Translation of the IPSJ Best Paper Award papers

Estimates of Rounding Errors with Fast
Automatic Differentiation and Interval Analysis

KoicHi KuoTa* and Masao Irr**

We propose an algorithm for calculating rigorous upper bounds of the absolute values of the rounding errors
incurred in the computed values of functions. We also prove that, under some suitable conditions, the upper
bounds become asymptotically sharp as the machine epsilon approaches zero. The proposed method is a com-
bination of the technique of Fast Automatic Differentiation and interval operations for real intervals with both
upper and lower edges representable as floating-point numbers.

The method is useful to guarantee the quality of numerical results in the sense that we can determine an inter-
val containing the exact value of the function based on the value computed in finite precision and on the esti-
mate obtained by the method. We also illustrate the efficiency and the practicalness of the proposed method by
numerical experiments in comparison with the conventional interval analysis.

1. Introduction

By means of Fast Automatic Differentiation [3, 5, 6,
7, 8, 11], we can practically estimate rounding errors
that occur in the computed values of functions. Indeed,
two methods of estimating rounding errors called ‘‘Ab-
solute Bounds’’ and ‘‘Probabilistic Estimates,”’ have
been proposed and reportedly give good approxima-
tions to rounding errors [7,11]. But we cannot
theoretically rigorously guarantee that these methods
will give a range containing the exact function value
(namely, the value that would have been obtained
without rounding errors). To obtain such a precise
range for the function value, we may resort to a kind of
interval arithmetic by replacing arithmetic operations to
be executed in computation of the functions with the
corresponding machine interval operations. However,
for large complicated functions, the width of the inter-
val thus obtained as the final result may be unaccep-
tably wide. In this paper, we propose an algorithm for
calculating estimates that give rigorous and sharp upper
bounds for the absolute values of rounding errors and
that are proved to be ‘‘optimal’’ in a sense defined later.
We also compare the estimates obtained by means of
the proposed algorithm with those obtained by machine

This is a translation of the IPSJ Best Paper Award paper that ap-
peared originally in Japanese in Transactions of IPSJ, Vol. 30, No. 7
(1989), pp. 807-815.

*Department of Administration Engineering, Faculty of Science
and Technology, Keio University, Kohoku-ku, Yokohama 223,
Japan.

**Department of Mathematical Engineering and Information
Physics, Faculty of Engineering, University of Tokyo, Bunkyo-ku,
Tokyo 113, Japan.

Journal of Information processing, Vol. 14, No. 4, 1991

interval operations and with absolute bounds.

The proposed algorithm is a combination of the
technique of Fast Automatic Differentiation and
Machine Interval Operations. We assume that there are
no errors in input data, and investigate only the errors
generated and accumulated in the course of computa-
tion. (It is straightforward to extend the discussion to
cases in which the input data are contaminated with er-
rors.) Our standpoint is as follows: ‘‘Each operation in
computation is performed at the highest precision possi-
ble on the available machine, so we cannot know the ex-
act value of rounding error, or even its sign, but only
the upper bound of the absolute value of the rounding
error generated on the operation.”” This assumption
will be accepted as plausible when rounding errors are
rigorously discussed.

The basic principle of our algorithm is the ‘‘mean
value theorem’ in differential calculus. In interval
analysis of a function with many variables, E.R.
Hansen has already proposed and used a method based
on the mean value theorem, but his method requires a
computational time proportional to the product of the
number of variables and the time required to compute
the function itself [4, 14]. Yu. V. Matiyasevich propos-
ed another method, an interval analysis with mean
value theorem that makes use of the idea of Fast
Differentiation, and showed that the computational
time of the method was independent of the number of
variables [12]. Our method proposed in this paper ex-
tends Matiyasevich’s by applying it to rounding error
estimation.

In Section 2, we explain what kinds of functions we
consider and clarify the concept of ‘‘computation with

Estimates of Rounding Errors with Fast Automatic Differentiation and Interval Analysis 509

[N Wiy, 4y2)

v vy, up)

. U=)r <y, (U, up)
vy, . .., v, intermediate variables;
¥, . . ., ¥, basic operations;

u;, up: formal parameters of y; (each corresponds to an input
variable, a constant, or one of the previous in-
termediate variables v, ..., v;-, as the actual
parameter), j=1, ..., r.

