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A Hybrid Approach to Range Image Segmentation
Based on Differential Geometry'

NAOKAZU YOKkoYA* and MARTIN D. LEVINE**

One of the most significant problems arising out of understanding range images of 3D objects is image
segmentation. This paper describes a hybrid approach to the problem, where *‘hybrid’ refers to a combination
of both region- and edge-based considerations. It is assumed that the range image of objects, which may be con-
structed of both curved and planar surfaces, is divided into regions. These are meant to correspond to surface
primitives that are homogeneous in their intrinsic differential geometric properties and do not contain discon-
tinuities in either depth or surface orientation. The method is based on the computation of first and second par-
tial derivatives, which are obtained by locally approximating object surfaces, using biquadratic polynomials. By
computing the Gaussian and mean curvatures and examining their signs, an initial region-based segmentation is
then obtained in the form of a curvature sign map. Two initial edge-based segmentations are also computed
from the partial derivatives and depth values. One detects jump edges while the other highlights roof edges. The
three image maps are then combined to produce the final segmentation. Experimental results are presented for
both synthetic and real range data. These indicate that the proposed segmentation method is useful for describ-

ing both polyhedral and curved objects.

1. Introduction

One of the main objectives in computer vision
research is to enable a machine (computer) to unders-
tand its three-dimensional (3D) environment. In recent
years, sets of digital range data, which are referred to as
range images or depth maps, have become widely
available for the analysis of 3D objects [1, 2], thanks to
the development of various active and passive range-
finding techniques [3-7]. Range data directly provide
geometrical information about the shape of visible 3D
object surfaces, and some problems in 3D object
description and recognition can therefore be solved
more easily in range images than in conventional inten-
sity images. In particular, a dense depth map, which is
usually produced by an active rangefinder, is useful for
analyzing curved as well as polyhedral objects. Re-
cently, considerable attention has been paid to the prob-
lem of analyzing 3D objects by using dense depth maps.

The most significant problem in the early stages of im-
age understanding is image segmentation, a process of
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partitioning an image into meaningful parts or extrac-
ting important image features from it. In general, image
segmentation techniques are based on the common
assumption that meaningful object components or sur-
face primitives are homogeneous in image properties
and that there exist abrupt changes in properties be-
tween the components. Segmentation techniques for
range images can be classified into two categories:
region- and edge-based approaches. A region-based ap-
proach, which is called region segmentation, attempts
to group pixels into surface regions based on the
homogeneity or similarity of image and physical proper-
ties. On the other hand, an edge-based approach, which
is also referred to as edge detection, attempts to extract
discontinuities in properties.

Region-based methods for range images usually parti-
tion the image into surface regions which can be approx-
imated by using analytical functions. The simplest such
function is a first-order polynomial [8]. In this case, ob-
ject surfaces are approximated by planer patches, with
the result that objects are modeled as polyhedra.
However, higher-order functions, such as second-order
polynomials [8-10], are needed for working with more
complex curved objects. These approaches require the
assumption that parts of object surfaces can be globally
approximated by a particular function. More recently,
an attractive idea has been proposed for locally describ-
ing surfaces by using curvatures from the point of view
of differential geometry [11-15]. Smooth surfaces can
be characterized by Gaussian and mean curvatures, and
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in such an approach, surface primitives are defined by a
combination of the signs of these surface curvatures
[12]. Each object surface is locally classified into one of
eight descriptive surface types. However, there still re-
mains a problem. Differential geometry is a theory for
smooth differentiable surfaces, whereas most object sur-
faces are not entirely smooth but have discontinuities.
The problem is how the surface curvatures can be ac-
curately calculated for surfaces with discontinuities.
On the other hand, edge detection techniques in
range images are intended to isolate discontinuities in
both depth and surface orientation. A depth discon-
tinuity, which is called a jump edge, is meant to corres-
pond to an object contour or occluding boundary. A
surface orientation discontinuity, referred to as a roof
edge, is an internal edge of an object. Whereas differen-
tiation operators developed for intensity images are also
applicable for detecting jump edges in range images,
roof edges require different techniques. Typical ap-
proaches to the detection of roof edges have been based
primarily on surface normal analysis [16, 17], second-
order differentiation of the depth function [16], or com-
putation of the principal curvatures of surfaces {13, 18].
The difficulties and drawbacks of edge-based ap-
proaches are that (1) it is difficult to form closed
contours of objects; (2) the resulting line drawing is
generally not complete and is often difficult to interpret
uniquely; and (3) it is difficult to extract smooth surface
changes, which are usually only available from cur-
vature-based approaches. The shortcomings of (3) are
particularly severe for the analysis of curved objects.
We propose a hybrid approach to the problem of
range image segmentation, where ‘‘hybrid’’ refers to a
combination of region- and edge-based considerations.
The range image of a set of objects, which may have
both curved and planar surfaces, is divided into
regions. These regions are meant to correspond to sur-
face primitives that are homogeneous in their intrinsic
differential geometric properties and do not contain
discontinuities in either depth or surface orientation.
The method employs a selective local surface fit and is
based on the computation of first and second partial
derivatives for piecewise smooth surfaces. By com-
puting the Gaussian and mean curvatures and examin-
ing their signs, an initial region-based  segmentation is
then obtained in the form of a curvature sign map. Two
initial edge-based segmentations are also computed
from the partial derivatives and depth values. One
detects jump edges by computing differences in depth,
while the other highlights roof edges by differences in
surface normals. The three initial image maps are then
combined to produce the final range image segmenta-
tion, which can be represented in the form of a region
adjacency graph containing information about surface
and edge types. The main advantages of the proposed
method are (1) the accurate local estimation of view-in-
dependent surface properties for piecewise smooth sur-
faces and (2) the isolation of adjacent distinct surface

