246

Invited Paper

Software Testing

HirosHl KAWATA*, HIROSHI YOSHIDA*, MUNEAKI NAGAt* and HirosHi Sauo*

This paper briefly surveys the current status of software testing and provides an introduction to the
methodologies and techniques employed by Fujitsu. The survey will examine software testing from the follow-
ing viewpoints: (1) designing test cases from external specifications, (2) automatic test program generation, (3)

fault injection testing, and (4) application system testing.

1. Introduction

The purpose of testing is to ensure software quality
through the identification of programming errors or
‘‘bugs’’ and the validation of proper program opera-
tion. It is essential that software be subjected to a varie-
ty of tests, at various phases in the development cycle,
under different operating conditions and with different
data. These tests are all necessary and should comple-
ment each other. Yet no matter hw ambitious the test
plan for a program is, it can never cover all possible
cases. Instead, it is necessary to design and select test
cases that will provide the highest level of confidence in
the quality of the software. Thus, test case design and
selection become extremely important. In the first part
of this paper, we discuss test case design in general and
describe our method of designing test cases based on ex-
ternal specifications.

Although test case design is a very important part of
the testing effort, creation ot test data and confirmation
of test results are also very important. Moreover, they
require significatn amounts of time and manpower, and
can be very tedious. Various tools for automatic test
data generation and/or test result confirmation are in
use today or in the advanced stages of research and
development. In the second part of this paper, we will
comment on the current status in this area from our
point of view and then provide an outline of our test
program generator, which is based on attribute gram-
mar.

A system software product such as an operating
system is equipped with an error recovery mechanism to
localize the effects of errors and permit the system to
continue operation when they occur. Recently, in some
papers, there has been discussion of “‘fault injection
testing,’” which is a technique intended to test these er-
ror recovery mechanisms. In the third part of this
paper, we will discuss our methods for testing fault-

*Fujitsu Limited, 140 Miyamoto, Numazu-shi, Shizuoka 410-3,
Japan.

Journal of Information Processing, Vol. 14, No. 3, 1991

tolerant computer systems. We will also describe a
methodology for evaluating the degree of fault
tolerance of a system by using a Mean Time Between
Failure (MTBF) metric.

In system testing, all components and products that
constitute a system are assembled, the operational en-
vironment is established, and testing is done according
to the development objectives. At this stage, configura-
tion management and/or modification management
become more important than in previous stages, as of
course do the testing activities themselves, which in-
clude functional integrity testing, stress testing, perfor-
mance testing, and regression testing. In the case of
general-purpose system software products such as
operating systems, simple system testing is not sufficient
before delivery to a specific customer, and application
system testing is also required, which we will describe
through an example.

2. Designing Test Cases

In functional testing, test cases are designed and
selected on the basis of external specifications such as
functional specifications. Typically, test cases are
designed as follows:

1. Divide the functions to be tested into small units
that can be handled easily.

2. For each unit of function resulting from Step 1,
categorize and analyze the test factors (test factors in-
clude such items as input conditions, environmental
conditions, and results).

3. Using boundary-value analysis and equivalent-
value partitioning, analyze the statuses each test factor
can take.

4. Find the possible combinations of statuses for
each test factor.

5. Select test cases from the combinations made in
Step 4.

Equivalent-value partitioning and boundary-value
analysis are effective methods for reducing the total
number of statuses of various test factors. Cause-effect

Software Testing

graphing and state transition diagrams are often used to
study combinations of test factor statuses. Tools exist
that can generate test cases from cause-effect graphs
automatically [4).

In a complex and large-scale system, however, it
becomes extremely diffucult to connect a cause and its
effect. Instead of using cause-effect graphs, we use a test
factor analysis table that primarily analyzes causes [5,
6]. Figure 1 shows an example of a test factor analysis
table.

Since the design of test cases using a factor analysis
table is done mainly by studying the cause (such as the
input conditions and environmental conditions), it is
relatively simple in comparision with cause-effect
graphing. Nevertheless, as the number of test cases in-
creases, and thus the size of the set from which test
cases must be chosen, the following problems surface:

1. There are no clear criteria for selecting test cases.
When the number of test cases is large, the test case can-
didates are selected subjectively rather than according
to an objective standard. This gives rise to the next prob-
lem.

