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Software reliability assessment is very important in developing a quality software product efficiently. This paper
discusses the quantitative measurement and assessment of software reliability. The techniques are based on the
software reliability growth models (SRGM’s) developed in Japan, which are characterized by nonhomogeneous
Poisson processes. By making the assumptions on which they are based more realistic, the models discussed
here were designed to describe a software error-detection process or a software failure-occurrence process dur-
ing the testing phase of software development. A summary of existing SRGM’s is given, and the maximum-
likelihood estimations based on the SRGM’’s are discussed for software reliability data analysis and software reli-
ability assessment. Through the use of a software reliability assessment tool that incorporates several leading
SRGM'’s, examples of software reliability assessment are given for some sets of observed test data taken from ac-

tual software projects.

1. Introduction

Recently, computer systems have come to be indispen-
sable tools in various activities of society. Among the
elements of such systems, the software is becoming par-
ticularly complex and large-scale, which has led to prob-
lems in software development expressed in the phrase
“‘software crisis.”” At the same time, the quality
assurance of software has become one of the most im-
portant problems in the development of software pro-
duction technologies.

The software development process consists of four
successive phases, namely specification, design, coding,
and testing. Many software errors (or faults) introduced
in the first three phases are detected and corrected, most-
ly during the testing phase. In this sense, the testing
phase is very important in verifying and ensuring the
software quality for users. In fact, a considerable
development effort is needed at this stage. The follow-
ing are known as the standard characteristics of soft-
ware quality: functionality, reliability, usability, efficien-
cy, maintainability, and portability. Software reliability
is a particularly important quality characteristic as a
taken-for-granted quality [1]. It is defined as the
probability of no occurrence of a software failure dur-
ing a certain period on a specified condition[2]. A soft-
ware failure is defined as an unacceptable departure
from normal program operation caused by a software
error latent in the software. If the total number of er-

*Department of Industrial and Systems Engineering, Faculty of
Engineering, Hiroshima University, Higashi-Hiroshima-shi, 724,
Japan.

Journal of Information Processing, Vol. 14, No. 3, 1991

rors latent in the software can be estimated with a high
accuracy in the testing phase, the software reliability
can be measured and assessed quantitatively. It will
then be possible to control the progress of the testing
and to predict the time at which the software can be
released for operational use.

For this reason, there have been many studies on soft-
ware reliability models for analyzing the observed data
during the testing phase and assessing the reliability of
the developed software. One of the most useful models
is well known as a software reliability growth model [3-
10]. This model represents the relationship between the
time span of software testing and the number of
detected errors as a process of growth in software relia-
bility, describing the error-detection phenomenon or
the failure-occurrence phenomenon during the testing
phase. On the basis of the software reliability growth
model, it is possible to estimate and predict the expected
initial error content, the expected number of remaining
errors at an arbitrary time during testing, the mean time
between software failures, the software reliability, and
SO on.

This paper aims at quantitative measurement and
assessment of the software reliability, and discusses
several leading software reliability growth models devel-
oped in Japan to assist in the task. These models are
based on nonhomogeneous Poisson processes that
describe the time-dependent behavior of software errors
detected or software failures occurring during the
testing phase. First, we give general descriptions of a
software reliability growth model based on a
nonhomogeneous Poisson process and quantitative
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measures for software reliability assessment. Then, we
summarize the existing software reliability growth
models developed in Japan. Next, classifying the ob-
served test data available for software reliability assess-
ment into two types, we present the maximum-
likelihood estimations based on the SRGM’s for
software reliability data analysis. We also discuss the
procedure of data analysis for software reliability assess-
ment, and related tools. Finally, using a software relia-
bility assessment tool that incorporates several leading
software reliability growth models mentioned above,
we give examples of software reliability assessment
based on two data sets taken from actual software pro-
jects.