regions of the same surface type. The first advantage is
accomplished by the use of a new local surface fit techni-
que, and the second by the integration of edge informa-
tion into a region-based segmentation scheme. The
method has been experimentally proven to be useful for
describing both polyhedral and curved objects.

2. Computing Differential Geometric Properties of
Piecewise Smooth Surfaces

In order to recognize free-formed objects by using a
range image, it is important to estimate the view-in-
dependent local properties of the object surfaces. For
this purpose, we employ differential geometry [19, 20]
as a mathematical basis of our approach. In the follow-
ing, we first give a brief introduction to the differential
geometry of surfaces, especially the definition of sur-
face normals and surface curvatures. A new technique
for computing these quantities from range data is then
described.

2.1 Differential Geometry of Surfaces

2.1.1 Surface Normal, Gaussian Curvature, and
Mean Curvature for a Graph Surface

In this paper, we assume that a range image from a
single view is provided in the form of a digital graph sur-
face, which is sometimes referred to as the orthogonal-
range type [2]. Thus the definition of a surface S in the
range image is explicitly defined with respect to an
image coordinate system by

S={(x, , 2(x, y)): (x, Y)eDSE*}, m

where z(x, y) is meant to be a depth value from a
reference plane at a point (x, y) in the range image.

A unit surface normal n at a point (x, y) is defined to
be

ax ay

The Gaussian curvature K and mean curvature H at a
point (x, y) of the surface S are defined as follows:
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See Refs. 12 and 19-21 for detailed discussion of the
geometrical meaning of these quantities.
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2.1.2 Classification of Surfaces According to Cur-
vature Signs

Both Gaussian and mean curvatures are local proper-
ties of a surface that have the attractive characteristics
of translational and rotational invariance; that is, at a
point on a surface, these curvatures are invariant to
translation and rotation of the object as long as the sur-
face is visible [12, 20]. Besl and Jain [12] have pointed
out that the signs of Gaussian and mean curvatures
yield a set of eight surface primitives with desirable in-
variance properties including view-independency, and
with sufficient power to describe visible surfaces
qualitatively. Given a coordinate system in which the z
axis is directed toward the viewer, eight surface
primitives are defined as follows [12]:

(1) K>0and H<O- - -peak surface;

(2) K>0and H>0-- - -pit surface;

(3) K=0and H<O- - -ridge surface;

@) K=0and H>0----valley surface;

(5) K=0and H=0----flat surface;

6) K<O0and H=0----minimal surface;

(7) K<O0and H<O- - -saddle ridge surface;

(8) K<0and H>0- - -saddle valley surface.

Such a classification of surfaces is useful for describ-
ing 3D objects from the viewpoint of object recogni-
tion. In a later section, these surface types will be
employed as surface primitives into which a range im-
age is segmented. Incidentally, it is obvious that the
case of K>0 and H=0 does not occur, since K and H
must satisfy the inequality K < A from the definition of
surface curvatures. (The area defined by K> H? in (K,
H) space is called the prohibitive zone [21].)