2. Itis difficult to evaluate the coverage of test cases
selected.

To overcome these problems, we and our colleagues
[6] have developed a method for selecting test cases by
applying the ‘‘design of experiments’’ method [7]. By
applying an orthogonal array of the ‘‘design of ex-
periments’’ method, one can find the smallest set of test
cases that satisfies the following condition: ‘‘between
any two factors, there must be the same number of com-
binations of statuses for each factor,”’ if the number of
statuses (represented as p) for each factor is the same
and is a power of a prime number. Table 1 depicts the
orthogonal array for p=2. It demonstrates that to
satisfy the above condition when p=2, four test cases
are required for test factors of two or three, and eight
test cases for test factors of four to seven.

For the above table to be used, the number of
statuses for all factors must be equal. In designing test
cases, however, the number of statuses of each test fac-
tor take different values from each other in many cases.
It is possible to overcome this problem through the use
of a Boolean graph, as depicted in Fig. 2. This graph
combines factors and their statuses by logical opera-
tions so that an orthogonal array can be applied to this
graph.

In this Boolean graph, the statuses of a factor are con-
nected by ‘logical or’ and combination conditions be-
tween two factors are connected by ‘logical and.’ The
input to ‘logical or’ is set at 2 so that application of an
orthogonal array for p=2 at a ‘logical or’ node (that is,
one of nodes 21, 22, 23, and 31 in Fig. 2) allows test
cases to be selected.

When there are many factors and statuses, the
number of test cases may still be large. Further reduc-
tion may be required. In such situations, we can relax
the condition to ‘‘between any two factors, there must

247

(a) External specification

LABEL INSTRU- OPERAND
CTIONS
FID TYPE={OUTI|DSP}

PGM={AIM|ACS|BATCH}
COPYLIB={YESINO}

(b) Factor analysis table

FACTOR TYPE PGM COPYLIB
A B C
1 ouT AIM YES
STATUS
DSP ACS NO
3 BATCH

Fig. 1 Example of an external specification and a corresponding fac-
tor analysis table.

Table 1 Orthogonal array for p=2.

FACTOR |1 2 3 4 5 6 7 8 9 10111213 14

TEST

CASE
T1 0|0 0|0 0 0 0/{0 0 OOOTOO
T2 1/0 110 01 1/01 01010
T3 01 1j0101(0 01 1001
T4 1 1 0j0110j0100UO0T11
TS 00011 11{000011°1
Té 1011100010110 °1
T7 611 1010}j00111 10
T8 1 1010010110100
T9 0000O0OOTI1 111111
T10 101001110101 01

statuses of each factor is represented as 0 or 1

Fig. 2 A Bodean graph for Fig. 1.

be at least one combination of all possible combina-
tions of their statuses.”’ As can be seen in Table 2, this
reduces the number of test cases.

Evaluation of Our Methodology
Our methodology simply introduces one objective
criterion for the number of test cases, based on the

248

Table 2 Reduced combination table derived from Table 1.

FACTOR|1 2 3 4 5 6 7 8 9 10111213 14
TEST
CASE
Tl 0(0 0/0 0 0/{0 0 0 0O0O0(O00OC
T2 1jo 1|1 0 1j1 0110110
T3 011/01 1|01 101 101
T4 11 0|/1 10|01 101 10|11
TS 001110{001110|00
Té 11000 1j11000T1|11
T7 01110110001 001
T8 1 0001001110110
T9 01001011001010

number of combinations of test factor statuses. While
there is no theoretical basis for believing that the ap-
plication of this criterion will yield sufficient coverage,
we can empirically state that it has been satisfactory to
date. Compared with previous techniques for selecting
test cases, which relied on personal knowledge and ex-
perience, this methodology usually requires a wider
selection of test cases to ensure its coverage, and results
in an improvement of the bug detection capability.
Through the use of a test case design tool that generates
test cases from a test factor analysis table, the man-
power needed to design test cases is also decreased
significantly [5, 6]. However, there are cases in which
we must test all combinations. In such situations, our
methodology is naturally not effective.