2. Software Reliability Growth Model (SRGM)

2.1 Non-Homogeneous Poisson Process (NHPP)
Model

During the testing phase of software development,
many testing resources are required in order to detect
and correct software errors. During the testing phase,
computer software is subject to software failures caused
by errors latent in the software. Test data such as the
times of software failures or the numbers of detected er-
rors can then be observed. If it is assumed that the cor-
rection of errors does not introduce any new errors, the
cumulative number of detected errors increases as they
are corrected, and the mean time interval between soft-
ware errors becomes longer (Fig. 1). This means that
the probability of no failure occurring in a fixed time-in-
terval, that is, the reliability, increases with the progress
of software testing. A mathematical tool that describes
such an error-detection or failure-occurrence
phenomenon is called a software reliability growth
model (SRGM). Many SRGM’s have been developed
for measuring and assessing software reliability (e.g.
[11-20]). The following assumptions are usually made
in the area of software reliability growth modeling:

1) A software is subject to failures at random times
caused by errors latent in the software.

2) A software failure is caused by a software error.

3) Each time a failure occurs, the error that caused
it is immediately removed, and no new errors are in-
troduced.

The testing time (for example, the calendar time, the
testing effort (man-power), the CPU time (machine ex-
ecution time), or the number of executed test-cases) is
generally used as the unit of error-detection or failure-
occurrence period for describing the time-dependent
behavior of the cumulative number of errors detected
or failures occurring during the testing phase. The
following random variables can be defined for software
reliability measurement (Fig. 2):
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Fig. 2 Random variables for software reliability measurement.

X; =the time-interval between the (/— 1)-th and i-th
failures (or error detections),

si =the time of the i-th failure,

N(t)=the cumulative number of errors (or failures)
detected in the time-interval (0, ¢].

Figure 2 shows that the event {N(r)=i} has occurred.
From the above definitions, we have the following rela-
tionships:

Si= Z X Xi=8i—=8i-1 (i=1,2, - +; Xo=8,=0).
£=1

0]

Let {N(#), t=0} be a counting process that has in-
dependent increments so that the numbers of errors
detected during disjoint time-intervals are independent.
The notation Pr{A4} means the probability of event A.
An SRGM based on a nonhomogeneous Poisson proc-
ess (NHPP) [21] with mean value function H(f) can be
formulated according to the definitions and assump-
tions above [3, 9] as:

{H(@)}"

n!

Pr{N()=n}=

exp [— H(1)]

t=0; n=0,1,2, ---), (2)

where H(f) is a mean value function indicating the
expected cumulative number of errors detected up to
testing time ¢. If we let

H() 250 h(x)dx, 3)
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the h(¢) is called an intensity function of the NHPP,
which means the instantaneous error-detection rate.

Defining a as the expected cumulative number of er-
rors to be eventually detected, that is, the expected in-
itial error content to be estimated, if a=H () (as is
usual in software reliability growth modeling), we can
easily show that

a
lim Pr{N()=n}=—e"* (1=0,1,2, ). (&)

Equation (4) implies that N(¢) obeys a Poisson distribu-
tion with mean ¢ after an infinitely long period of
testing.

2.2 Reliability Assessment Measures

Several quantitative measures for software reliability
assessment are derived from the NHPP with H(¢) given
by Eq. (2).

Let N(¢) denote the number of errors remaining in
the software at testing time ¢, namely N(®)-—N(¢).
Then, the expectation E[N(f)] and the variance
Var[N(?)] of N(t) are given by

n(1)=E[N(?)]
=a—H()
=Var[N(@)]. (&)}

The so-called software reliability is the conditional sur-
vival probability of X; on the condition that S;-,=¢,
and is given by

R(xlt)EPr[X,>X|S,—|=t}
—exp [~ {H(+X)—HOY (=0, x=0), (6)

which is independent of the number of failures i(i=1,
2, - - +). The software reliability in Eq. (6) represents the
probability that a software failure does not occur in (7,
t+x].

The mean time between software failures (MTBF or
MTBSF) has been often adopted as a reliability measure
when data on the times of software failures are
available [5]. Since the probability distribution of
S{i=1, 2, ---) for the NHPP model given by Eqgs. (2)
and (4) is improper, the MTBF does not exist [22].
However, a measure of the MTBF can be alternatively
obtained by calculating the inverse of the instantaneous
error-detection rate A(f) (the intensity function of an
NHPP given in Eq. (3)) as

1
MTBF(O:W' ¥

Equation (7) is called the instantaneous MTBF at
testing time ¢ [9].