2.2 Computing Differential Geometric Properties by
Using a Selective Local Surface Fit

This section proposes a new technique for locally
estimating the differential geometric properties of a sur-
face, especially for computing Gaussian and mean cur-
vatures. It should be noted that differential geometry is
a theory of smooth differentiable surfaces. However, ob-
jects are usually not entirely smooth over all their sur-
faces, but are piecewise smooth. The problem is how to
estimate curvature properties accurately for piecewise
smooth surfaces. The proposed method has three steps:
(1) fitting of an analytical function to a local window
centered at an individual point; (2) determination of the
best window orientation for each point; (3) computa-
tion of surface curvatures by using the selected best win-
dow.

2.2.1 Polynomial Approximation of Local Windows

At each pixel in the range image, we locally determine
a continuous differentiable function that fits the underly-
ing depth surface. Note that what is considered here is
not a global fit but a local one. We can use a single
valued function z=z(x, y) as an approximating func-
tion, since the range data are assumed to be given in the
form of a graph surface as defined by Eq. (1). At least
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Fig. 1 A set of operators for local biquadratic surface fit using a
5x 5 window.

second-order differentiability is needed for the func-
tion, as is obvious from the definition of curvatures,
and it should be analytically simple. The surface fitting
must not be sensitive to noise and quantization effects
in the range images. Generally, higher-order functions
fit the given data well; however, this implies that such
functions will fit not only an object shape but also the
undesirable noise effects. These considerations lead us
to choose the following biquadratic polynomial, which
includes six independent parameters:

z(x, y)y=ax*+ by *+cxy+dx+ey+f. )

We employ a local surface fit within a 2m+1)x
(2m+1) window centered at each point (x, ) and
denoted by W(x, y). The coefficients a-f of the
polynomial are determined for each window W (x, y) by
using a standard least-squares method in which the sum
of the squared fitting error is minimized within the win-
dow. The resulting convolution operators for determin-
ing the coefficients are shown in Fig. 1, where the win-
dow size is assumed to be 5 x 5(m=2). The computed
coefficients of the fitted polynomial are associated with
each window W(x, y) and therefore represented as a(x,
) b(x, »), c(x, »), d(x, y), elx, »), and f(x, ), respec-
tively. See Ref. 21 for other sets of operators for
different values of m.

2.2.2 Selecting the Best Window

Previous researchers have adopted similar ideas on
local surface fitting in order to obtain differentiation
operators for range data [12, 14, 22]). However, such
operators tend to blur or deform the original shape of
an object, because they are uniformly applied even in
the vicinity of discontinuities. In particular, the blurr-
ing of a depth discontinuity creates a distorted surface
shape and therefore generates spurious shape descrip-
tions [23].

The above considerations make it clear that the sur-
face fit window must not overlap a discontinuity in the
range data. We propose a method for selecting the best
window that does not overlap a discontinuity. A point
in a range image is covered by 2m+1) X 2m+1) win-
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(b) Wireframe representa-
tion

(a) Synthetic range image

(c) Squared errors of local
surface fit

Fig. 2 Distribution of the least squared errors of local biquadratic
surface fit.

dows, since the window size is assumed to be 2m+1)
X (2m+1). For each point (x, y), we select the best win-
dow that provides a minimum fitting error among those
windows covering the point (x, y). This method is based
on the observation that the surface fitting error in-
creases in the neighborhood of a discontinuity, as is
shown in Fig. 2. Figure 2(a) is a synthetic range image
that contains an ellipsoid and a partially occluded torus
on a flat background. The magnitude of the fitting error
in Fig. 2(c) is proportional to the intensity. Note that
the synthetic range image in Fig. 2(a) is frequently used
throughout this paper to illustrate the performance of
algorithms at each stage.

Once the best window W(x—u, y—v) has been deter-
mined, the surface fit at a point (x, y) is represented by
a set of coefficients {a(x—u, y—v), b(x—u, y—v),
c(x—u, y—v), dix—u, y—v), e(x—u, y—v), flx—u,
y—1v)}, where (—u, ~v)is a displacement (offset) from
the point (x, y) to the center of the selected best win-
dow. This surface fit may be referred to as the selective
local surface fit. While the basic idea behind the method
comes from slope facet model smoothing of intensity
images [24], this is the first application of the idea in
range images.

2.2.3 Computing Derivatives and Curvatures

We discuss the computation of surface properties at
an individual point in a range image. At the outset, the
first and second partial derivatives are estimated in ac-
cordance with the selective local surface fit described
above. The surface curvatures are then calculated from
the partial derivative estimates.

