284

Regular Paper

P-file: Grid File for Correlated Data Set

Kyost KawaGoe*

This paper proposes a new kind of grid file, called a Parallelogram File (P-file), for maintaining multi-dimen-
sional data sets, especially for correlated data sets. In a grid file, which is organized essentially as a set of grid
partitions and grid directories, the size of the directory grows exponentially as the number of correlated or non-
uniformly distributed data increases. To solve the problem, the paper focuses on the grid shape, which is box-
shaped in the original grid file, changing it to a parallelogram in multi-dimensional space, using an affine
transformation for a set of grids. The transformation results in a decrease in the grid directory size and the

number of bucket accesses required for a range search.

1. Introduction

Multi-dimensional file structures have attracted much
interest. Many new database application areas, such as
CAD and cartography, involve large amounts of multi-
dimensional data. Several multi-dimensional file struc-
tures have been proposed that avoid the demerits of
one-dimensional indexing for each attribute, so that all
keys are combined into a single multi-dimensional
index structure.

Research on this area can be categorized into four
types:

+ 1) Multi-dimensional trees [ROBI81], [B-
ENT70]: Generalizations of single-attribute tree struc-
tures, such as B-trees, to N dimensions

+ 2) Multi-dimensional extendible hashing
[OTOO084], [OTOO086], [WHANSS]: Generaliz of an
extendible hashing technique to N dimensions

« 3) Multi-dimensional linear hashing:
[OTOO85a], [OTOO85b], [OUSK85]: Generalization
of a linear hashing or dynamic hashing technique to N
dimensions

+ 4) Grid files: [NIEV84], [FREE87], [FALO87]:
Representation of data as points in a partitioned N-
dimensional space

Of these structures, grid files are the most widely used
because of their simple address calculation method and
two-disk access strategy. A grid file partitions a K-
dimensional data space into a set of grids. Each grid is
defined by a K-dimensional array, called a scale, each of
whose elements represents a boundary in a dimension.
Therefore, in the grid file there are K scales and a K-
dimensional array called the grid directory that contains
information on mapping between each grid and the cor-
responding data bucket. The two-disk access strategy
here means that either a successful or an unsuccessful
single-point search can be handled in exactly two disk

*Software Engineering Development Laboratory, NEC Corpora-
tion, 2-11-5, Shibaura, Mita, Tokyo 108, Japan.

Journal of Information Processing, Vol. 14, No. 3, 1991

accesses, one for the grid directory and one for data
buckets, where as other methods based on pointer
chains or overflow buckets require considerably more
than two disk accesses for unsuccessful searches.

As described before, access to a grid file consists of ac-
cess to the grid directory to find the address of the
desired data bucket, and access to a data bucket to find
the desired data using the address. The first grid direc-
tory access is simply to find the desired scales for each
dimension from the search condition. The second data
bucket access is simply a direct access to the disk by the
bucket number obtained from the grid directory access.
Therefore, the access in the grid file is crearly very sim-
ple. Even in the range query, the grids containing data
points to be searched for can be determined with the
help of the grid directory.

However, the grid file technique is far from mature
and many improvements need to be made. The P-files
presented in this paper are designed to solve some of the
problems of grid files, which stem from the large size of
their directory entries in the case of correlated data sets.
To decrease the grid directory size, the grid shape was
changed from a hyper-rectangle to a hyper-
parallelogram, which is the basic concept behind the
proposed P-files.

The next section describes the problems involved in
the original grid files. Section 3 explains P-files. Section
4 shows some simulation results for P-files. Section 5
discusses the pros and cons of the these files.

2. Problems of Grid Files

Although grid files are designed to handle a large
amount of multi-dimensional data efficiently, they still
involve some problems.

The first is their poor ability to handle sets of cor-
related data. There are many such data in the real
world, for instance in the following types of databases:

» Statistical databases

P-file: Grid File for Correlated Data Set

Number of Schools with Pool Facilities

City Budget for Educational Expenses

(a) Statistical Databases

Line End Point

Line Start Point

(c) Geometrical Databases

Region Area

(e) Cartography Databases

285

Session End-time

Session Start-time

(b) Temporal Databases

Employee’s Salary

Employee’s Age

(d) Business Databases

Region Circumference

Fig. 1 Examples of Non-Uniform Data.

* Temporal databases

* Geometrical databases

» Business databases

» Cartography databases

Examples of non-uniform distributed data in the
above applications are shown in Fig. 1.