3. Automatic Generation of Test Programs

A method for automatic generation of test programs
typically defines a test grammar in a formal way, such
as BNF, and generates test programs from this descrip-
tion. It is a relatively simple task to randomly generate
test programs according to syntax description of the
language. However, the genration of practical ex-
ecutable programs requires solutions to several prob-
lems.

The first problem in generating test programs is that
of representing contextual dependencies in the
language. Duncan [8) has resolved this problem by us-
ing attribute grammar and has developed a test pro-
gram generator using a parser generator technique.
From our experience, however, use of a general parser
generator will require the description of all the informa-
tion regarding attributes and the passing of attributes.
It also results in a large amount of description.

The second problem is in the generation of test pro-
grams with selfchecking code. If the confirmation of the
testing results requires a large amount of manpower,
the benefit of automatic generation of test programs
will be reduced. D. L. Bied and C. U. Munoz [9]
describe automatic generation of test programs that are
executable and as self-checkable as possible. They
discuss the results of its application to a PL/I language

H. KaAwATA, H. YosHIDA, M. NaGal and H. Sauo

processor, a sort/merge and graphical data display
manager, although it is not based on a formal language
definition. D. C. Ince [5] pointed out that attribute
grammar would be very effective in solving the prob-
lems of both data generation and the confirmation of ex-
ecution results.

The last problem is functional coverage. To assure
adequate coverage we must be able to generate ex-
ecutable programs with complex structures such as
loops. The reports published so far seem to describe rel-
atively simple cases (9, 11, 12].

We here describe our test program genrator,
TPGEN, based on attribute grammar. It generates
high-quality test programs mainly for programming
language processors by using the following features [14]:

1. Generated test programs are executable and have
self-checking code for validating execution results.

2. Generated test programs are guaranteed to have
specific testing coverage for functionality.

3. TPGEM simulates execution of the generated
test programs and if abnormal events such as zero
divides or infinite loops are detected, it back-tracks to a
specified position and selects and alternative production
rule to avoid such abnormal events. Introduction of
this mechanism has succeeded in generating a wide varie-
ty of programs that include complex loop structures.

4. TPGEN provides a control facility for the order
of applying production rules and makes it possible to
manipulate language rules such as ‘‘variables used in
the execution portion must coincide with those in the
declaration portion.”’

Outline of TPGEN’s Generation Principle

TPGEN uses attribute grammar as the basic method
for defining the syntax and semantics of the target
language. Definition of semantics by attribute grammar
is done by giving attributes to each grammar symbol
(terminal symbols and nonterminal symbols), and by
describing how to manipulate each attribute. In
TPGEN, attributes are introduced in order to describe
how symbol tables, program control sequences, tables
that model the status of external files, and so on are
changed when the generated source text is executed.
These symbol tables, control sequences, and so on are
attributes pre-defined by TPGEN and visible to its
users.

Attribute grammar is a popular method for defining
programming languages. TPGEN has adopted this for
the following reasons:

1. Adding and/or updating the language definition
is easy, since attribute passing between production rules
is function-like (it has no side-effects) in attribute gram-
mar. Such characteristics are well adapted to our quali-
ty assurance environment, where it is necessary to
modify the definition or add a new set of definition to
our programming languages in a fairly short time ac-
cording to the contents of the added language features.

2. When back-tracking is required because of abnor-

Software Testing

{(test-casedd —> (stmt) ;

(stmt) —> (assign-stmt) |
{if-stot) |
{goto-stmtd ;e

{assign-stmt)

—> ({var)) "=" {{int-const)) (imsert checking routine) |
vard) =" (expr) ; oo

249

(if-stmt) —> "IF" (b-expr) "THEN” {assign-stmt)

’ELSE” {assign-stmt) "ENDIP” (insert checking routine) ; «reoeoosinennernn 4)

{goto-stmt) —> "GOT0” {stmt-no) (insert checking routine) <stmt-no)
<Stmt"‘ﬂ0> ST (5)
{expr) —> {primary) "+” {primary) | -(6-1)
{primary) *—” {primary) -(6-2)
(b-expr) —> {primary) "GT” {primary) | -(7-1)
CPrAmary) "LT.” {PLAMATY) | cvereeererreereoememmeemmmtntniiins ettt (7-2)
(primary) '_EQ.' (primary) D e (7_3)
{primary) —> {ref-var)) | -(8-1)
((int—const» LR T e T e PP PR RLRLA (8_2)

notes: symbols enclosed by {{and)) and are special non-terminal symbols pre-defined by TPGEN:
{{var)) is replaced by one of the symbols already declared.