By using the selective local surface fit and symbolical-
ly differentiating Eq. (5), the first and second partial
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Fig. 3 A set of 5% 5 operators for estimating the first and second
partial derivatives by using the selective local surface fit.

derivative estimates are obtained at a point (x, y) as
follows:

a
aﬂf‘(x, y)=22a(x—u, y—vu+c(x—u, y—v)
+dx—u, y—v) 6)

0z
a(x, »=2b(x—u, y—v)v+c(x—u, y—ov)u

+e(x—u, y—v) @)
2
=5 & Y)=2ax—u, y=0) ®)
d’z
P O, »)=2b(x—u, y—v) ©
%z %z
5;a—y(x, y)=m,;(x, y)=cx—u, y—v), (10

where the offset from the point (x, y) to the center of its
best window is assumed to be (—u, —v). Substituting
the oprators in Fig. 1 into Egs. (6)-(10), we obtain a set
of the derivative estimators that include the offset (—u,
—v). A set of 5§ x5 finite difference operators is shown
in Fig. 3. Note that the operators with no offsets, (—u,
—v)=(0, 0), are equivalent to the second-order
operators proposed by Beaudet [25].

The direct execution of differentiation operators in
Fig. 3 with a range image is computationally expensive
because it requires the determination of the offset (—u,
- v) at every pixel. A practical method is as follows: (1)
the operators in Fig. 1 are convolved with the image,
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and the computed coefficients a-f and the local surface
fit error are stored for each pixel; (2) the offset (—u,
—v) is determined at each pixel by searching for the
minimum number of surface fit errors within a window;
and (3) Eqs. (6)-(10) are evaluated in order to determine
the partial derivatives. This method is composed of the
convolution, min-filter, and evaluation of at most first-
order polynomials, and can be efficiently carried out by
using special hardware.

Using the first and second partial derivatives esti-
mated above, the Gaussian and mean curvatures are
computed from Egs. (3) and (4), respectively. Unit sur-
face normals are also computed from Eq. (2). Figure 4
shows that the selective local surface fit method im-
proves the curvature estimates when compared to the
fixed non-adaptive window method. The Gaussian and
mean curvature sign maps in Fig. 4 were obtained by
assigning K=0 when |K|=<0.00001 and H=0 when
|H|<0.003. The curvature sign maps represent
positive curvature in white, zero curvature in gray, and
negative curvature in black. It can be observed in Fig. 4
that surface points are correctly characterized by using
the proposed surface fit technique, even in the
neighborhood of discontinuities.

3. Segmentation and Description of Range Images

3.1 Overview of the Approach

We wish to partition a range image into meaningful
surface regions without using any domain-specific
knowledge. Special types of objects and their shapes are
not assumed here. A scene to be analyzed may be com-
posed of several objects with occlusions, and each ob-
ject may be constructed of both curved and planar sur-
faces. The only assumption used here is that an object
surface is partially composed of smooth differentiable
surfaces (piecewise second-order differentiability). The
problem to be discussed here is how to define a domain-
independent segmentation of range data; in other
words, what is a meaningful surface region in the range
data? The surface region should be a geometrical
primitive and must provide important cues for recogniz-
ing 3D objects. Considering the above, we define the sur-
face region to be the largest four-connected component
that satisfies the following two conditions:

(1) The signs of the Gaussian and mean curvatures
are constant within the surface region.

(2) The region does not contain any significant
discontinuities in either depth or surface orientation.

In order to accomplish the segmentation defined
above, we propose a new segmentation method that con-
sists of the following three major steps:

(I) Local Surface Characterization: The first and
second partial derivatives are first estimated at each sur-
face point. These are accurately computed not only on a
smooth surface but also in the neighborhood of a
discontinuity, using the selective local surface fit de-

N. Yokova and M. D. LEVINE

(a) Gaussian curvature sign
map using the non-
adaptive method

(b) Mean curvature sign
map using the non-
adaptive method

(c) Gaussian curvature sign (d) Mean curvature sign

map using the selective map using the selective
local surface fit local surface fit

Fig. 4 Comparison of the selective local surface fit with the con-
ventional non-adaptive window method for computing cur-
vature sign maps.

scribed in Section 2.2. By using these quantities, the sur-
face normal and surface curvatures are then calculated.

(II) Initial Segmentation: Three kinds of initial
segmentation maps are computed; a region-based
segmentation in the form of a curvature sign map (KH-
sign map) suggested in Section 2.1.2 and two edge-bas-
ed segmentations embodying jump and roof edge maps.
Essentially, these maps can be computed in parallel.