Fig. 1 Computational process.

rounding errors’’. In Section 3, we introduce the con-
cept of machine interval operations, describe our
algorithm, and prove its optimality. In Section 4, we
give the results of numerical experiments with some
observations.

2. Computation with Rounding Errors

2.1 Piecewise Factorable Functions and Computa-
tional Process

We assume that the operations used in the computa-
tion of a function are either unary or binary, such as +,
—, X, /, exp, log, etc., and are continuously differen-
tiable in their domain of definition. We call them basic
operations. The functions we consider in this paper are
the so-called piecewise factorable functions [9], whose
values are calculated by a finite sequence of basic opera-
tions represented in the form of a procedure or a pro-
gram. The procedure for computing a piecewise fac-
torable function may contain conditional branches and
iterations that depend on the values of the input
variables. We call the sequence of operations, which
has actually been executed in the computation of the
value of the function with given input values, the com-
putational process. The computational process consists
of computational steps, each of which executes a basic
operation and then stores its value in a variable called
an intermediate variable. For a function with n
variables f(x), . . ., x,), its computational process is
represented as shown in Fig. 1. (Hereafter, descriptions
will be only for binary operations; it should be
understood that, for unary operations, the descriptions
regarding the second argument will be deleted.) The
number of intermediate variables in a computational
process is equal to the number of computational steps,
r.

2.2 Floating-Point Systems and Computations with
Rounding Errors

On a computer, the result of a real operation is usu-
ally approximated by the value of the corresponding
floating-point operation. For a specific computer (and a
compiler), the floating-point system means the set of
floating-point numbers representable in the computer
and the manner of rounding for real numbers. The so-

LN iy, d)=w\(@,, 4+,
Yy " Wi, ﬁn)=%‘(ﬁ,n up)+o;

=), < Wiy, d)=y,(@,, d,)+6,
vy, . . .7, intermediate variables with finite precision;
W, . .., ¥, basic operations with finite precision;

4, Up: formal parameters of w; (each corresponds to an input
variable, a constant, or one of the previous in-
termediate variables 7),...,7,, as the actual
parameter), j=1, ..., r

d), . .., J,: generated rounding errors.

Fig. 2 Computational process with rounding errors.

called machine epsilon ey expresses the supremum of
the relative rounding errors occurring in the floating-
point system.

When we perform computation with finite precision,
that is, with rounding errors, the computed values of in-
termediate variables as well as the computed value of
the function are somewhat different from the values
that would be obtained by computation with infinite
precision. With finite-precision computation, it may
happen that these differences in the computed values
lead to different branches chosen at the conditional
branches in the program and to division by a number
with a different sign (which latter would imply the
possibility of division by zero), and hence that the com-
putational process realized by computation with finite
precision differs in structure from that realized by com-
putation with infinite precision. However, we shall
assume in the following that the computational process
remains the same in spite of the existence of rounding er-
rors. (The validity of this assumption can be checked by
means of interval analysis, as will be stated in Section
3)

We assume that the values of input variables xi, . . .,
X, are given. After the sequence of basic operations has
been executed, giving rise to a process for computing f,
the value of f at (x;, . . ., x,;) is obtained. When the
value of fis computed by using a floating-point system,
rounding errors arise due to approximation. If the value
of fcan be computed by using interval arithmetic, as we
have assumed above, a unique structure of the computa-
tional process is determined. We denote the jth com-
putational step actually performed with rounding er-
rors by “v;«@;(@1;1, @,2)", instead of “‘vy—y;(u;, u;2)”’
as in Fig. 1, which would have been performed in the
ideal case where no rounding error occurred. y; in-
dicates a basic operation with finite precision. (Horizon-
tal bars over letters will indicate ‘‘finite precision’’ in
the following.) We define the generated rounding error
d; associated with the jth computational step by

V—/j(ﬁjls ajz)zw!‘(l?j], lzjz)“"éj (2.21)
(see Fig. 2).