{{ref-var)) is replaced by one of the symbols already declared and already has some value.
{{int~const)) is replaced by a randonly selected integer constant.

{{test—case)) will be explained later.

Fig. 3 Simplified example of language definition (syntax only).

mal execution, TPGEN must restart generating the en-
vironment of the test program, such as the symbol
tables. Since in attribute grammar all the information is
stored as attributes in each node of a derived tree, it is
easy to back-track to the specified point, resume the
generation environment, and select alternative rules.

We will now explain how TPGEN generates test pro-
grams from the language definition. Figure 3 shows a
simplified definition of a small subset of FORTRAN
(see [14] for more details). In the following, symbols en-
closed in arrowheads are non-terminal, and symbols en-
closed in double quotes are terminal symbols.

If we select the production rules in Fig. 3 in the order
1), 2-2), @), (7-1), (8-1), (8-2), 3-1), (6-D), ...,
then part (a) of the source text of Fig. 4 will be
generated. Parts (b) and (c) of Fig. 4 are generated after
part (a) has been simulated, based on the description of
the ‘insert checking routine.” A detailed description of
the ‘insert checking routine’ is given in [14].

The procedure adopted by TPGEN for generating ex-
ecutable test programs with self-checking code is as
follows:

1. TPGEN selects production rules in a specified
way (randomly or by considering functional coverage)
and generates a source text corresponding to one test
case. By a test case, we mean a source text that is a se-
quence of terminal symbols derived from starting sym-
bol {test-case) and is executable by itself. Usually, we
define a language so that one test case corresponds to
one statement (a simple statement or a compound state-
ment) with related statements such as initialization
statements and declaration statements.

2. TPGEN simulates how each status (the contents
of symbol table and so on) is changed by the execution
of the generated text, based on the semantic definition

VAR1= 100

TEST CASE 1: TEST OF IF STMT

QOQ

IF VAR1 GT. 200 THEN @
VAR1=VAR1-100 @
ELSE @)
VAR2 =50
CALL INTCHK(1, VAR2, 50, 'ASSIGN STMT INVALID.")(b)
VAR1=VART + 100 @

CALL INTCHK(1, VAR1, 200, 'IF STMT INVALID.")

TEST CASE 2 : TEST OF GOTO STMT

QOQ

Fig. 4 Example of generated text.

of selected production rules. In order to confirm that
the same status change will be given by the execution of
the object code compiled by the target language proces-
sor, TPGEN inserts subroutine calls at specified posi-
tions to confirm the values of variables.

3. A source text for one test case is generated by the
above procedure. A test program usually consists of
several test cases, each with several hundred lines of
codes, except when the program size itself is a major fac-
tor in test cases.

Self-checking Code

Although TPGEN understands status changes for all
variables, users of TPGEN must specify the position at
which self-checking code should be inserted, because
TPGEN does not understand the structure of the target
language. For example, if the ‘THEN?’ clause of an ‘IF’
statement consists of one assignment statement, inser-
tion of self-checking code inside the ‘THEN’ clause
may require, in some languages, grouping of these
statements. The current TPGEN does not understand
the target language to that extent.

Automatic checking of execution results is very im-

250

portant in the inspection and testing of our software
products. We had been using chekcing routines for
many years even before the introduction of TPGEN.
We have checking routines for each type of variable and
for each target language. Checking routines themselves
are coded in each target language. They receive, as
parameters, a variable, its expected value, and other in-
formation that is used to identify the source text in case
of an error. A test program generated by TPGEN is ex-
ecutable once it is link-edited with the above checking
routines.

TPGEN inserts self-checking code for specified
variables based on the semantic definition of the
language. Validation of the contents of external files is
done by validation of variables when they retrieve a
record from that file. Users may specify the insertion of
checking routines in such a way as to ‘‘insert checking
routines for all the variables whose statuses have been
changed since the last time their status change was con-
firmed.”’ In this case, TPGEN generates code to check
status changes for all the necessary variables. Insertion
of checking routines is not restricted to the end of each
trest case (see Fig. 4).