2.3 Existing NHPP Models

A software reliability growth curve representing a
relationship between the time span of software testing
and the cumulative number of detected errors is ob-
served in a software error-detection process during the
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Fig. 3 Exponential and S-shaped software reliability growth
curves.

testing phase. There are two types of shape for the ob-
served software reliability growth curves: exponential
and S-shaped growth curves (see Fig. 3). The SRGM’s
describing exponential and S-shaped growth curves are
called exponential and S-shaped SRGM’s, respectively.
Several existing SRGM’s based on NHPP’s are briefly
summarized in the following.

Assuming that the expected number of errors
detected per unit testing time (the instantaneous error-
detection rate) is proportional to the current residual
error content, many SRGM'’s are formulated as

dH(t

—)=b(t)[a—H(t)]

i ®(1)>0, 1=0), ®

where b(¢) is the error-detection rate per error at testing
time #. Solving the differential equation (8) in terms of
H (¢) under the condition H (0)=0 yields

H(t)=a <1 —exp[—jﬂ b(x)dx]) (t=0). ®
0

If b(¢)=b (constant), then we have the exponential
SRGM proposed by Goel and Okumoto [11, 23], which
describes a software failure-occurrence process in the
testing. The mean value function showing an exponen-
tial growth curve is given by

H@O)=m{t)=a(l—e ) (@>0, b>0). (10)

In contrast to the exponential SRGM with the
homogeneous error-detection rate b (which implies a
constant error-detection rate throughout the testing),
the detectability of an error is considered to be
nonhomogeneous over the testing period, since the er-
rors detected early in the testing are different from those
detected later on. Then, assuming that there are two
types of error, of which Type 1 (Type 2) errors are easy
(difficult) to detect, Yamada et al. [24, 25] proposed a
nonhomogeneous error-detection rate model in which
error detection processes for Type 1 and 2 errors are
respectively described by the exponential SRGM above.
This NHPP model, called the modified exponential
SRGM, has a mean value function of

2
H@)y=my)(t)=a ;pi a _e—b,r)
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2
O<bi<bi<l1, D p=1,0<p<1 (i=1,2)), (I1)
i=1

where b; is the error-detection rate per Type i error
(i=1, 2), and p;a is the expected initial error content of
Type i error (i=1, 2). From Eq. (11), the error-detec-
tion rate per error for the modified exponential SRGM
is given by

2 pie” ™
b(r) ,;[p'e_,,., n pze_bz,}bl. (12)

In a software error-removal process it should be
assumed that a testing process consists of not only a
software failure-occurrence process, but also a software
error-isolation process. In Eq. (8), if b(¢)=>5 and m(t)
in Eq. (10) is substituted for a, then we have the delayed
S-shaped SRGM proposed by Yamada et al. [26, 27] for
such an error-detection process:

Ht)=M@®)=a[l—-(1+bt)e "] (a>0, b>0), (13)

which shows an S-shaped growth curve. The parameter
b in Eq. (13) represents the failure-occurrence rate (and
the error-isolation rate). The error-detection rate per
error for the delayed S-shaped SRGM is given by

bt
(1 +bty

Another S-shaped SRGM was proposed by Ohba et
al. [28, 29]. It is called the inflection S-shaped SRGM,
and describes a software failure-occurrence process
with a mutual dependency of detected errors. In the
error-detection process, the more failures are detected,
the more undetected failures become detectable. For
such a faillure-detection process, if in Eq. (8)

H(@)
b(t)=b{r+(l —r)T},

b(t)= (14)

15)

then we have a mean value function
a(l—e %)

H(t)51(1)=m

@>0, b>0, c=(1—r)/r>0),

(16)
which shows an S-shaped growth curve. The parameters
b and c represent the failure-detection rate and the in-
flection factor, respectively. The error-detection rate
per error for the inflection S-shaped SRGM is given by

b(t)y= a7

1+ce

We need to consider the effect of testing-effort on soft-
ware reliability growth in order to develop more
realistic SRGM’s. The testing-effort is measured by the
amount of man-power, the CPU time, the number of ex-
ecuted test cases, and so on. On the assumption that the
error-detection rate per error is proportional to the cur-
rent error content and the proportionality is the current
testing-effort expenditures, if in Eq. (8)

ent: Software Reliability Growth Models and Data Analysis 257

b(t)=rw(t), (18)

then we have the testing-effort dependent SRGM pro-
posed by Yamada et al. [20, 30, 31]:

H)=T@W)=a(l—exp [—rW@®)]) (a>0,r>0), (19)
4

W(t)=5 w(x)dx, (20)
0

where r is the error-detection rate per unit testing-effort

expenditures. Yamada et al. [31] offered a Weibull

curve as the testing-effort function w(¢) in Eqs. (18) and

(20) because of its flexibility for describing a number of

testing-effort expenditure patterns:

w(t)=afmt™ 'exp [—pt™ (>0, >0, m>0), (21)

where «, 8, and m are constant parameters for specify-
ing the function form. In particular, the parameter «
represents the total testing-effort required by the
testing. The parameters «, 8, and m can be estimated by
the method of least-squares for the observed testing-
effort data. When m=1 and m=2, we have exponential
and Rayleigh testing-effort functions, respectively.
From Eq. (20), the total testing-effort in the testing
time-interval (0, ¢] is given by

W(t)=o(l —exp [—pt"]). (22)

Therefore, from Egs. (19) and (22), the expected
number of errors to be eventually detected is given by

T(©)=a(l —e ™) #a. 23)

Equation (23) means that even if a software is tested for
an infinitely long time, some errors will not be detected,
because the testing-effort function tends to zero as
t— 0,

Generally, software reliability assessment during the
testing phase is closely related to the quality and quanti-
ty of executed test-cases. Then, defining a testing-do-
main function given by

u(t)=a(l—pe™) (a>0,v>0,0<p=<l), 249

and, in Eq. 8) if b(t)=>b and u(t) in Eq. (24) is
substituted for a, then we have the SRGM with testing-
domain proposed by Ohtera et al. [32, 33] to describe
the error-detection process recognized by execution of
test-cases:

H@t)=D({)=a|l1- {(v—b+bp)e " —bp e~}

(v—>b)
v#b), (25)

where v is the testing-domain growth rate, p is the
parameter representing the error distribution patterns
in a tested software, and b is the error-detection rate per
error. In Eq. (24), the quantity (1 —pe™") is the ratio of
the testing-domain coverage to the final testing-domain
size (=a) to be covered, where p=1 indicates a uniform
error distribution.

Besides the stochastic SRGM’s discussed above, deter-
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Fig. 5 Failure-occurrence time data s; (i=1, 2, - -, n).

myinistic SRGM’s formulated by logistic and Gompertz
growth curves, have been widely used to estimate the in-
itial error content [34, 35]. In Japan, some computer
manufacturers and software houses have actually ap-
plied the logistic and Gompertz growth curve models.
The expected cumulative number of errors detected up
to testing time ¢ is given for the logistic growth curve
model as

k
L(t)—m_—m k>0, m>0, p>0), (26)

and for the Gompertz growth curve model as
G({t)=kd?” (k>0,0<a<l1,0<b<), 27

where k, p, m, a, and b are constant parameters to be
estimated by regression analysis. The parameter k in
both models is the expected initial error content of a
software.

3. Software Reliability Data Analysis

3.1 Types of Data

In order to assess software reliability during the
testing phase it is necessary to estimate unknown
parameters in the applied SRGM’s by using the ob-
served test data. A set of test data is usually collected
and recorded in one of two typical ways.

The most commonly used (especially in Japan) and
collected data are called error-detection count data (or
grouped data [5]). These are used when the project
managers want to estimate the number of errors
detected during a constant time-interval of testing, that
is, the realization of random variables N(z;) (i=1, 2,
.-+, n). Figure 4 shows an illustration for error-detec-

tion count data where the data set on the cumulative
number of detected errors, y;, in a given time-interval
©, t] (=1,2, -+, n; 0<t 1<, < -+ - <t,) is recorded.
For the error-detection count data, we want to predict
the behavior of N(¢,) by a future time t;,(i=n+1, n+2,
-+ +), using the observed data (¢, y) (i=1, 2, -+ -, n).
The other commonly collected data are called failure-
occurrence time data. These data, recorded as the times
of successive software failures, that is, the realization of
random variables S; (i=1, 2, -+ -, n), are the most de-
tailed and desirable in terms of estimation, and are
most often used in SRGM’s based on the CPU time (or
execution time) as the unit of testing time. Generally,
the CPU time is measured on the processor on which
the program being tested is running. As we discussed in
Section 2.1, the data may be recorded as time-intervals
between software failures. However, it is difficult in
practice to measure and record data on the times of
failures. Figure 5 shows data on the times of failures
where the data set on n successive times of failures s;
(i=12,--,n0<s;<s5,<---<s,)is recorded. From
Eq. (1), the observed data s; (i=1, 2, - - -, n) can be con-
verted into x; (i=1, 2, - - -, n) by calculating x;=s;,—s;-1.
For the data on the times of failures, we want to predict
the behavior at a future time S; or the time-interval be-
tween failures X; ((=n+1, n+2, ---) by using the ob-
served data s; (i=1, 2, ---, n) or x; (i=1, 2, ---, n).