Since the actual parameters of y; on the right-hand
side of Eq. (2.2.1) are the computational results in finite
precision, the generated rounding error J; is a local er-

510

ror ‘‘generated’’ in the execution of ;. Assuming the
smoothness of basic operations, the difference between
the jth computed result 7; and the exact value v; is ex-
pressed as follows:

vy — v =W, (i1, #;2) = y; (U1, U)2)
=y, (@, #2)— y; (U, Uj2) +96;
ay;

=6u_,~1 (uj1 +6; (84— up),

upr+ 6 (2= u;2)) (81— uj1)

Z _

+;;j2 (w1 +0;- (a4 —u;),
w2+ 0;- (@2 — u;2)) - (2 — u;2) +6;

2.2.2)

with some 6; between 0 and 1. dy;/du;; and dy;/ du;; are
the partial derivatives of the basic operation y;, which
we call elementary partial derivatives [5,6,7] and
whose values at (u +6;- (i — up), w2+ 0;- (@2 — u;2)) we
denote by d1 and d%, respectively:

9y _ _
df-’—'ﬁ (ujy+6;- (81— ujn), w2+ 65 (62— u;2))
i

(i=1,2). (2.2.3)

Thus, we get
b—v=di @ —up)+di- @p—up)+0;. (2.2.4)

The accumulated rounding error in the computed value
of the function is equal to the difference between o,(=
S) and v, (=f):
f"f= v, l),=d{) (ﬁrl - url)+d£ ‘ ('2!2 - urz) +6r- (2-2"5)
We will rewrite the right-hand side of Eq. (2.2.5) with
the help of a computational graph, G=(V, E, 8%, d~,
w, n,d) [6, 10]. We consider a set P; whose elements are
directed paths from vertex v; to vertex v,, where v; cor-
responds to the jth intermediate variable and v, cor-
responds to the rth intermediate variable, that is, the
function itself. Each path p in P; is a sequence of arcs
a, . . ., a. Theinitial vertex 3% a; of a, is v; and the ter-
minal vertex 9~ a; of a;is v, (" ax=0%ar+1; k=1, . ..,
/—1). We can define a sequence of pairs {(sk, ix)}e=1
along the path p=a,, . . ., a;such that s, indicates the
number of the computational step corresponding to
d”ay, i.e., v, =0 ax, and i, indicates that a, corresponds
to the formal parameter . Now denoting by Q; the
set of such sequences corresponding to directed paths in
P;, we can define

w= Z dj-di - -dy
{0 i hmi€ Q;
L dw, By, aWn)
= — m——— s e e e . —_— 2.2'6
(((sk,i.%-.ea duy, duy_ i, duy,;, ()

(=1,...,r—1), and w,=1. Replacing &, —u, and
f,2—u,, in Eq. (2.2.5) with the corresponding in-
termediate variables and substituting the expressions

K. KuBoTA and M. Irt

(2.2.4) repeatedly, we finally get

F=f=o,=0,=3 w9, @.2.7)
j=1
We shall discuss an algorithm for evaluating |f—f|
rigorously in the following section.
If we could set 6,=0, ..., 6,=0, then we would
have

af

W=7
’ au,-

(2.2.8)
owing to the chain-rule for differentiation of a com-
pound function. Thus, we have the linear approxima-
tion L, of v,— v,
r af
~r— 1=L = - '6',
Y v 4 Z ij 4

j=

(2.2.9)

which affords a base for the absolute bound and pro-
babilistic estimate of the rounding error in previous
papers [5, 6, 7]. Here, we can practically calculate all
af/dv;(j=1, ..., with the method of Fast
Automatic Differentiation. Since |9l <lv;|-en (er:
machine epsilon) holds for almost all computers, the ab-
solute bound A, may be defined [5, 6, 7, 10} as
Ar=3, .ﬂ’ Mol -em, (2.2.10)
j=119v;
which gives a practical and good approximation to the
upper bound of the absolute value of the rounding er-
ror but which is not a rigorous upper bound, because
Eq. (2.2.9) is already an approximate formula.

3. An Algorithm for a Rigorous Upper Bound of the
Absolute Value of the Rounding Error

We will give an algorithm for calculating an interval
S=[s’/, s*] such that f—feS. We can obtain the
rigorous upper bound of the absolute value of the roun-
ding error by |f—fI<IS| (where, for an interval
X=[x', x", 1 X is defined to be max{ix'l, Ix*1}).

3.1 Interval Operations and Machine Interval Opera-
tions [1]

By a machine interval we shall mean an interval of
real numbers [a’, @"] such that both &' and a* are
floating-point numbers. We sometimes refer to an inter-
val of real numbers simply as an interval. An interval
operation is an operation that takes intervals as
arguments and produces an image (which is also an in-
terval) of the intervals of arguments by the corre-
sponding real arithmetic operation. A machine interval
operation is an operation that takes machine intervals
as arguments and produces the narrowest possible
machine interval that contains the result of the corre-
sponding interval operation with the same arguments.
Of course, machine intervals and machine interval
operations depend on the floating-point system.