Test programs generated by TPGEN thus have self-
checking code, and if a test program is executed
correctly, the program is discarded and only the infor-
mation concerning what kind of functional test was
done is stored in our data base.

Evaluation of TPGEN

TPGEN has been in use for more than two years in
our Quality Assurance Department for several language
processors, including FORTRAN, C, LISP, PROLOG,
Al-oriented shell, sort-merge, and COBOL-embedded
SQL. At the time of their functional enhancement,
these products were inspected partially, using TPGEN
with more than 2000 production rules and several hun-
dred KLOC of generated programs.

TPGEN has been effective for generating test pro-
grams that are executed normally. In the case of FOR-
TRAN, about 80% of the normal functional testing can
be done by using TPGEN. TPGEN is not effective for
functional testing of special functions such as the I”
function, special files such as VSAM, and so on. In the
case of SQL, most of the functional testing for Data
Manipulation Language (DML) could actually be done
by using TPGEN, but TPGEN is not effective for Data
Definition Language (DDL). In the case of DDL, infor-
mation concerning testing environments and opera-
tional procedures must be provided in order to make
TPGEN generate test programs with self-checking
code. It is not possible or realistic to describe this infor-
mation with our simple model, in which only symbol
tables, program control sequences, and so on can be
simulated.

H. KAwaTA, H. YosHIDA, M. NAGAl and H. SAlio
4. Fault Injection Testing

System software such as operating system software is
usually designed in such a way that the impact on the
overall system of its own errors is minimized. System
software typically also incorporates built-in
mechanisms that permit processing to continue while
the areas damaged as a result of an error are isolated.
Fault injection tests these error recovery mechanisms by
deliberately introducing or injecting software faults and
hardware faults into the system.

One fault injection technique is to overwrite in
memory a portion of data or program (15, 16].
Chillarege [16] reports experiments using this technique
on IBM’s MVS/XA operating system, where 34% of
system program errors have been traced to memory
overwirting. Another technique for fault injection is to
abruptly and unexpectedly terminate a unit of work.
This can be accomplished by using a CANCEL com-
mand at an operator’s console, for example.

Fault injection can also be achieved by using hard-
ware. Recent reports describe attaching a multi-pin
probe to LSI pins or exposing an LSI circuit board to
heavy ion radiation [17, 18]. Gunneflo [18] reports that
many error variations can be generated by using radia-
tion. An 1/0O error simulator that we call the Hardware
Trouble Smiulator (HTS) has been employed for many
years as a means of simulating hardware faults by using
software.

Testing Fault-tolerant Operating Systems

Fault injection is especially important in the evalua-
tion and verification of fault-tolerant systems.
However, the methods mentioned above have some
shortcomings when used for testing commercial fault-
tolerant operating systems.

1. If faults are entirely randomly generated, there is
a high probability that faults will be injected into events
with a high frequency of occurrence, such as I/O
waiting. However, there is no guarantee that the
coverage of such randomly created faults will be
sufficient.

2. The nondeterministic fault injection method has
difficulty in generating the same fault repeatedly and in
investigating the error recovery process when the
recovery process fails.

3. It is not evident that appropriate errors occur as
a result of indirect fault injection such as memory over-
writing.

We will now describe the methodology we employ to
test our fault-tolerant system [23). We evaluate fault
tolerance by estimating the MTBF on the basis of test
results. Our fault injection testing generates an ap-
propriate mixture of hardware and software faults
based on the distribution of the occurrence of such
faults in user environments. We use two techniques to
inject hardware faults:

1. A hardwar emechanism for simulating problems

Software Testing

Processing processor

251

Instruction sequence in OS

OS common area

debug processor

f TRAPID=n then halt processing

[TRAPID : m

1) set TRAPID

<
by m _l

f TRAPID=m then hait processing

TRAPID number

and error setting
2) simulate fault | from floppy disk

Fig. 5 Fault injection mechanism of OS.

2. Asoftware tool (HTS) for simulating I/O errors.

The software fault injection mechanism relies on an
integrated, built-in fault-simulating mechanism in the
operating system itself. This mechanism is depicted in
Fig. 5.