(Ill) Final Segmentation: The three initial segmenta-
tion maps are combined to produce the final segmenta-
tion, in which each region must satisfy the surface
region conditions mentioned earlier.

Figure § illustrates the overall control flow of the
segmentation algorithm. Since the first step has been de-
scribed in detail earlier, the following discussion
focusses on steps (II) and (III).

3.2 Region-Based Initial Segmentation

We recall that each point on a surface can be
classified into one of eight possible surface primitives ac-
cording to the signs of the Gaussian (X') and mean (H)
curvatures. These surface primitives are view-indepen-
dent as long as the surface is visible. The theoretical
aspects and practical computational schemes for this ap-
proach have been fully discussed in Section 2.

However, in a practical sense, thresholding about
zero is required in order to obtain the curvature sign
map. For example, the real range image of a flat surface
does not yield Gaussian and mean curvature values that
are exactly equal to zero. This is usually caused by noisy
variations in depth value and quantization effects. The
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Fig. 5 The overall control flow for the range image segmentation
algorithm.

thresholds about zero for the Gaussian and mean cur-
vatures are selected symmetrically, and are referred to
as Ko and H,, respectively; that is, we assign K=0 when
— Ko< K=<Kj,and H=0 when —Hy< H=<H,. From the
definition of K and H, we use a constraint on the selec-
tion of K, and H, as follows: (1) Ko=H3; (2) Ko= H3.
The second condition comes from the fact that if the ine-
quality is not satisfied, some surface points will fall into
the prohibitive zone in (K, H) space.

In order to erase small surface regions regarded as
noise, the KH-sign map is contracted and then expand-
ed. First, each surface region in the map is contracted
by one pixel, considering four-connectedness for pixel
connectivity. The surface region is then iteratively ex-
panded until all unlabeled pixels are eliminated. The
refined KH-sign map at this stage is shown in Fig. 6(a).
It should be noted that at this stage the surface types are
correctly determined but the adjacent distinct surfaces
of the same type are not discriminated.

3.3 Edge-Based Initial Segmentation

3.3.1 Detecting Jump Edges

For each point in the range image, the jump edge
magnitude, which is denoted by Mj,m,, is computed as
the maximum difference in depth between the point and
its eight neighbors. This is formulated for a point (x, y)
as follows:

Mjump(x, Y)=max{lz(x, y)—z(x+k, y+DI:
—1=<k, I<1}, an

where z represents the value of the fitted polynomial
computed at the point (x, y). The edge image is
thresholded to produce the jump edge map. At present,
the threshold is determined according to the mean and
standard deviation of the edge magnitude.

(b) Surface-edge map

(N
S~

(d) Surface type map

(a) KH-sign map

1

2\
N

{c) Region map

Fig. 6 Results at each stage of region segmentation.

3.3.2 Detecting Roof Edges

A roof edge can be located by surface normal
analysis. At each point in the range image, the roof
edge magnitude, denoted by M., is computed as the
maximum angular difference between adjacent unit sur-
face normals. This is formally given as

n(x, y)-n(x+k, y+1) )
in(x, M- ln(x+k, y+D1 /)’

Mo05 (x, ¥)=max {Cos‘ ‘(

—lsk,lsl}

=max{Cos™\(n(x, y)-n(x+k, y+1)):
—~1<k, I<1} (12)

The unit surface normal n is computed from Eq. (2), us-
ing the first partial derivative estimates. This should
also be thresholded to produce the roof edge map and
combined with the KH-sign and jump edge maps at the
final segmentation stage.

3.4 Final Segmentation

In this section, the final segmentation stage is de-
scribed in detail. We present a method for integrating
the three initial segmentation maps into the final
segmentation. The process of generating the final
region-based segmentation is composed of the follow-
ing three steps: (1) superimposition of the two edge
maps onto the KH-sign map; (2) component analysis of
surface regions; and (3) expansion of surface regions.

3.4.1 Superimposing Edge Maps onto the KH-Sign
Map

After the initial region-based segmentation, the KH-

sign map has been generated in the form of a labeled im-

age in which each point has a value of 1 to 8 corre-
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sponding to the determined surface type. At this stage,
the thresholded edge maps are superimposed onto the
KH-sign map to produce a surface-edge map, in which
each edge point has a value of —2 or —1 if it is re-
garded as a jump or roof edge, respectively. Figure 6(b)
depicts the surface-edge map, in which boundaries of
the KH-sign map are indicated by black lines, while
jump edges are shown as deep gray and roof edges as
light gray. The thresholds for the edge maps were
selected as the mean plus the standard deviation of their
magnitudes.