Estimates of Rounding Errors with Fast Automatic Differentiation and Interval Analysis 511

Substituting the interval machine operations for the
basic operations (and machine interval variables for the
variables) in the procedure for calculating a function f,
we can construct a procedure that produces machine in-
terval F starting from the input intervals with width 0,
%, %, . . ., [%, %), where X;=x; for all i. F obviously
contains both fand f, so the width of Fis a rigorous up-
per bound for the absolute value of the rounding error.
But it is known that the width of F may become too
wide to use for practical purposes when the function f'is
computed in many computational steps. In the follow-
ing section, we will show a method for obtaining a nar-
rower upper bound for the absolute value of the roun-
ding error than F after the computation of F.

The history of the machine interval operations actual-
ly executed in the computation of fis the computational
process in terms of machine interval operations. For a
certain floating-point system and a set of input data, the
“‘computability of £ by machine interval operations’’
will mean that we can execute all the necessary machine
interval operations without dividing by a machine inter-
val including zero or comparing two intersecting
machine intervals. (If division by a machine interval in-
cluding zero or comparison between intersecting
machine intervals is required, we cannot proceed any
further.) Thus, if F can be computed, the value of the
function will certainly be computable on the assump-
tion stated in Section 2.2. (If F is not computable, the
following arguments will be meaningless.) Evidently, if
Fis computable by a floating-point system represented
by a machine epsilon &y, it is computable by any
floating-point system that has a longer mantissa and a
longer exponent and that therefore has a smaller
machine epsilon & than &y, the resulting interval F* de-
termined by the latter system being included in the inter-
val F by the former.

3.2 Calculation of Partial Derivatives and Estimation
of Rounding Errors

Having computed F by machine interval operations,
we shall then proceed as follows. If we denote by V; the
machine interval corresponding to an intermediate
variable v; in the computation of the machine interval

F corresponding to f, we have
vy, €V, (=1,...,n, 3.2.1)

and thus

Table 1 Machine intervals corresponding to elementary partial
derivatives.
D/ corresponds to dy;/du;;, where v;=y;(Up, U;2)lup=0, wp=0..

W It b

+ i1 [£1, £1]

* v Vi

/ 1, 1o, -1, ~N®V,,
exp v, —

log (1, NV, —

w6 (—wel; (=1,...,ri=1,2) (3.2.2)

where we denote by Uﬁ the machine interval corre-
sponding to u;, and 0<0<1.

First, we substitute the machine interval operations
for the operations in the computation of the elementary
partial derivatives dy;/ du;;. Denoting by Di (j=1, . . .,
r; i=1, 2) the machine intervals calculated by those
machine interval operations, we have

_ . Ay _ _
Dis d§=—6u~l- (ujs+6; (@ — up), wja+ 6 (2~ uj2))
ji
(3.2.3)

since 0< ;<1 (j=1, ..., r). (See Table 1, where @,
B, ®, @, and so on indicate the machine interval
operations corresponding to +, —, %, /, and so on, re-
spectively.)

Next, we calculate a machine interval 4; containing
the generated error J; that depends on the values of the
arguments of the basic operation which computes the in-
termediate variable v;. For example, since in almost all
computers the absolute value of the generated error J; is
less than ;1 -y (or more precisely, gliowthl g, for
an ordinary floating-point system with radix f), we may
set 5,-5[—:—5,», 3,] with 3,'5 |2_1_,| “emrt Thus, from Eq.
(2.2.5), we have

f_fe (D’l®(l}rl - url)®D_;®(ar2_ urZ))®A—r- (3'2'4)

Expanding #,—u,, #,—u,, in a similar manner
repeatedly, we obtain the interval formula

(3.2.5)

corresponding to Eq. (2.2.7). W, (j=1, .. ., r) are the
machine intervals that correspond to w; in (2.2.6). They
are computed by substituting the machine interval
operations for the operations in the algorithm for Fast
Automatic Differentiation [5, 6, 7, 10] as follows:
1) [Initialization: —
Wi, ..., We—:=[0, 0];
W.=[1, 1]
2) Computation: —
for j:=r downto 1 do
a:=index of the intermediate variable of the
first actual parameter of y;;
b:=index of the intermediate variable of the
second actual parameter of y;;

W.:= W DW,;®Di;
W= WDW,®D4.
(When y; has only one argument or when an actual

parameter of y; is not an intermediate variable, either a
or b is not defined and the corresponding operation is

! Considering possible underflows, we may set 3j=max(lz')jl “Emy
pmin, —nmax} where pmin and nmax are the minimum positive
floating-point number and the maximum negative floating-point
number, respectively, representable in the floating-point system.