3.2 Maximum-Likelihood Estimation

Parameter estimation is of primary importance in
software reliability data analysis. We discuss statistical
inference procedures for the NHPP models discussed in
Section 2 based on a method of maximume-likelihood |5,
9, 10] which is the most important and widely used for-
mal estimation technique. Here, we assume that the
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Table 1 Likelihood equations for error-detection count data.

Model Likelihood Equations
__On
exponential SRGM (1-e"
_b . . N
m@=a(i-e™) Yata € _3 Oxetpe ™ i e
(1_¢-bl,,) =1 (e-b“"- e-bl.)
a= 2_y~___
3 pite™
modified exponential SRGM o P
2 -bit bt -b
by I a n ~ e Fa1
mp(t)=a§1,p,~(1-e ) zy" ne T3 Ok y2"'1)(t"e e 70 (m12)
= b, bty b,
2pi(e”") (X pile” - e
i=1 i=1
4= In
delayed S-shaped SRGM [1-(+br, e )]
M()=a[1-(L+bt)e™] yatie & O D el e
[1-(+bt, e )] k21 {ebr, e - debre ™)
y ,,(1+c'e'b")
v
inflection S-shaped SRGM (e
n -bt, bty -bt, bty
bt (tre “tyqe ) ce ctyq e
1= KLe™). el e o
(1+c-e'b') = (e *e ™M) (1+ce ") (+ce )
Ynln e'b"( 1-c+2c-¢™™)
=t for specified c|
1-e"y(1+ce™) (for specied )
- In
testing-effort dependent Ty W)
SRGM i ]
WG, W Wy,
T=a1-¢""®) YW@ ™ & Gy W e ™ W e ™M)
[l-e"'w(") & [ o WD) TV 1

mean value function H(f) includes N model parameters

w; (i=1, 2, -+, n) as well as parameter a, where
w=(w;, w, -, wy). Weuset, y, and s to denote (£, #2,
ey tw)y (V1 Y2 0y Yu), and (Sy, S2, c°, Sa), TESpEC-
tively.

Suppose that the error-detection count data (#;, y)
(i=1, 2, ---, n) are observed during the testing phase.
Then, the joint probability mass function of the ob-
served data, that is, the likelihood function for the
unknown parameters in an NHPP model with H(¢), is
given by

L(a, wit, )=Pe{N(t)=y1, N(t)Y=ps, - -, N(t) =y}

o {H(t)— H(ti )P
_g (Yi—=yi-)!

xexp [— {H(t)—H(t:-1)}], (28)

where #,=0 and y,=0. Taking the natural logarithm of
Eq. (28) and equating its partial derivatives with respect
to the unknown parameters to zero yields

dlnL(a,wit,y) dlnL(a,wlt,y)
= =0
da aw,'
(=12, ---,N). (29

Then, the (N+1) maximum-likelihood estimates @ and
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Table 2 Likelihood equations for failure-occurrence time data.

modified exponential SRGM

Model Likelihood Equations
n
a=——
exponential SRGM (1-e%%
-bt -bs
f=a(l-e ..
m(t)=a( ) %=i5k+ ns,,eb
=l (e
n
a=