3.4.2 Component Analysis

To generate a region map, an existing four-connected
component labeling algorithm is independently
employed for each surface type in the surface-edge
map. The edge points are not labeled with positive
number and are kept unchanged. Thus, the resulting
region map is not a complete segmentation; that is, it is
composed of surface points (non-edge points) that have
region numbers as their labels and edge points with
negative labels.

3.4.3 Expansion of Surface Regions

Each surface region in the previously obtained partial
region map is expanded in parallel to generate a final
region map, using the following two steps. First, each
surface region having a positive label is conditionally ex-
panded so that the expansion does not cross the boun-
daries of surface regions in the KH-sign map. However,
there still remain edge points with negative labels that
correspond to the surface points entirely overlapped by
edge points. Each surface region is then unconditional-
ly expanded in parallel until all edge points are erased.

Simultaneously, to produce a final surface type map
corresponding to the above region map, each surface
region in the surface-edge map is expanded in the man-
ner described above. As a consequence, the surface
regions entirely overlapped by edge points are not
recovered; that is, small surface regions on discon-
tinuities are eliminated.

Figures 6(c) and (d) show boundary representations
of the final region and surface type maps. It can be seen
that the horizontal ellipsoid and the outside surface of
the torus are perfectly discriminated in the final region
map.

3.5 Description of a Segmented Range Image

We now suggest a method for describing a 3D scene
by using the segmented regions and related informa-
tion. The final segmentation maps contain the follow-
ing rich information about the scene: (1) surface region
discrimination (region number); (2) view-independent
surface type (KH-sign); and (3) edge types between adja-
cent regions (jump edge, roof edge, or smooth surface
change). From the segmentation in Fig. 6(c), these
region and boundary properties and their relationships
can be represented as a region adjacency graph, as
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smooth
hange

jump

jump

Fig. 7 A region adjacency graph for the segmented image in Fig.
6(c).

shown in Fig. 7, in which each surface region is in-
dicated by a node and a boundary type label is associ-
ated with an edge between the nodes.

A jump edge implies an occluding contour of an ob-
ject in the range image, while both roof edges and
smooth surface changes correspond to internal edges of
an object. If we suppose that a jump edge necessarily
isolates an object from others, the segmented image in
Fig. 6(c), which consists of Regions /-8, can be inter-
preted as being composed of the following six objects:
Object 1 (Region 1); Object 2 (Regions 2 and 3); Object

3 (Region 4); Object 4 (Region 5); Object 5 (Region 6);

Objec: 6 (Regions 7 and 8). However, in order to con-
clude that Objects 1 3, and 5 correspond to a single
background and that Objects 2 and 6 construct a single
torus, further analysis such as a hypothesis-and-test
process is needed.

Only the computed surface type is associated with
each region (node) in Fig. 7. The list of calculated at-
tributes for each region, such as the surface area, may
be attached to the corresponding node in the graph.
Such an improvement is expected to be useful for a
model-based 3D object recognition system that uses the
region adjacency graph suggested here.

4. Experimental Results

We present an example of experimental results for
the proposed segmentation method, using real range
data. The real range images used in the experiments
were obtained by using a laser rangefinder developed at
the National Research Council of Canada [5]. The im-



523

A Hybrid Approach to Range Image Segmentation Bused on Differential Geometry

Gaussian and mean curvature sign maps:

(a) Range image (b) Wireframe representa-

tion

(f) Mean curvature sign (g) KH-sign map

map

(¢) Gaussian curvature sign
map

(c) Local surface fit error

B positive curvature
zero curvature
B negative curvature

(d) Shaded image

KH-sign map:

peak surface

ridge surface

saddle ridge surface
(none — prohibitive zone)
flat surface

minimal surface

(i) Jump edge magnitude (j) Roof edge magnitude

(k) Surface-edge map

pit surface
valley surface
saddle valley surface

EEEE mE:A

(1) Region map

Fig. 8 Experimental results for a real range image (DYPRO1) consisting of both polyhedral and curved objects.

ages were originally obtained as a 2D array of pixels
with values 12 bits long and proportional to the z
values. These were then calibrated, resulting in floating-
point data. The original range image contains shadow
and quantization effects that cannot be completely
eliminated but are rather reduced in the calibrated im-
age. Although the typical image size is 256 X 256, ex-
periments were carried out with 128 x 128 images ob-
tained by resampling. In the results shown below, the
first and second partial derivatives were computed by us-
ing the 5 x5 operators.