512

omitted. Note that, if we can execute the machine inter-
val operations for f to obtain F, we can compute all ¥,
without dividing by a machine interval containing zero
and without comparing intersecting intervals. Further-
more, we may compute the machine interval products
W, XD/, and so on, when they become necessary, in-
stead of computing D{in advance [5, 6].) It is important
to note that all W,, . . ., W, here can be computed in a
time proportional to r.
Thus, if we define Af by

& W@,

then |f—f| <Ar holds rigorously, where &P indicates
summation by machine interval additions.

Ar=

3.3 Algorithm for Computing 4r and its Computa-
tional Complexity

The algorithm for computing Ar can be summarized
as follows:

(1) The machine interval operations are substituted

for the real basic operations appearing in the pro-

cedure for computing the value of f, and the
machine interval variables for the real variables;

(2) The procedure constructed in (1) is executed

with X,=[%, %], . . . , X,=[%. %,} as inputs, and
the computational process for computing ¥, . . .,

V,(=F) is simultaneously determined;

(3) W, ..., W, are computed by means of the
algorithm of Fast Automatic Differentiation, where
the intervals for elementary partial derivatives may
be computed either beforehand or at the same time
as the computation of W;'s;

@) A4;=[-3,, ,where &=1Vjlew (j=1,...,7)
(or |%;ley when 7; is calculated together with V));
5) S=@)-W,®4, (P: machine interval summa-
tion);

6 Ar=ISI.

The time complexity of each machine interval opera-
tion is proportional to that of the corresponding or-
dinary real basic operation. Therefore, (1) and (2)
above are performed in a time proportional to that need-
ed for calculating the function alone. The computation
of (3) is also performed in a time proportional to that
for calculating the function by means of Fast
Automatic Differentiation. Hence, the time for com-
puting Ar is proportional to that for calculating the
function f alone. By a similar argument, the space re-
quired to compute Ar is also proportional to the time
(not to the space) for calculating f. (There have been
some proposals to reduce the size of space, for example,
by multi-level decomposition of the computational

graph [13].)

3.4 Optimality Property

Let us denote by R=|f—f1 the absolute value of the
rounding error in f. Then, we have

K. KusoTA and M. Ir1

R=

> wid; (3.4.1)
Jj=1

(see Eq. (2.2.7)). On the assumption in Section 1, it may
happen that all the signs of w,-di, . . . , w,*d, coincide
with one another. In this case, we have

R‘—"Z ‘le . ‘5j|.
Jj=1
If we denote by d; (1J;! =4;) the estimate that is a
floating-point number and the tight upper bound for
the absolute value of J;, we must anticipate the worst
case, in which R is as large as

(3.4.2)

=1

(3.4.3)

Since Ar gives the width of a machine interval that is
guaranteed to be no smaller than R, we have R < Ay.
Furthermore, on the assumption that

affov; =0 (=1, ..., 7, (3.4.4)

we can prove that Ar is sharp enough, that is, it is not
too large in comparison with R. More specifically, we
shall prove that, as the machine epsilon &) approaches
zero, that is, as the length of the mantissa part of the
floating-point system becomes longer with a sufficient
number of bits for the exponent part, the ratio As/R
tends to 1.

Theorem. Let

Ar=| D WiRA,
J=1

R=Y w16 and 4;=[-J, 5]

Jj=1

3.4.5)

Then, for an arbitrary ¢ > 0, there exists n> 0 such that,

if the computation with machine interval operations is

performed with ey <5, we have

1<+ 3.4.6

===< . 4.

z € ()

a

Proof. The following (i) holds because of the theorems'
for machine interval operations:

(i) For any ¢’ >0 there exists an 7, (> 0) such that, ina

floating-point system with any machine epsilon &, less

than 7, w;and W, which we defined in Sections 2.2 and

3.2, satisfy the relations:
0<IWl—Iwl<|Wi—wl=<e (j=1,...,r).(3.4.7

Moreover, because of assumption (3.4.4), the con-
tinuous ditferentia_l_)ility of f (in some domain), and the
computability of F, the following (ii) holds:

3
(ii) Form E% min, | 6;: ' (> 0), there exists #, such that
i

' Theorems 4 and 5 in Chapter 4 of Alefeld and Herzberger [1].