Our fault-tolerant system has a debugging processor
with a debugging program that can overwrite the con-
tents of memory and restart the processor. Using this
feature, we can assign a number to the specific field nam-
ed TRAPIS within the operating system’s common area
that can be referred to from all the programs in the
operating system.

We imbed a sequence of instructions in the operating
system checkpoints. Each sequence has a number as-
signed to if. If the number is equal to the TRAPID
field, the instruction sequence halts processing. We
assign a unique number to each instruction sequence in
the entire system, and their locations are chosen so as to
test effective cases, such as before and after disk data up-
dating, that require different types of error recovery
processing.

When the instruction sequence is executed, it detects
whether its own number is equal to the contents of the
TRAPID field and, if so, and execution control is
transferred from the operating system to the debugger.
The debugger will then simulate faults by overwriting
memory or registers, or by transferring control to one
of several specific routines that will simulate faults such
as program checks, infinite waits, or infinite loops. This
fault simulation is automatically performed according
to the number of the TRAPID field and the error type
specification, obtained from the floppy disk attached to
the debugging processor. Thus, fault injection testing
of the operating system can be accomplished by input-
ting a large number of randomly arranged pairs of
TRAPID numbers and error type specifications.
Moreover, it is easy to regenerate the same test sequence
by using the testing information stored in the floppy
disk.

Estimation of MTBF
We adopted an estimation model to assess the fault
tolerance of the system. This fault tolerance comes

(1-¢) A

CA A

S0 > 81 —> s2

S0: on-line module is active

SI: on-line module is down and spare module is active
$2: both modules are down (system down)

A: failure rate

4 Tepair rate

C: coverage

Fig. 6 Markov model for standby spare system.

from the estimation of the MTBF after measurement of
the coverage, which is the fault-proof rate of inten-
tionally injected faults generated by the above fault in-
jection testing. Our method may be explained as
follows.

The reliability of a fault-tolerant system is normally
calculated by analyzing the system as a stochastic proc-
ess [19]. This is usually done according to the Markov
model, which assumes a failure (rate (A) and a repalr
rate (u) as constants. We introduced a Markov model of
a standby spare system, including a coverage concept,
as shown in Fig. 6.

This model can be solved analytically and the MTBF
can be derived as follows:

MTBF=((1+C)A+u)/(A(A+(1—C)u))

When the system is in a stable condition, the above
equation can be approximated by assuming that A »u,
as follows:

MTBF=1/(1-C)*1/4

This means that the MTBF of the standby spare system
is 1/(1—C) times greater than that of the single system
(1/4). Now we can estimate the MTBF as follows:

1. Find the actual coverage, C, for injected faults

252

2. Measure the occurrence frequency and time inter-
val of faults that occur accidentally during testing, and
put those values into a fault occurrence frequency transi-
tion model such as a non-homogeneous Poisson process
(NHPP) model, and estimate the MTBF (1/4) as a
single system at the end of testing.

3. Estimate the MTBF value by the above equation.

Evaluation of Our Methodology

We are now applying this approach to our fault-
tolerant operating system, and its evaluation has not yet
been completed. At present, we can say that the testing
procedure and its use of this methodology has been
simplified and highly automated. Measurement of the
coverage is very effective for the evaluation and im-
provement of our development and testing activities
themselves. But this methodology still involves some
problems and difficulties.

1. Itis not known to what extent our fault injection
mechanism and the work load effectively simulate faults
that might occur naturally

2. It is not easy to make a work load that transfers
control to some specific checkpoints.

5. Application System Testing

System software products such as operating systems
for general-purpose computers are developed for the
general market, not for individual customers. On the
other hand, application systems such as banking
systems, insurance systems, and manufacturing systems
are constructed by developing customer-specific applica-
tion software on the general-purpose system software
products. In the case of large-scale application systems,
a customer-specific application software system usually
exceeds one million lines of code.

Application system testing confirms that a com-
puter’s system can meet the customer’s functional, per-
formance, and operational requirements. Such applica-
tion system testing is performed in the following three
steps:

1. System testing using a pseudo-application pro-
gram. This verifies that general-purpose system soft-
ware products meet customer-specific requirements in
the environment in which they are intended to operate.