Another interesting example of a correlated data set
is the grid directory for an interpolation-based grid file
[OUKSS85], [FREE87]. It consists of a sequence of pairs
(range number, level), which is searched from the begin-
ning each time the block is accessed. As the level in-
creases, the range number also increases. For example,
for level 2, the range of corresponding range numbers is

from 1 to 4, while for level 3 it is from 50 to 20
[FREER7]. In this method, the directory is also manag-
ed by the grid file structure. In the grid file for the grid
directory, a set of grid directory data becomes non-
uniform. For correlated data, the grid directory size
grows exponentially in the original grid file.

Another problem with grid files is their implementa-
tion strategy. There are no dominant strategies for grid
file implementation. The basic file structure is based on
a scale partitioning technique presented by Nievergelt et
al. [NIEV84]. In their paper, multi-dimensional space is
divided into a set of grids by partitioning each axis into
a set of intervals. This method increases the grid direc-

286

tory size, because if a grid is split along some coordinate
axis, it becomes necessary to split many grids in K-1-
dimensional space. Many redundant grid entries will
then appear.

To avoid these problems, several modifications have
been proposed. A tree-based directory structure was in-
troduced [HINRSS] to decrease the directory size and
the number of directory accesses. In the structure, the
directory for the grid directory is constructed in the
same way as the first grid directory structure. The sec-
ond directory requires only a small amount of memory
space, and therefore needs no secondary storage.
Another structure, to which the interpolation-based in-
dex structure is applied, is called an interpolation-based
grid file [FREES7]. In the structure, the mapping from
key values to the directory address is performed by
calculating a certain function, called an interpolation
function. However, these modifications weaken two
significant advantages of the original grid files over
other multi-dimensional file structures, namely, their
two-disk access strategy and simple address calculation.
In any modification, these advantages should be
retained and maintained to allow performance im-
provements in relational databases.

The next section describes the proposed new grid
files, called P-files, which retain the above-mentioned
two advantages.

3. P-Files

3.1 Overview of P-files

P-files are an extension of grid files. A simple
modification to a grid file is performed to make it more
effective in reducing the directory size in a P-file. A con-
ventional implementation approach for the original
grid files is to use scale-based grid files [FREE87], which
have a set of linear scales for each dimension to define
the position of the grid region. In P-files, this approach
is retained as far as possible. The only difference be-
tween P-files and grid files is in the grid shape.

Figure 2 shows this difference. The grid file has a set
of hyper-rectangle shapes, while the P-file has a set of
hyper-parallelogram shapes. A concrete example of
these two grid shapes is shown in Fig. 3, presented in
two-dimensional space.

The reasons for this modification are as follows. In
the correlated data set, there are many empty grids in K-
dimensional space [WHANSS5] for the original grid file.
However, by changing the shape of grids, as in P-files, a
smaller number of non-empty grids can cover the same
K-dimensional space. For instance, in two-dimensional
space, where only one data item can be stored in a single
grid, 16 rectangular grids are required in the worst case,
whereas four parallelograms are sufficient in P-files, as
shown in Fig. 4.

The details of the affine transformation effect for a
correlated data set are as follows:

K. KAWAGOE

Fig. 2 Grid Shape.

(a) Grid File

(b) P-file

Fig. 3 Grid Partition.

Suppose that there is a file with two attributes, X and
Y, which have a functional dependence such as X=Y,
and that only one record can be stored in a physical
bucket of the file. This functional dependency is a
special case of a correlated data set. In the worst case,
the number of directory entries is N2, where N is the
number of records in the file. When an affine transfor-
mation of 45 degrees is applied, the functional
dependency disappears and all the data are transformed
into points on the new axis X-Y. Then, the required

P-file: Grid File for Correlated Data Set

Fig. 4 Simple Example of Grid Shape.

Fig. 5 Multi-level P-file (2-level Case).

number of logical buckets is only N, even in the worst
case. Because we need to handle functional dependen-
cies in many practical situations, the affine transforma-
tion can eliminate the need for a large directory in the
grid file.

Also, suppose that we have a file with two-dimen-
sional correlated data sets each of which has a uniform
distribution. Its density function has a shape consisting
of similar ovals with the same center, inclined to an axis
[STAT89]. As a parallelogram can approximate an in-

clined oval much better than a rectangle, this class of °

data set can logically be divided into parallelograms
whose number is smaller than that of rectangles. In
other words, parallelograms can be adjusted to contain
more data than rectangles.