Estimates of Rounding Errors with Fast Automatic Differentiation and Interval Analysis 513

w; computed in a floating-point system with any
machine epsilon & less than #, satisfies

twil>m (=I1,...,0n.
From (i) and (ii), we have
(iii) For #y=min{n,, 1.},

I=<

(3.4.8)

where w; and W, are computed in a floating-point
system with machine epsilon &y less than #,.

It is trivial to show that Ar/ R =1, from the definition
of Ar. Furthermore, it may be seen that, even if we take
account of the rounding errors generated during the
calculation of the inner product with the machine inter-
val operations in Section 3.3 {5), we have the inequality

AF5<Z | W, -5,) “(1+em)". (3.4.9)
Jj=1
In fact, the absolute value of the product W;®9; is
bounded by | W;}-8;-(1+&u); for each addition in the
inner product, the upper bound of the intermediate
result is multiplied by 1+¢&y; and there are r—1 addi-
tions in the inner product.

For any positive e(< 1), let ¢’=¢-m/2 and determine
n; as in (iii). Then, if we compute the algorithm (Section
3.3) in a floating-point system with machine epsilon &y
less than n,=min{zn;, £¢/4r}, we have

Ar T Wii-8;(1+em)
R~ i iwil-g;

el
< (1 +—) “(1+e™r-ey)
m

g’ 1
sl+—+1.5-¢" — ¢
m 4

<l+e, (3.4.10)

where we use the inequalities (1+x) <e*<l1+e¢™r-x
(x=0,r=0).0

4. Numerical Experiments

4.1 Simulation of Machine Interval Operations

We have neither special hardware nor software for
direct execution of interval machine operations such as
PASCAL-SC |2}, so we simulated machine interval
operations on a VAX8600 machine with Kyoto Com-
mon Lisp (KCl) on the ULTRIX operating system, as
follows. The radix of the native floating-point system is
binary, the mantissa of a number consists of 56 bits and
the rounding is toward the nearest. The machine ep-
silon is equal to 27, On the machine, we used a pro-
gram to implement binary floating-point systems that
can have a mantissa of any length less than 56 bits.
They are represented in terms of their machine epsilon,
&m. The interval machine operations in a floating-point

IC
e)
hy=—(1=ag) Tes- [exp(—q- Vae /K- T)— 1] f e
—(1—ag) - Ics [exp(g- (Ve — Vae) / k- T)— 1) .
Ie=—ap Ips-[exp(— g Vee/ k- T) 1] Be
+lcs fexp(@- (Vee— Vo) (k- T)~ 1] e

Fig. 3 Ebers-Moll model for a pnp-transistor.

Iy, I: base current and collector current
Its, Ics: saturation currents for the emitter-base junction and the
collector-base junction
ag, ag: current transfer ratios
Vge» Ve voltages with the emitter as the datum node

T: temperature
q: electric charge of an electron
k: Boltzmann constant

A
O d®
1075
&_ A 2AF
Ry O 241
10710 &
3.
16715 &
1072
T T T T
,-12 ,-24 o736 248 ey

Fig. 4 Comparison of the widths of guaranteed intervals contain-
ing the exact value for the function that is the base current
in the Ebers-Moll model.

Iy=—=1.04x10"* A, where Vgz=—04V, V;=—10V,
Igs=1.0%x107° A, Is=2.0%10"° A, 0;=0.98, a;=0.5,
T=300K, g=1.602x 10™" C, k=1.38066 x 10" J/K

system represented by &, were performed as follows.
For each machine interval operation,

(1) we compute a machine interval C={c’, ¢"] in the
floating-point system represented by &y according to
the definition of the interval operation;

(2) then, we calculate the machine interval C=[é, &)
that includes the perturbation of C by €u, such that