2. Application system testing including customer-
specific application software development. The key
point is to meet the customer’s business requirements,
which include the operational condition, performance
requirement, and error recovery requirement. The Deci-
sion on selecting and/ or applying general-purpose soft-
ware products and general application packages is very
important and strongly influences the productivity and
maintainability of the application software developed.

3. Acceptance testing. This is done by the customer
together with Fujitsu, in the actual operational environ-
ment with all the related facilities, including many ter-
minals.

H. KawaTa, H. YOsHIDA, M. Nagal and H. Saujo

The purposes of these three aspects of application
system testing are of course different and involve
different personnel, but they also have many
similarities. We shall now discuss system testing using
pseudo-application programs by taking an example of a
financial application system.

System Testing Using a Pseudo-Application Program

Generally speaking, a large-scale system includes
scores of products, and it is confirmed that the func-
tions, performance, and operationality of these pro-
ducts will, as a whole, conform to the customer’s
requirements on the basis of their operational
environments and system configuration. This testing is
usually done in parallel with the application software
development, and to achieve this, a pseudo-application
program is developed, after analyzing and modelling
how the application program uses general-purpose
system products. This will minimize the number of
faults be detected at the acceptance testing, which is
done after the completion of the application software.

This testing is rarely possible without the patient ex-
traction of test cases, crcation of a testing procedure
document, and running of prepared test jobs by a test
team whose members are assembled from interrelated
sections. For example, a test team may be com-posed of
twenty members, extract more than 1000 test cases and
write testing procedure documents of over 100 pages.
Whether the test is successful or not depends on the
quality of test cases extracted and the testing procedure
documents. So many products are included in a large
system that a wide range of knowledge and experience is
required for this work. It is therefore very important to
enrich communications among many organizations [20).
As an example, this testing may consist of the following
four tests.

Installation testing: calls for the preparation of hard-
ware and software products according to manuals that
ultimately are delivered to our customers. In this pahse
of testing, installability of software is established. In ad-
dition, the system is confugured so that operational,
performance and error recovery testing may be perform-
ed. The key point here is to construct a representative
test system that corresponds to the customer’s configura-
tion and environment. A sample financial system con-
figuration is shown below.

Test system Real system

No. of clusters (host machines) 5 6
No. of DASDs 235 (420GB) 352(630GB)
No. of terminals 34 1700

Amount of application software
Operational software
Business software

15 KLOC
30 KLOC

300 KLOC
1200 KLOC

Operational testing: Verifies that routine customer
operations, from initial system start-up to system shut-
down, can be performed as expected. Normal opera-
tional testing tests a customer’s complete operational cy-

Software Testing

cle from morning start-up and system activation
through customer application execution and system
deactivation and shutdown. Operational testing at ab-
normal times varies widely, depending on the
customer’s operation policy. For example, backend
processing must continue even if the number of active
machines is reduced to one, where as front-end proc-
essing may stop in this case, but pre-determined ter-
minals must continue operation.

Performance testing: verifies through measurement
that the customer’s performance requirements are
satisfied. Examples include confirming that the system
can process one million transactions per hour, and
validating that hot standby switching can be performed
in less than 3 seconds. As it is not realistic to install the
thousands of terminals and lines that make up today’s
customer environments, we have developed MTS, a
multi-terminal simulator. MTS can be used to simulate
terminals, lines, and terminal operators.

Error recovery testing: verifies that, in the event of an
error, damaged portions are cut off, the recovery
mechanism functions well, and the customer’s opera-
tions continue as expected. For instance, destruction of
a database on a DASD is simulated by generating 1/0
errors using a hardware trouble simulator (HTS), and
data base corruption on the system storage unit (SSU) is
simulated by a clip technique that generates SSU data
transmission errors. Terminal errors and line errors can
be tested by cutting power or disconnecting lines.

6. Summary

In this paper we have focused on some of the topics
in dynamic testing. In testing, it is of course important
to try to find as many bugs as possible. Another key
point is how, once bugs are found, they are treated. We
believe that causal analysis aimed at identifying the root
cause of errors is an essential element of software
testing—one that will yield significant improvements in
software quality [21, 22].