3.2 Operations on a P-file

Consider that each key K consists of n values and is
written K=(ky, k, . .., kx). The K-dimensional space
is partitioned into m *m,x . . . xmy grids in the grid file.
Therefore, each key K is transformed into a K-tuple in-
teger coordinate address, such as (i\, #, . . ., ix). Each
coordinate j; is independently obtained from each key
value k;. The address indicates the block region, in
which data containing the key is obtained, by an ad-
dress transformation any.

The scheme of a grid file is changed as follows in a P-
file.

287

Each key is also transformed into a K-tuple integer
coordinate address. However, the transformation is not
independent of dimensions, because of the
parallelogram shape of grids. For simplicity, the two-
dimensional case is considered.

The key value k= (k, k,) is treated as a vector in two-
dimensional space. Therefore, the vector k is transform-
ed into the grid coordinate address vector g=(g1, g2) by
the transformation vector 7, as follows:

g=Tk)
where
= 1 (sin(B) —cos(B))
sin(B—A) \ - sin(A4) cos(A)

Parameters 4 and B in Eq. (1) depend on the shape
of the parallelogram, which defines the angles between
two sides of the parallelogram and a horizontal line.

The generalization of the transformation matrix T is
shown below:

9=Tk)

where T=[tt,---1,]7', t; is a coordinate vector, con-
structing an affine space and

llell =1

For n=2, t,=[cos(A4)sin(A4)])" and t,= [cos(B)sin(B)]'.
Then, Eq. (1) can be obtained by calculating the inverse
matrix of [#,4,].

By the above transformation matrix (2), the query
procedure becomes as follows:

STEP 1 Transform k into g with the matrix 7.

STEP 2 Calculate the grid directory address Dir.adr
from g.

STEP 3 Obtain the bucket address Bl.adr from the
directory indicated by the directory address
Dir.adr

STEP 4 Access the Bl.adr bucket.

Except for STEP 1, the above query procedure is ex-
actly the same as for a grid file [NIEV84]. The only
difference is the existence of STEP 1. In STEP 1, the
directory space is changed into affine space.

The affine transformation requires matrix calculation
in which the number of multiplications is O(K? for the
transformation of each data item. However, this
calculation cost is estimated to be lower than the disk
1/0 cost because of the lower CPU cost.

3.3 Determination of P-file Parameters

It is very important to decide how to determine coor-
dinate vectors for the affine transformation in a P-file.
There are many ways to determine a set of these vec-
tors. Some of the methods are presented here.

The first is to solve a set of equations. Because the
transformed data set should be uncorrelated, transfor-
mation matrix T has to be determined so as to satisfy
the following equations:

288

© Zi(gi—gDM(gh—gm—0
for any /, m where / not=m

Fig. 7 Coordinate Axes (Use of Distribution after Projection).

where

Distribution on a unit circle

g’ shows the average value of g,

¢ is the /-th-dimensional value of a

data g=T "k and

g’ is the i-th data item of T*k.
Determinant (7)=1

llegh=1

and

qg=1, ..

LK

where T=1[t;- - - tx]™'

means a vector norm.

K. KAWAGOE

In the above equations, there are more variables than
equations. Therefore, an optimization procedure is
necessary to minimize the residue of the left-hard and
right hand terms in each equation.

Calculation of the parameters is not simple in the
above method. The following two methods are simpler
and easier to use.

The first is to use a principal component analysis or
factor analysis method, which finds a set of indepen-
dent principal component vectors. In the method,
eigen-vectors for a correlation matrix are calculated.
This method can be used to select coordinate vectors in
the proposed method. The result is hown in Fig. 6.

The second simple method is to calcuate the distribu-
tion of a data set on a unit hyper-circle with its origin at
the cente.r As shown in Fig. 7, the distribution on the
circle can be easily calculated by projecting the data set
on the circle. Then, from the distribution, two angles
can be determined, between which a very large set of
data sets falls. As indicated in Fig. 7, 60 degrees and 30
degrees are considered appropriate as these angles.

3.4 Multi-level P-files

The above method of determining the parameters for
affine transformation is not dynamic but static, and the
characteristics of the data set should therefore be
specified beforehand. In some instances, this assump-
tion may be impractical. In order to make the deter-
mination dynamically, the following multi-level P-file
will be needed.