&=min {¢" (1 —&n), ¢’ (1 +&u),
ch(1—em), c" (L +en)},
é"=max {c'-(1—&n), c'- (1 +&n),
ch(1—&um), " (1 +em)}.
For simplicity, we neglected the effect of underflow.
Note that there may be narrower machine intervals than
C, which contain the result of the machine interval
operation.
4.2 Example 1: The Ebers-Moll Model of a Transistor

We regarded the expression of the base current Iy in
the Ebers-Moll model of a pnp-type transistor (Fig. 3)
as the definition of a function. The width of the

514 K. KuBoTa and M. IRri
Table 2 Guaranteed intervals with £ and A, for a 10-dimensional linear system.
corppqtcd valqe.and
Em (unzg:'llliﬁ?’:il;le‘sitligr:;l ed guaranteed interval with F guaranteed interval with A
by means of A,
272 0.7438964843 — —
2% 0.7542193532 [—3344.4582519, 3346.1162109] [0.4637820125, 1.0446566939]
27% 0.7542197853 [0.0575954438, 1.4508441332] [0.7542197555, 0.7542198151]
274 0.7542197855 [0.7540463030, 0.7543932679] [0.754219785475757, 0.7542197854840781]
o d(F)/(2A7)
* |on ws °° |g3sss i g
= AF/Af
= d(F)/(24f)
10 " AFlAf o . »
10 + 10+
: : :
5 ° ° ° s e . a
10 = 0 - o * o o
o o 8 o
8 .] 8 og 8 .
o3 o5 oog oo : .
0 ° i: ° anen ° saven ° — 0 - Bou [—
10 CTLEL) Lenee. 2ugas 10 L) RAARS
7.-'12 2-’2- 2-‘!6 z-la Ey 2.‘12 2};4 2—‘36 ;u Ey

Fig. 5 Comparison of the widths of guaranteed intervals for 5-
dimensional linear systems.
Points whose ordinates are positioned at the symbol
‘00’ jndicate that the calculations corresponding to
those points were interrupted by the occurrence of a divi-
sion by an interval containing zero.

guaranteed interval given by the estimate Ar proposed
in this paper is 2-4r and that of the result F with
machine interval operations is d(¥). The linearly ap-
proximated width of the guaranteed interval is 2- A,
where A, is the absolute bound (Eq. (2.2.10)). They are
compared for four different machine epsilons (¢ in Sec-
tion 4.1)—27'2, 27 27% and 2~*_—as shown in Fig. 4.
There it is observed that 2- A, 2 Arand d(F) are almost
equal for this specific case of a small-scale function, and
that there is apparently no purpose in computing Ar
after computing F.

4.3 Example 2: Solutions of Linear Systems by Means
of LU Decomposition

A program for solving a linear system 4Ax=»b for x
with matrix 4 and vector b as input data by means of
LU decomposition was regarded as a program for com-
puting x as a set of functions with variables A and 5.
Specifically, we regarded the first component x; of x as
the value of a function f(A4, b) with n(n+1) variables,

2

Fig. 6 Comparison of the widths of guaranteed intervals for 10-
dimensional linear systems.
Points whose ordinates are positioned at the symbol
‘“0” indicate that the calculations corresponding to
those points were interrupted by the occurrence of a divi-
sion by an interval containing zero.

where 7 is the dimension of x. We prepared ten pairs of
a 5 x 5 matrix and a 5-dimensional vector (4,, b)), . . . ,
(A1, bio)) whose components were independently sampl-
ed from the uniform distribution on [—1, 1]. We
calculated A/, Ar and d(F) to estimate the rounding er-
rors occurring in the values of x,;=f(A4,,) (i=1, . . .,
10) for the four machine epsilons mentioned in Section
4.1.

There were cases in which we could not compute F
(and therefore could not computer Ar) because of large
rounding errors for large machine epsilons. Therefore,
we chose the absolute bound of linear approximation,
Ay, as the basis for comparison. Figure 5 shows A/ A,
and d(F)/(2-Ay). In that figure, those points whose or-
dinates are positioned at the symbol ‘00’’ indicate that
the calculations corresponding to those points were in-
terrupted by the occurrence of a division by an interval
containing zero. We also carried out similar ex-
periments for 10-dimensional matrices and vectors (Fig.
6). In Table 2, a part of the results of the latter ex-

Estimates of Rounding Errors with Fast Automatic Differentiation and Interval Analysis 515

periments (the 10-dimensional case) is shown numerical-
ly, and it can be seen that the number of significant
digits for the intervals guaranteed by Ar is markedly
greater than the number for the intervals guaranteed by
F.