2 b
2pi(1-e”

i=1

2 i by n 'b)’k_b' b
my0=aY, p; (1-¢"*) nd e T hisee 7Dy
=1 z -bis. k=1 z -bisy
D pi(le” (X pibie”™)
i=1 i=1
n
a=——b—
delayed S-shaped SRGM {1-(1+bs, ™))
M@©®=a[1-(1+b0e ™ ] s, nbst e
k
Bl [1-(1+bs,)e ")
o MLrce ™)
(1"
inflection S-shaped SRGM
-bs, -bs,
-bt nspe “(+c)  p & cspe
_a(-e™) T A2 :
O ee™ (e tece™ P E e
(for specified c)

w; (i=1, 2, ---, N) can be obtained by solving the
simultaneous likelihood equations (29). Table 1 sum-
marizes the likelihood equations for the existing NHPP
models discussed in Section 2.3, which can be numerical-

ly solved.
On the other hand, suppose that the failure-occur-
rence time data s; (=1, 2, - - -, n) are observed during

the testing phase. Then, the joint density function of
the observed data, that is, the likelihood function for
the unknown parameters in an NHPP model with H(¢),
is given by

Lia, wis)=exp [~ H(s)] T] h(s). (30)
i=1

Taking the natural logarithm of Eq. (30) and equating
its partial derivatives with respect to the unknown
parameters to zero yields
dInL(a,wls) dlnL(a,wls)
= =0
da Bw,-

(=12, ---, N).

(31

Then, the (N+ 1) maximum-likelihood estimates ¢ and
wi(i=1,2,---,N) can obtained by solving the
simultaneous likelihood equations (31). Table 2 sum-
marizes the likelihood equations for the existing NHPP
models discussed in Section 2.3, which can be solved
numerically.

Therefore, using the model parameters estimated
above, we can obtain the maximum-likelihood esti-
mates of the mean value function H (¢) and the reliabil-
ity assessment measures, such as n(r), R(xlt), and
MTBF(¢), discussed in Section 2.2. For example, these
estimates for the exponential SRGM are given by using
the maximum-likelihood estimates & and b as

m(ty=a(l—e ),

fi(ty=ae™",
R(x!)=exp [—~d{e b —e butn}],
T - ~
MTBF()=¢"/(ab).

In particular, to evaluate the variability of N(¢), that
is, the number of errors detected (or failures occurred)
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by time ¢, we can approximately obtain the confidence
bounds for N(¢) as

H@O K, VA(), (32)

where K, is 100(1+7)/2 percentile of the standard nor-
mal distribution.

It is important to perform a goodness-of-fit test to
check statistically whether the applied SRGM provides
a good fit with the observed data. We discuss the
goodness-of-fit test based on the Kolmogorov-Smirnov
(K-S) test statistics (e.g. [36]) for an NHPP model [9,
37], which is useful even if the sample size of the ob-
served data is small. The Kolmogorov-Smirnov test
statistic is given by

for the failure-occurrence time data s; (i=1, 2, - - -, n).
The values of the test statistics in Egs. (33) and (35) are
compared with the critical values D,,, and D,-;, with
the sample sizes n and (n—1) for the specified level of
significance «, respectively. The critical values D,,, and
D,-,,, are available from statistical tables (e.g. [9, 36,
38]). If the calculated value D in Eq. (33) or Eq. (35) is
less than the selected critical value, then it can be con-
cluded that the observed data fit the applied SRGM.

3.3 Procedures and Tools

The procedures of software reliability data analysis
and assessment discussed above are shown in Fig. 6.
Yamada et al. [9, 39] developed a software reliability
evaluation tool called SRET in which the analysis and

b= oA (D}, 33) assessment procedures shown in Fig. 6 are implemented
H@) i H@) yio in a program package, using the BASIC language on
D,-=max{ T vl | Fa )— } , (34) MS-DOS. SRET uses three SRGM’s based on a NHPP,
@) @) namely, the exponential, delayed S-shaped, and inflec-
for the error-detection count data (¢;, y) (i=1,2, - - -, n), tion S-shaped SRGM’s, and two deterministic SRGM'’s,
and is given by namely, the logistic and Gompertz growth curve
D= max (D}, 35) models. SRET is very useful in the testing phase, since
\sisn—1 the software engineers or managers can perform soft-
H(s) H(s,) ,_ 1 ware reliability assessment easily in an interactive mode
[= — 36 . . .
D max{ H—(s,,) " ‘ l A P } (36) wnhoqt knowing the details of the process of data
analysis.
Collect Data as Error Counts
or Failure Times
| Chioose an Appropriats SRGM |
|
\l
Estimate Model Parameters
¥ K
Analyze Failure-Occurrence Analyze Error-Detection
Time Data Count Da
S (k=1,2,...,n) (te,yy) k=1,2,...,n)
{ i
v
Estimate Mean Value Function
H@®

| Choose Another Model I

of-Fit Test

Reject

Perform Good:

[ Obtain Reliability Assessment Measures l

¥ ¥ v
Undetected Errors Software Reliability Others
n(y RxIp) (e.g. MTBF(1))
L | T
v
Decision Making
« Estimate Time for Release

« Etc.