The main merit of affine transformation in a P-file is
that it expands dense regions into a broader regions and
reduces the size of empty regions, without the need for
complex procedures. When there are several clusters in
the directory space, its format can be hierarchical. In
other words, the directory space is first broken down
into a set of parallelograms, where no two clusters are
included in a single parallelogram. An appropriate
affine transformation can then be performed in each
cluster. This hierarchical structure is called a multi-level
P-file. An example of a multi-level P-file is shown in
Fig. 5.

The multi-level P-file is used as follows:

STEP 1: At first, a box-shaped grid structure is con-
structed in the usual manner.

STEP 2: When the number of grids exceeds a given
threshold value, the directory and data are restructured
in order to generate a P-file structure. The above-men-
tioned method is used to determine the P-file
parameters.

STEP 3: The split and merge operations are executed
as for grid files. When a number of grids within a
parallelogram grid is generated in STEP 2, the grid area
is divided into a set of parallelogram grids, whose
parameters are determined again. The new grids are
located in a lower level of the multi-level P-file directory
tree.

P-file: Grid File for Correlated Data Set

NUMBER
OF DIRECTORY ENTRIES
20, 000]
] GRID FILE
. O0—o0
] P-file
10, 000 1
5,000]
i // DATA

100 500

Fig. 8 Two-dimensional Non-uniform Data (page Size=1).

NUMBER
OF DIRECTORY ENTRIES

4, 000 A

3, 000]

% 0001 o« GRID FILE

1, 000] o—op-file
] DATA
1,000 5 000 10, 000

Fig. 9 Two-dimensional Non-uniform Data (Page Size=20).

3.5 Intersection Procedure

The rest of this section describes the intersection pro-
cedure. The DELETE, SPLIT, and MERGE pro-
cedures are the same as those employed for grid files
[NIEV84].

Checking to determine which grids can meet a user
query requirement finds parallelogram grids that in-
tersect with the box-shaped region corresponding to the
query. One way of checking an intersection with two
regions is as follows:

Assume that box region A is [ai, bi]X|a, b)) . ..
Xlakx, bx] and that parallelogram P has edges L;
(i=1,...,12).

Step 1: Preliminary check

Construct ¢ box B that includes the parallelogram.
The new box B is assumed to be [¢i, di]X . . . X[ck, dk].
Perform the following simple check to determine

289
Number of Accesses
3007
200
N Crid File
1007
4 «/“w/// P-file
T T T T T
200 600 Data

Fig. 10 Number of Bucket Accesses for a Range Search (The
same data as in fig. 8 are used.).

NUMBER
OF DIRECTORY ENTRIES

400

300

£00 3

e

O—OoOP—Tile (40" —~SO* >

2007 GRID FILE

totp P—F1le 43 ~47° >

1.0 CORRELATION

0.1 0.5

Fig. 11 Simulation Result with Correlation Factor Changed.

whether box B intersects box A: ‘If, for any i, there
always exists a value of j such that [a;, b] intersects [c;,
dj], then box A intersects box B.”’

STEP 2: When box B intersects box A, the following
check is performed for box A and parallelogram P. The
first check is to determine whether any edges L; in
parallelogram P intersect box A. If there are intersec-
tions, the parallelogram intersects the box. If there are
no intersections, the box is either inside or completely
outside the parallelogram, and the following chekc has
to be performed in order to find which condition exists.

The second check is to determine whether or not a
point inside the box is inside the parallelogram. This is
a well-known procedure computer graphics for select-
ing or removing hidden surfaces. The number of time
an infinite line appears in some direction from a point
inside the box is counted. If the number of crossings is
two, parallelogram P completely contains box A.

290
4. Simulation Results

To investigate the effect of a P-file on the directory
size, the file is compared with the original grid file with a
scale-based structure for a non-uniform data set. The
data set is generated from a multi-variate normal
distribution with the following normalized covariance

matrix:
(1.0 0.8)
0.8 1.0

Figures 8 and 9 show the relationship between the
number of data and the directory size. In Fig. 8, which
shows the case in which the block size is 1, we observe
that the ratio of the directory size to the number of data
in the P-file is a half to two-thirds less than in the grid
file. On the other hand, in Fig. 9, which shows a case in
which the block size, 20, is larger, the ratio in the P-file
is still less than in the grid file.