References

1. MYERs, G. J. The Art of Software Testing, John Willey & Sons,
Inc. 1979.

2. GOODENOUGH, J. B. and GERHART, S. L. Toward a Theory of
Test Data Selection, JEEE Trans. Softw. Eng., SE-1, 2 (June 1975),
156-173.

253

3. HowbeN, W. E. Reliability of the Path Analysis Testing Strategy,
IEEE Trans Softw. Eng., SE-2, 3 (Sept. 1976), 209-215.

4. CHusHo, T. Functional Testing and Structural Testing, Japanese
Perspectives in Software Engineering, Addison-Wesley Publishing
company (1989), 155-185.

§. TarsuMi, K. Conceptual Support for Test Case Design, Pro-
ceedings of COMPSAC87 (1987), 285-290.

6. SHIMOKAWA, H. and SATO, S. Test Cases Design Based on Design
of Experiment, The Fourth Symposium on Quality Control in Soft-
ware Production (in Japanese), Federation of Japanese Science and
Technology (1984), 1-8.

7.TaGucHl, G. Design of Experiments, ‘‘Maruzen Publishing Co.
(1976).

8. Duncan, A. G. and HUTCHISON, J. S. Using Attributed Gram-
mar to Test Designs and Implementation, Proceedings of the 5th
ICSE (1981), 170-178.

9. Biep, D. L. and Munoz, C. U. Automatic Generation of Ran-
dom Self-Checking Test Cases, IBM Systems Journal, 22, 3 (1983),
229-245.

10. INcE, D. C. The Automatic Generation of Test Data, The Com-
puter Journal, 30, 1 (1987), 63-69.

11. MAURER, P. M. Generating Test Data with Enhanced Context-
Free Grammars, JEEE Software (July 1990), 50-55.

12. BazzicHi, F. and SPADAFORA, I. An Automatic Generator for
Compiler Testing, /[EEE Trans. Softw. Eng., SE-8, 4 (July 1982),
343-353.

13. SeEAaMAN, R. P. Testing a High Level Language Compiler, [EEE
Comp. Syst. and Tech. Conf. (Oct. 1974), 6-14.

14. Sauno, H. and KaAwATA, H. A Practical Test Program Generator
Based on Attribute Grammar, Internal Document, Fujitsu Limited
(1990).

15. CHILLAREGE, R. Understanding Large Systems Failures—A
Fault Injection Experiment, Digest of papers, 19th Annual Interna-
tional Symposium on Fault Tolerant Computing (1989), 356-363.
16. BaRrTON, J. H. et al. Fault Injection Experiments Using FIAT,
IEEE Trans. Computer, 39, 4 (1990), 575-582.

17. ARrIAT, J. CRoOUZWT, Y. and LAPRIE, J. C. Fault Injection for
Dependability Validation of Fauit-Tolerant Computing Systems,
Digest of Papers, 19th Annual International Symposium on Fault
Tolerant Computing (1989), 348-355.

18. GUNNEFLO, U., KARLSSON, J. and TORIN, J. Evaluation of Error
Schemes Using Fault Injection by Heavy-lon Radiation, Digest of
papers, 19th Annual International Symposium on Fault Tolerant
Computing (1989), 340-347.

19. ToHMA, Y. et al. Theory on Fault Tolerant Systems, The Institu-
te of Electronics, Information and Communication Engineers
(Japanese), 1990.

20. Housk, D. E. and NEwMAN, W. F. Testing Large Software Pro-
ducts, ACM SIGSOFT Software Engineering Notes, 14, 2 (Apr. 1989),
71-78.

21. Hino, K. Analysis and Prevention of Software Errors as a QC
Activity, Engineering (Japanese) (Jan. 1985), 6-10.

22, Mays, R. G. et al. Experiences with Defect Prevention, /BM
Systems Journal, 29, 1 (1990), 4-32.

23. YosHIDA, H., Suzuki, H. and Oxazaki, K. Fault Tolerance
Methodology of the SXO Operating System for Continuos Opera-
tion, The 1991 pacific RIM International Symposium on Fault
Tolerance Systems (1991), 182-187.

(Received December 26, 1990)