« Predict Additional Testing Time to Reach Goal

Fig. 6 Analysis and assessment procedures in the SRET.
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Table 3 Examples of software quality/reliability assessment tools developed in Japan.
Tool Integrated SRGM Developer Reference
«exponential SRGM
SORPS «delayed S-shaped SRGM IBM Japan [18]
«infiection S-shaped SRGM
+delayed S-shaped SRGM
SPARC «logistic growth curve model Toshiba [40]
«Gompertz growth curve model
Software «gxponential SRGM
A «delayed S-shaped SRGM .
Reliability sinflection S-shaped SRGM Tosfuba . [41]
Evaluation Engineering
p slogistic growth curve model
rogram *Gompertz growth curve model
«axponential SRGM
«delayed S-shaped SRGM
42
SOREM +logistic growth curve model NEC 142]
-Gompertz growth curve model
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Fig. 7 Data analysis based on the delayed S-shaped SRGM for DATA 1.

Several tools based on similar ideas to SRET have
been developed in order to assess the quality and reliabil-
ity of the developed software product from the stand-
point of a SRGM. Table 3 shows examples of tools de-
veloped by some Japanese computer manufacturers and
software houses.

4. Examples of Application

Here, assisted by the SRET discussed in Section 3.3,
we describe some examples of software reliability assess-
ment to give numerical illustrations of the application
of SRGM’s based on an NHPP. The following sets of
test data observed in actual software testing are used:

DATA 1: Online data entry software package test
data

DATA 2: Large-scale bond/stock trading manage-
ment system test data.

Both the data sets are error-detection count data.

The first data set (¢, y) (i=1, 2, - - -, 20) was cited by
Ohba [18]. The software, developed by IBM Japan,
Ltd., consists of approximately 40,000 lines of object
code. The testing time was measured on the basis of the
number of shifts (days) spent running test cases and
analyzing the results. The number of test personnel was
constant through the testing. Figure 7 shows the
analysis results and the estimated mean value function

M()=T1.77[1 = (1+0.1039¢)e™010%], 37

along with the 90 percent confidence bounds given by us-
ing the delayed S-shaped SRGM. By calculating Eqgs.
(33) and (34), the K-S goodness-of-fit test shows that
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Fig. 8 Data analysis based on the Gompertz growth curve model for DATA 1.
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Fig. 9 Estimated expecled number of remaining errors based on the detayed S-shaped SRGM for DATA 1.

the delayed S-shaped SRGM with estimated mean value
function M (¢) in (37) is well-fitted to the observed test
data. SRET can calculate the sum of square errors,
SSE, between the actual cumulative number of errors y;
and the estimated number of errors §(= H (t))) detected
in the time-interval (0, #] (i=1, 2, , n) in order to
compare the estimation accuracy of the applied models:

SSE=Y, (yi—3) (J=H(®)). (38)
i=1
For example, compared with the estimated Gompertz
growth curve model
G (¢)="58.76(0.0237)80 (39

which is shown in Fig. 8, we have SSE=33.81 for the
delayed S-shaped SRGM, and SSE=37.92 for the
Gompertz growth curve model. Thus, the delayed S-

shaped SRGM gives better results than the Gompertz
growth curve model. According to the field tracking
data of this software product, the actual value of the
parameter a, that is, the initial error content, is 69 (the
estimated value is 72). In this case, the exponential
SRGM with the mean value function in Eq. (10) does
not correspond to the observed test data at all, since the
estimated initial error content is infinite. Thus, we may
conclude that the delayed S-shaped SRGM accurately
describes the observed software reliability growth. On
the basis of the data analysis above, the estimated ex-
pected number of remaining errors 7(¢) in Eq. (5) and
the estimated software reliability R (x|t) in Eq. (6) are
respectively shown in Figs. 9 and 10, where the termina-
tion time of testing, ¢, in the estimated software reliabil-
ity is 21 (days).