Figure 8 shows experimental results for real range
data (DYPROI) of a scene consisting of both
polyhedral and curved objects on a table. The
differences in curvature signs and surface types are
shown by the colors. Note that region boundaries are
superimposed on the surface type map in Fig. 8(1). The
thresholds K, and H, are set to 0.0004 and 0.02, respec-
tively. It can be seen that the spherical and cylindrical
surfaces are correctly extracted as the peak and ridge
surfaces, respectively. Note that the polyhedral objects
are excellently partitioned into their planar surfaces ow-
ing to the integration of the edges with the KH-sign
map. However, a few small surface regions appear at
the corner of planar surfaces and in the vicinity of im-
age borders. These misclassifications are created by the
impossibility of selecting windows that do not overlap
any discontinuities.

S. Conclusions

In this paper, we have proposed a hybrid approach to
range image segmentation. We first locally approximate
a depth surface by using biquadratic polynomials, and
analytically compute the first and second partial
derivatives. The Gaussian and mean curvatures and the
surface normal are then computed at each point, using
the partial derivative estimates. By using these quan-
tities, three kinds of initial segmentation maps are
generated in parallel: (1) a KH-sign map, (2) a jump
edge map, and (3) a roof edge map. These image maps
are then combined into the final segmentation.

The usefulness of this approach has been proven ex-
perimentally for both synthetic and real range data. The
advantages of the proposed method are summarized as
follows:

(1) Each surface point is accurately characterized as
one of eight possible view-independent surface types,
even in the vicinity of discontinuities in depth and sur-
face orientation. This is accomplished by the use of the
proposed local surface fit technique.

(2) The proposed method is useful for segmenting
range data of free-formed objects, since it does not rely
on the global approximation of data using special types
of functions.

(3) Adjacent distinct surface regions of the same sur-
face type can be discriminated. This advantage is due to
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the integration of edge information into a region-based
segmentation scheme; in other words, to the hybrid ap-
proach.

(4) In addition to segmented region maps, rich
descriptions of the surface and boundary of a region are
obtained. These are expected to be useful for further ob-
ject recognition.

The major problems remaining can be stated as
follows:

(a) At present, the thresholds K, and H, for the
Gaussian and mean curvature sign maps are selected
manually. Different values of the thresholds yield
different KH-sign maps, and subsequently different
region maps. The threshold selection technique should
be investigated further.

(b) The proposed selective local surface fit usually
allows accurate estimation of surface curvatures in the
neighborhood of discontinuities. However, as can be
seen in the experimental results, sometimes all possible
windows overlap the discontinuities and wrong cur-
vature estimates are subsequently obtained. A possible
solution to this problem is to use a variable window size
(the multiscale approach) or a variable window shape.

While our segmentation method will be computa-
tionally expensive on ordinary sequential machines, its
efficiency could be improved by using a special-purpose
image processor or a highly parallel machine, since the
main part of the computational cost is for the selective
local surface fit and curvature estimation.

In addition to improving the method of handling the
problems listed above, we suggest two future research
directions: (1) development of a model-based object
recognition system using scene descriptions obtained by
our method as discussed in Section 3.5, and (2)
automatic object-model acquisition using range data
from multiple views.

Acknowledgements

The authors wish to acknowledge the assistance of
the National Research Council of Canada, who provid-
ed us with laser range images. They also would like to
thank Baris I. Demir, David Gauthier, and Andre
Sokalski for their helpful discussions and assistance in
developing programs for this work. Naokazu Yokoya
would like to thank the members of the Image Under-
standing Section, Electrotechnical Laboratory, for
their support. Martin D. Levine would like to thank the
Canadian Institute for Advanced Research for its sup-
port.

References

1. Best, O. J. and JAN, R. C. Three-dimensional object recogni-
tion, ACM Computing Surveys, 17, 1 (March 1985), 75-145.

2. Yamamo1o, H., TAMUNE, M. and Tamura, H. Range finding
and range data processing: A survey, Technical Report of the In-

N. Yokova and M. D. Levist

stitute of Electronics, Information and Communication Engineers of
Japan, IE 86-128 (March 1987) (in Japanese).

3. Jarvis, R. A. A perspective on range finding techniques for com-
puter vision, /[EEE Trans. Pattern Anal. Mach. Intell., PAMI-5, 2
(March 1983), 122-139.