Another simulation was done to evaluate the number
of directory accesses involved in a range query. The
query condition used in the simulation for the range
query is a partial match query where the first axis is
specified and the range on the axis is from 0.2 to 0.8.
The result is shown in Fig. 10. This lower directory ac-
cess in the P-file is a result of the smaller number of
directory grids. Because fewer buckets are accessed
than directory grids, the performance improvement in
P-file is expected to be significant.

A third simulation was done with several correlation
factors for a block size of 20. As the data set becomes
correlated, the grid file performance deteriorates, as
shown in Fig. 11. However, the P-file performance
tends to remain constant. in Fig. 11, two kinds of P-file
angle are compared, where one is narrower than the
other. The difference in the directory size between the
two kinds of P-file angle selections is not significant.
Therefore, it is shown that even if the data set has little
correlatation or the correlation factor is overestimated,
the resulting grid directory size is not larger than in the
grid file.

5. Discussion

5.1 Performance of P-files

The following is a summary of the P-file perfor-
mance.

¢ Number of Disk Accesses
It has already been stated that the number of disk
accesses for single-point access is always two in
the case of grid files. P-files have the same perfor-
mance as grid files. No other disk access is re-
quired in any circumstances, while a cache will
decrease the number of disk accesses. The number
of disk accesses for INSERTION or DELETION
varies according to whether a SPLIT or MERGE

K. KAWAGOE

operation has to be internally performed or not.
If a SPLIT or MERGE operation is needed, the
number of disk accesses is two GET and one PUT
for data bucket access, and O(V'~"/¥) for direc-
tory access, where V is the total number of direc-
tory entries, which is the same as for grid files
[KHOSS8S5]. If neither the SPLIT nor the MERGE
operation is needed, the number of disk accesses
is exactly three: two GET operations and one
PUT operation.
» Average Space Utilization

For grid files, the average bucket utilization is
reported to be around 70% [NIEV84]. P-files
have the same average space utilization value.
This is not affected by the correlation data set,
where as the correlation affects the size of the grid
directory, as seen in the previous simulation.

5.2 Comparison with Multi-dimensional Hashing

Besides P-files, there are other methods for efficient
storage of non-uniform distributed data sets using the
hashing method. They include Multidimensional
Dynamic Quantite Hashing [KRIE87], the Symmetric
Dynamic Index Maintenance Scheme [OTOO85a], and
PLOP-Hashing [KRIES88].

Multi-dimensional quantile hashing is a method for
non-uniform record distributions. However, it cannot
well be applied when the record distributions are cor-
related, because it partitions points for each attribute in-
dependently.

The symmetric dynamic index maintenance method is
a multi-dimensional indexing method using multi-
dimensional linear hashing. Its inventor, E. Otoo,
stresses that the method avoids exponential growth of
the directory. However, the number of bucket accesses
for non-uniform distributed data sets is more than two,
and is five to ten times higher than the number of ac-
cesses for a uniform distribution, according to his
simulation result [OTOO85a]. For P-files, the number
of accesses is guaranteed to be two even for correlated
data, as described previously.

PLOP-Hashing is a multi-dimensional hashing
method with no directories. By expanding piecewise
linear hashing functions in dense arease, the PLOP
method can adapt to non-uniform distributions.
However, like the above-mentioned quantile hashing, it
is still unknown how efficiently the method organizes a
correlated data distribution.

Finally, all the above hashing-based methods assume
the use of an order-preserving hashing function before
the calculation of multi-dimensional hashing functions.
For these hashing methods to handle range queries, an
order-preserving hashing function also needs to be pro-
vided. However, these assumptions are not practical,
because these functions have rarely been used in prac-
tice. In contrast, P-files can be applied for both cor-
related data set and range query requirement with no
hashing functions.

P-file: Grid File for Correlated Data Set

5.3 Rotated Grid Files.

P-files include another modification of the grid files.
For example, a rotated grid file [FALO87] is presented
in order to decrease the number of directories by
rotating the directory space. In P-files, a rotated grid
file is the case where the following relationship between
angles A and B in Eq. (3) is satisfied:

B=A+n/2 3)
(in radians)

5.4 Implications

It is foreseen that the P-file structure will be useful
for decreasing the directory size. However, there are
two considerations: (1) No significant change in the
number of blocks is expected for P-files. The average
load factor is likely to be In 2, as in other multi-dimen-
sional file structures. (2) The directory size does not in-
crease linearly, but still is of a higher order. The reason
for this is that the original grid directory structure
[NIEV84] was used, in order to maintain the two disk-
access strategy and simpler address computation.