The second data set (¢;, y) (i=1, 2, - -+, 26) was ob-
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Fig. 10 Estimated software reliability based on the delayed S-shaped SRGM for DATA 1.

served during the system testing phase. The software
system, developed by the Mitsubishi Trust and Banking
Co. and Nissho Electronics Co., consists of approx-
imately 50 online programs, 150 batch programs, and
their support programs, which form a total of approx-
imately 3,000 modules written in COBOL and
Assembler languages. In this case, the testing time was
measured on the basis of calendar time (days). The ob-
served software reliability growth curve of detected
errors was obviously S-shaped, and therefore four S-
shaped SRGM’s, namely, the delayed and inflection S-
shaped SRGM’s and the logistic and Gompertz growth
curve models, were applied. From synthetical evalua-
tion, the result of software reliability assessment based
on the delayed S-shaped SRGM was considered to be
best. Figure 11 shows the analysis results using the
delayed S-shaped SRGM:

M(t)=171.1[1 — (1+0.1188¢)e~ ¥, (40)

5. Concluding Remarks

From the standpoint that the basic approach to soft-
ware quality management should be to ensure software
reliability, namely, a quality characteristic as taken-for-
granted quality, we have discussed a method of soft-
ware reliability measurement and assessment based on
the SRGM’s developed in Japan. In particular, we have
discussed the quantitative measures for software reliabil-
ity assessment and the maximume-likelihood estimation
for data analysis based on SRGM’s described by an
NHPP (NHPP models). The data sets for software relia-
bility analysis, which are observed during the testing
phase, have been classified into two types: error-detec-
tion count data sets and failure-occurrence time data
sets. Some applications of several leading SRGM’s sum-
marized in this paper to observed test data taken from
actual software projects have also been illustrated by a

software reliability assessment tool called SRET.

Besides the SRGM'’s discussed in this paper, several
techniques for software quality or reliability assessment
have been developed in Japan. Ido et al. [43] have im-
proved the conventional capture-recapture method
based on the production unit concept, in which pseudo-
errors are seeded before testing and the capture ratios
of the pseudo-errors and the inherent errors detected
during the testing phase are measured to estimate the in-
itial error content. Yamada et al. [44-46] have proposed
several discrete SRGM’s that adopt the number of test
runs or the number of executed test-cases as the unit of
testing time. Ohba [47, 48] and Yamada et al. [49] have
offered a viable method for software quality assess-
ment, which integrates the conventional capture-recap-
ture method and the SRGM’s described by an NHPP.
Analyzing the relationships between the error rate of
the program and a variety of environment factors affect-
ing software development, such as the programmer’s
skill, Takahashi and Kamayachi [50] have developed a
Dendenkosha Information Processing System (DIPS)
reliability model based on a multiple regression
analysis. On the basis of the hyper-geometric distribu-
tion and the new concepts related to the test-run,
Tohma et al. [51, 52] have proposed software reliability
models for estimating the number of residual software
errors. Integrating the software reliability growth proc-
ess, Sunazuka [53] has modeled a software quality im-
provement process describing an error-introduction
phenomenon during software production and an error-
removal phenomenon during testing. Sando and Fujii
[54] have discussed the reliability growth analysis of a
discrete-type program, based on the idea of quasi-error
seeding as an improved testing method.

The results of software reliability assessment based
on SRGM’s discussed in this paper should be used for
software development management. Some promising
applications are found in the areas of a testing-effort
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control problem and an optimal software release prob-
lem. The testing-effort control problem based on the
testing-effort dependent SRGM discussed in section 2.3,
which predicts the testing-effort required to achieve the
objective number of errors detected by the testing, has
been discussed by Ohtera et al. [55, 56] and Yamada et
al. [57,58]. The optimal software release problem
based on the SRGM'’s suggested by Koch and Kubat
[59] and Okumoto and Goel [60], which decides when
to stop software testing and transfer a software system
to the user, has been discussed by Yamada et al. [61-63]
and Ohtera and Yamada [64].

The SRGM’s discussed in this paper are useful
primarily in assessing and monitoring software reliabil-
ity, viewed as taken-for-granted quality. Such SRGM’s
should provide software engineers and managers with
guidance related to many decision-making problems for
successful software development projects. For this pur-
pose, more useful and applicable SRGM’s that incor-
porate information about a software system and the
development process will be needed.
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