4. SuGIHARA, K. Survey: Extraction of surface structures from
visual information, SIG Notes of the IPS Japan, SIGCV 33-4 (Nov.
1984) (in Japanese).

5. Rioux, M. Laser range finder based on synchronized scanncrs,
Applied Optics, 23, 21 (Nov. 1984), 3837-3844.

6. INOKUCHI, S., SATO, K. and MATSUDA, F. Range imaging system
for 3-D object recognition, Proc. 7th Int. Conf. on Pattern Recogni-
tion (August 1984), 806-808.

7. OHTA, Y. and KANADE, T. Stereo by intra- and inter-scanline
search using dynamic programming, [EEE Trans. Pattern Anal.
Mach. Intell., PAMI-1, 2 (March 1985), 139-154.

8. OsHIMA, M. and SHIRAL, Y. Object recognition using three-dimen-
sional information, JEEE Trans. Pattern Anal. Mach. Intell., PAMI-
S, 4 (July 1983), 353-361.

9. FAUGERAS, O. D., HEBERT, M. and PaucHON, E. Segmentation
of range data into planar and quadratic patches, Proc. IEEE Con/.
on Computer Vision and Pattern Recognition (June 1983), 8-13.
10. MULLER, Y. and MoOHR, P. Planes and quadrics detection using
Hough transform, Proc. 7th Int. Conf. on Pattern Recognition (Aug.
1984), 1101-1103.

11. WakAyAaMA, T. On deriving and drawing the structural lines ol
curved objects, Technical Report of the Institute of Electronics and
Communication Engineers of Japan, IE 76-94 (March 1977) (in
Japanese).

12. BEsL, P. J. and JaIN, R. C. Invariant surface characteristics for
3D object recognition in range images, Computer Vision, Graphics,
and Image Processing, 33, | (Jan. 1986), 33-80.

13. VEMURI, B. C., MiTICHE, A. and AGGARWAL, J. K. Curvature-
based representation of objects from range data, Image and Vision
Computing, 4, 2 (May 1986), 107-114.

14. YaNG, H.S. and Kak, A. C. Determination of the identity, posi-
tion and orientation of the topmost object in a pile, Computer Vi-
sion, Graphics, and Image Processing, 36, 2/3 (Nov./Dec. 1986),
229-255.

15. SHirASAWA, H., SATO, K. and INOKUCH]I, S. Recognition of con-
tinuous quadratic curved surface, Technical Report of the Institute of
Electronics, Information and Communication Engineers of Japan,
PRU 87-15 (May 1987) (in Japanese).

16. BHaNu, B., LEE, S., Ho, C. C. and HENDERSON, T. Range data
processing: Representation of surfaces by edges, Proc. 8th Int. Conf.
on Pattern Recognition (Oct. 1986), 236-238.

17. Tomita, F. and KANADE, T. A 3D vision system: Generating
and matching shape descriptions in range images, Proc. Ist Conf. on
Artificial Intelligence Applications (Dec. 1984), 186-191.

18. HERrRMAN, M. Generating detailed scene descriptions from range
images, Proc. 1985 IEEE Int. Conf. on Robotics and Automation
(March 1985), 426-431.

19. LipscHuTZ, M. M. Theory and Problems of Differential
Geometry, McGraw-Hill, New York, 1969.

20. po CarRMO, M. P. Differential Geometry of Curves and Sur-
JSaces, Prentice-Hall, Englewood Cliffs, 1976.

21. Yokova, N. and LEviNg, M. D. Range image segmentation
based on differential geometry: A hybrid approach, McGill Research
Centre for Intelligent Machines Technical Report, McRCIM-TR-
CIM 87-16, McGill University (Sep. 1987).

22, BRrADY, M., PONCE, J., YUILLE, A. and Asapa, H. Describing
surfaces, Computer Vision, Graphics, and Image Processing, 32, 1
(Oct. 1985), 1-28.

23. BEsL, P. J.and Jain, R. C. Segmentation through symbolic sur-
face descriptions, Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (June 1986), 77-85.

24, PonG, T. C., SHAPIRO, L. G. and HARALICK, R. M. A facet
model region growing algorithm, Proc. IEEE Conf. on Pattern
Recognition and Image Processing (Aug. 1981), 279-284.~

25. BEAUDET, P. R. Rotationally invariant image operators, Proc.
4th Int. Joint Conf. on Pattern Recognition (Nov. 1978), 579-583.