It may be observed that, in most cases, the widths of
machine intervals obtained by naive machine interval
operations are between 10' and 10° times larger for 5-
dimensional linear systems, and between 10* and 10°
times larger for 10-dimensional linear systems, respec-
tively, than those obtained by the method proposed in
this paper. In summary, it can be said that our estimate
Ar gives not only a rigorous upper bound but also a
sharp upper bound of the absolute value of the roun-
ding error. In usual situations (where &y is less than 272
for 5-dimensional linear systems, and less than 27 for
10-dimensional linear systems), it is also observed that
Ay is a good practical approximation of the upper
bound of the absolute value of the rounding error.

Although sometimes hardware and software [2] that
compute inner products without rounding errors are
available, we considered here a situation in which each
of the multiplications and the additions in computing
the inner product of vectors generates a rounding error
individually.

5. Conclusion

We proposed a practicable algorithm for estimating a
rigorous and sharp upper bound of the absolute value
of the rounding error occurring in the computed value
of a function.

Through our numerical experiments we have ob-
served that the estimate of rounding error based on
linear approximation is usually good enough, but it is
important, at least theoretically, to establish a
technology that gives a rigorous and sharp estimate.

References

1. ALEFELD, G. and HERZBERGER, J. Introduction to Interval Com-
putations. Academic Press, New York (1983).

2. BOHLENDER, G., ULLRICH, C., GUDENBERG, J. W. and RALL, L.
B. Pascal-SC—A Computer Language for Scientific Computation.
Academic Press, Orlando (1987).

3. GRIEWANK, A. On Automatic Differentiation. M. Iri and K.
Tanabe (eds.): Mathematical Programming—Recent Developments
and Applications, Kluwer Academic Publishers (1989), 83 —107.

4. HANSEN, E. R. A Generalized Interval Arithmetic. K. Nickel (ed.):
Interval mathematics, Lecture Notes in Computer Science 29,
Springer-Verlag, Berlin (1975), 7-18.

§. Iri, M. Simultaneous Computation of Functions, Partial
Derivatives and Estimates of Rounding Errors—Complexity and Prac-
ticality. Japan Journal of Applied Mathematics, 1, 2 (1984), 223-252.
6. Iri, M. and KusoTa, K. Methods of Fast Automatic Differentia-
tion and Applications. Research Memorandum RMI 87-02, Depart-
ment of Mathematical Engineering and Information Physics, Univer-
sity of Tokyo (1987).

7. Iri, M., TsucHivA, T. and HosHi, M. Automatic Computation
of Partial Derivatives and Rounding Error Estimates with Applica-
tions to Large-scale Systems of Nonlinear Equations. Journal of Com-
putational and Applied Mathematics, 24, 3 (1988), 365-392.

8. Iri, M. and KuBota, K. Norms, Rounding Errors, Partial
Derivatives and Fast Automatic Differentiation. Transactions of the
Institute of Electronics, Information and Communication Engineers
(Japan), E14, 3 (1991), 463-471.

9. KebpeM, G. Automatic Differentiation of Computer Programs.
ACM Trans. Math. Softw., 6, 2 (1980), 150-165.

10. KuBOTA, K. and Ir1, M. Formulation and Analysis of Computa-
tional Complexity of Fast Automatic Differentiation (in Japanese).
Trans. IPS Japan, 29, 6 (1988), 551-560.

11. LINNAINMAA, S. Taylor Expansion of the Accumulated Roun-
ding Error. BIT, 16 (1976), 146-160.

12. MaTivasevicHd, Yu. V. Veshchestvennye Chisla i EVM.
Kibernetika i Vychislitel’naya Tekhnika, Vypusk 2 (1986), 104-133.
13. VoLIN, Yu. M. and OsTrovskll, G. M. Automatic Computation
of Derivatives with the Use of the Multilevel Differentiating Techni-
que—I. Algorithmic Basis. Computers and Mathematics with Ap-
plications, 11, 11 (1985), 1099-1114.

14. RaLL, L. B. Improved Bounds for Ranges of Functions. K.
Nickel (ed.): Interval Mathematics 1985, Lecture Notes in Computer
Science 212, Springer-Verlag, Berlin (1985), 143-155.

