Q2L+2M )f(1—g)
+QRL+gM+G)(1—f)1—g)

(5) Using the number of the creator node for hints
on locating and broadcasting

In this method, if the desired object is not found in
the local object table, the object table of the node that
created the object is searched. If both the searches fail,
that is, if the desired object’s ID is in neither the local
object table nor the object table of the creating node,
then the request is broadcasted. All other nodes then ac-
cess their local object tables and reply. Basically, this
method does not require an ID Table. The cost of this
locating method is given by

Cs=Lg+QL+2M)f(1—g)
+{N=2L+2M)+2L+2M}(1 - )1 —g)

7.2.6 Evalution

Figure 9 shows a graph comparing the object locating
mechanisms discused above. It will be observed that the
costs of methods (2) and (5), which use the broadcast
mechanism, are larger than that of method (3),
represented by line C;, independent of the values of g
and N, on the assumption that the message transfer cost
(M) is much larger than the cost of searching the local
object table (L) or the cost of searching the ID Table
(G). Since this assumption is reasonable in distributed
systems, broadcast methods (2) and (5) are inefficient.
Lines C; and C, indicate that method (4) is always less
efficient than method (3) on the above assumption.

Consequently, searching the local object table first is
the most effective of the above mechanisms, but is not
always efficient. The graph, shows that the basic
method (1) can be more effective than method (3) if the
probability of the existence of an object in an accessing
node <L/G. When L is much smaller than G, and
when it is highly probable that the desired object exists
in the local node, method (3) (searching the local object
table first) is more efficient than the basic method (1).
However, the desired object does not always exist in the
local node, for example, when files are accessed from a
diskless node. In this case, it is preferable to use the
basic method.

As can be seen from the graph in Fig. 9, since method
(3) performs better than method (1) for a wider range of
objects under the assumed conditions, it has been
selected as the object locating mechanism of GALAXY.
That is, in order to locate any object, GALAXY first
searches the local object table to determine its physical
device address. If the object is not found there, then the
object is not located on the local node. In the next step,
the ID Table is searched to determine the physical loca-
tion (node number) of the object, and then the object
table at the node so obtained is searched to determine
the physical device address of the object concerned.
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Fig. 9 Comparison of possible object locating mechanisms for
GALAXY.

8. Other Implementation Issues of Naming in
GALAXY

8.1 Object Migration

We have seen that in GALAXY, the accessing node
directly accesses the node at which the desired object is
presently located. However, a problem occurs if the ob-
ject migrates from a node A to another node B after a
process in node N issues an access request for the object
and before node A accepts it. In this case, if node 4
returns a negative reply to node N, the same sequence
of operations must be repeated until the object is finally
located. To avoid this situation, a link is maintained
from node A to node B in node A. Consequenlty, node
N’s request is directly forwarded from node A4 to node
B. The purpose of using links in our method to keep
track of an object’s location is different from that of the
chaining mechanism used in DEMOS/MP [17] in that
these links are not maintained for the entire life of the
object, but are deleted when all the IDTEs have been up-
dated and node A has been notified of this fact. It may
also be noted that, unlike in DEMOS/MP, the failure
of a node that holds information on the link will not
affect the accessibility of any objects except those on the
failed node.

8.2 Access Control

There are three fundamental methods for access con-
trol:

(1) 3-tuples—The system maintains a table in which
each entry is a 3-tuple of {process, object, permitted
operations).

(2) Access Control List

(ACL)—The system

associates with each object the pair {process, permitted
operations).

(3) Capability—The system associates with each

process the pair {object, permitted operations).
We now examine the use of these methods in a
distributed environment. Since the management of 3-
tuples is centralized, they would not be suitable in a
distributed environment. In an ACL, every request is
first sent to the node at which the object exists, and is
then validated to perform the actual operation. This
validation can be done at the accessing node when the
capabilities are used; in this case, no actual message
transfer is necessary if the requested operation is not
permitted. On the other hand, it is easier to modify the
access rights of an object in ACL. In the capability
method, requests for modification or revocation of
capabilities must be scattered throughout the whole
system.

In GALAXY, each node has a partial copy of the ID
Table, which contains information on all the objects
that can be accessed from the node. Thus, by placing
the ACL in the IDTE, the requested operations can be
validated at an accessing node. This technique makes
the access control very efficient.

8.3 Fault Tolerance

Each IDTE in GALAXY has a whole list of the loca-
tions at which the corresponding object’s replicas exist.
Therefore, an object is available as long as at least one
node in the replica list is in operation. Each entry in the
replica list contains information that indicates whether
the node is accessible or not. This information is set by
the resource manager of GALAXY, which exchanges
management information with other nodes. The object
manager selects the best of the accessible nodes by using
the nearest replica selection policy, discussed in Section
7.2.2. However, any change of the replica list must be
made to all copies of the object’s IDTE.

As discussed in Section 4.1.1, GALAXY provides a
mechanism of node group in which the entire system is
hierarchically partitioned into small groups of nodes
and each node group has a group leader responsible for
maintaining information on the nodes belonging to its
group. When one of the replica nodes fails, its group
leader holds the complete history of access requests sent
to the failed node. When a failed node recovers after
some time, the group leader re-sends access requests to
this node. This technique can also be used to guarantee
the consistency of the copy list in an IDTE. Thus, the
IDTEs in the failed node are immediately updated to
reflect the current locations of the replicas when it
recovers.

8.4 Client-Server Connection

A process that accesses an object must have the ID of

that object. In inter-node client-server communication,

in which a client requests a remote server to perform the
operation and a server sends back the result, the server
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must know the ID of the client in order to send back the
result. A simple approach to handling this is to pass the
IDTE of the client along with the request message.
However, a large overhead is needed to create a new
IDTE at the server node, because all the copies of the
IDTE must be updated to maintain consistency.
Another approach is to create a temporary IDTE at the
server node. This IDTE need only be consistent with the
IDTE at the client node. This means that the two are
temporarily connected. It is deleted when the server
sends back the result. When a client is migrated during
the connection, the system only needs to update the tem-
porary IDTE at the server node so that this IDTE points
to the new client location. The system also performs an
operation to maintain the consistency of the ordinary
IDTE.

9. Conclusions

We have described object naming and object locating
mechanisms for distributed systems which are network-
transparent, efficient, flexible, and easy to use. These
mechanisms are partially replicated and distributed
among nodes to increase performance and reliability.
The replication, distribution, and migration of the nam-
ing and the locating mechanisms themselves are also
controlled and realized by the naming and the locating
mechanisms, because these mechanisms are im-
plemented by the use of GALAXY objects that are
replicated and treated in a transparent way. We believe
that the mechanisms described in this paper will be
useful and applicable to other non-distributed/
distributed systems.

GALAXY aims to support a network of nodes scat-
tered over a wide geographical area. We will use ISDN
as a wide-area network and are implementing the
mechanisms of object naming and object locating in a
widely distributed environment of this type. The hierar-
chical node group concept described in Section 4.1.1 is
the key to realizing this.
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