6. Conclusion

This paper presents a new kind of grid file, called a P-
file. The file is constructed to transform the shape of
each grid into a parallelogram in multi-dimensional
space.

With this change, the distribution can be changed so
as to decrease the directory size. The P-file has the same
advantages as the grid file, a two disk-access strategy
and simple calculation, whereas other modifications fail
to retain these advantages by modifying the directory
structures from array to either hierarchical trees or inter-
polation-based hashing.

The transformation method used in P-files can be ap-
plied to other kinds of grid structures, such as BANG
files [FREE87] and multi-level grid files [WHANSS], as
a pre-processor so as to change a correlated data set
into a uniform data set. P-files can also be combined
with other kinds of multidimensional structures, such
as multi-dimensional B-trees and extendible hashing.

291

Acknowledgement

The author thanks Dr. Fujino, Mr. Ishiguro, Mr.
Saya, and Mr. Kawakita for motivating him to write
this paper. Thanks also to the referees for their useful
comments and suggestions.

References

[BENT79] BENTLEY, J. L. Multidimensional Binary Search Trees in
Database Applications, JEEE Trans. on Softw., SE-5, 4 (July 1979).
[FALO87] FaLouTsos, C. and REGO, W. A Grid Fuile for Spatial Ob-
jects, CSTR-1829, Univ. of Maryland, 1987.

[FREES87] FREesTON, M. The BANG file: A New Kind of Grid File,
ACM SIGMOD (1987), 260-269.

[HINRSS] HinricHs, K. H. Implementation of The Grid File: Design
Concepts and Experience, BIT 25 (1985), 569-592.

{KHOS85] KHOSHAFIAN, S., BANERJEE, J., CoPELAND, G. and
VALDURIES, P. A Performance-directed Taxonomy for Single-key and
Multi-key File Structures, Tech. Memo, MCC, 1985.

[KRIE84] KRrIEGEL, H-P. Performance Comparison of Index Struc-
tures for Multi-Key Retrieval, ACM SIGMOD (1984), 186-196.
[KRIE87] KRIEGEL, H-P. and SEEGER, B. Multidimensional Dynamic
Quantile Hashing is Very Efficient for Non-uniform Record Distribu-
tion, Proc. Int. Conf. on Data Engineering (1987), 10-17.
[KRIE88] KRIEGEL, H-P. and SEgeGER, B. PLOP-Hashing: A Grid
File without Directory, Proc. of IEEE International Conference on
Data Engineering (1988), 369-376.

[NIEV84) NIEVERGELT, J., HINTERBERGER, H. and SEvcik, K. C. The
Grid File: an Adaptive Symmetric Multikey File Structure, ACM
TODS, 9 (March 1984), 38-71.

[OTOO84] OTtoo, E. J. A Mapping Function for Directory of a
Multidimensional Extendible Hashing, Proc. of VLDB (1984), 493~
505.

[OTOO85a) OtTo, E. J. Symmetric Dynamic Index Maintenance
Scheme, Proc. of Int. Conf. on Foundation of Data Organization
(1985), 283-296.

[OTOO85b] Otoo, E. J. A Multidimensional Digital Hashing
Scheme for Files With Composite Keys, Proc. of PODS (1985), 214-
229.

[OTOO086] OTo0, E. J. Balanced Multidimensional Extendible Hash
Tree, ACM SIGMOD (1986), 100-113.

[OUKS85] OuksEL, M. Interpolation-Based Grid file, Principles of
Database Systems (1985), 20-27.

[REGNS85] REGNIER, M. Analysis of Grid file Algorithms, BIT, 25
(1985), 335-357.

[ROBI81] RoBINSON, J. T. The K-D-B Tree: A Search Structure for
large Multidimensional Dynamic Indexes, ACM SIGMOD (1981),
10-18.

[STAT89) Edited by TAKEUCH]I, K. Statistics Dictionary, in Japanese,
Toyo-Keizai-Shinpo-Sha, 1989.

[TAMMS3] TAMMINEN, M. Performance Analysis of Cell Based
Geometric File Organizations, Comp. Vision, Graphics & Image
Proc., 24 (1983), 160-181.

[WHANSS] WHANG, K-Y. and KRISHNAMURTHY, R. Multilevel Grid
Files, IBM Res. Rept., RCI11516, 1985.

(Received May 16, 1989; revised June 15, 1990)

