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A Message-Pool-Based Parallel Operating
System for the Kyushu University Reconfigurable
Parallel Processor
—Parallel Creation of Multiple Threads—

KUNIHIKO TSUNEDOMI*, AKIRA FUKUDA**, KAZUAKI MURAKAMI*** and SHINJI TOMITA****

The Kyushu University Reconfigurable Parallel Processor system under development is a MIMD-type
multiprocessor which consists of 128 processing elements, interconnected by a full (128 x 128) crossbar net-
work. Reconfigurable memory architecture employed by the system allows the system to be configured as either
a shared-memory TCMP (tightly coupled multiprocessor), a message-passing LCMP (loosely coupled multiproc-

essor), or a hybrid of the two.

A parallel operating system under development is for the shared-memory TCMP, and aims at extracting
various kinds of parallelism of the operating system itself to provide high-performance. To exploit the
parallelism, the operating system is constructed by using a message-pool mechanism. A typical example of the
parallelism is the parallel creation of multiple threads. In this paper, we propose four schemes for the parallel
creation; the simple parallel scheme, the parallel template scheme, the chunk scheme, and the combination

scheme.

Simulation results show that the chunk scheme is the most desirable among the schemes.

1. Introduction

The Kyushu University Reconfigurable Parallel Proc-
essor system under development is a MIMD-type
multiprocessor which consists of 128 processing
elements, interconnected by a full (128 x 128) crossbar
network [1-3].

The goal of the system can be summarized as: i) to
construct a high-performance, multi-purpose multiproc-
essor system which can be tailored to a broad range of
applications, and ii) to offer an experimental environ-
ment, or testbed, which encourages many researchers in
the studies of highly parallel processing.

The system employs reconfigurable network and
memory architectures. The reconfigurable network ar-
chitecture allows network topologies to match com-
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munication pattetns of parallel algorithms. The
reconfigurable memory architecture also allows the
system to be configured as either a shared-memory
TCMP (tightly coupled multiprocessor), a message-pass-
ing LCMP (loosely coupled multiprocessor), or a
hybrid of the two. In the shared-memory TCMP, the
memory architecture of the system supports uniform-
memory-access (UMA) and nonuniform-memory-
access (NUMA) architectures.

The operating system should reflect the flexibility and
reconfigurability provided by the hardware system.
However, we take a step-by-step approach to build the
operating systems [4]. An operating system of the first
step is for the shared-memory TCMP, because:

+ The system configured as the shared-memory
TCMP has a potential high-performance. We believe
that exploiting an operating system which can extract
the potential gain provided by the shared-memory
TCMP contributes to research on highly parallel proc-
essing including operating systems.

« Exploiting such an operating system would also
give us some quantitative and qualitative information
on effective utilization of the flexibility and
reconfigurability provided by the hardware system.

Some operating systems have been constructed or are
under construction for the shared-memory TCMP [5-8].
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Some of these are not interested in extracting the
parallelisms of the operating systems, or extract system-
call-level/ function-level parallelism.

The operating system under development aims at ex-
tracting various kinds of parallelism of the operating
system itself to provide high-performance. To exploit
the parallelism, the operating system is constructed by
using a message-pool mechanism. A typical example of
the parallelism is parallel creation of multiple threads,
which allows multiple threads to be created in parallel.
Performance of the parallel creation depends on
tradeoffs between enhanced performance due to parallel
processing and overhead due to message handling and
network / memory contentions.

This paper describes the performance evaluation of
the parallel creation of multiple threads.

2. Design Principles and
Operating System

Message-Pool-Based

2.1 Design Principles

The design principles of the operating system for the
shared-memory TCMP are as follows:

1) Provide the users with a well-matched parallel
processing model to the shared-memory TCMP.

The operating system provides a process-thread
model to the users. A process consists of an execution
environment and multiple control flows (i.e. threads).
The execution environment includes a paged virtual ad-
dress space and protected access to system resources. A
thread is the basic unit of CPU utilization (i.e. a control
flow) [9]. It contains a context; a program counter and
the contents of registers. We believe that the process-
thread model is well matched to TCMP architecture,
because all threads in a process share its virtual address
space. The threads in a process work cooperatively.
Therefore, considering the model, we should choose
scheduling and memory management schemes.

2) Exploiting parallelism in a kernel.

To provide a high-performance kernel, we employ
the following kernel processing style:

+ The code of executing the system call is partition-
ed into various functions [10,11]. The functions are ex-
ecuted concurrently or in parallel, if possible. We call
this parallelization type first-class of parallelization.

+ The processing of a system call is organized as
multiple control flows, each of which has the same code
but different data from each other, if possible. The con-
trol flows are executed concurrently or in parallel. Of
course, it depends on the type of system calls. We call
this parallelization type second-class of parallelization.

2.2 Message-Pool-Based Operating System

A scheme which realizes both the first- and second-
classes of parallelization is implemented by using
message-pool mechanism in the kernel as shown in Fig.
1. When the kernel on a processor (e.g., MPUO in Fig.
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Fig. 1 Parallel processing in kernel based on message-pool
mechanism.

1) gets work which can be parallelized, the kernel puts
request messages into the corresponding queues for idle
processors to handle the requests in parallel. When the
kernel gets work of the first-class of parallelization, the
kernel partitions the work into subwork each of which
has a different function and puts the messages for the
subwork into the corresponding queues. In the case of
the second-class of parallelization, the kernel puts the
message or messages into the corresponding single
queue. A typical example of the second-class of
parallelization is the case where a multiple-thread-crea-
tion system call is issued. The message-pool mechanism
allows multiple threads to be created in parailel and
quickly. Performance of the scheme depends on
tradeoffs between enhanced performance due to parallel
processing and overhead due to message handling and
network / memory contentions. We pursue the viability
of the scheme.

3. Parallel Creation of Multiple Threads

3.1 Thread Creation

The operating system provides the multiple-thread-
creation system call. The kernel has thread control
blocks (THCBs) associated with threads. It contains
context of the corresponding thread such as a stack
pointer, a program counter, contents of CPU registers,
thread state, and so on. To create a thread, the kernel
normally performs the following processing:

1) Examining a free-THCBs-list, and picking up a
free THCB.

2) Setting the appropriate information in it.

3) Allocating a stack for the thread.

4) Queueing the THCB into the corresponding
thread ready queue, where the thread ready queue is as-
sociated with the process; all threads in a process share
the same thread ready queue.

In the step 2), the information consists of two types
of information:
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+Private information: Each thread has different infor-
mation from another. The information of this type in-
cludes a thread identifier, a stack pointer, thread state,
and so on. A part of the information is produced by
modifying the current information, which are shared by
all processors. For example, the thread identifier would
be provided by incrementing the current thread iden-
tifier.

*Common information: The information of this type
is common to all threads created by the multiple-thread-
creation system call. The information is used when the
threads are about to run. The information includes
arguments passed between the parent thread and the
daughter threads. The information is copied from the
stack of the parent thread to the stacks of the daughter
threads through the kernel stack.

If the system call is sequentially processed in the
kernel, its execution time is considerable when the
number of threads to be created is great. Even if there
are idle processors, the system call would be processed
by a single processor. To reduce its processing time, we
exploit parallelism at this level. The message-pool
mechanism allows multiple threads to be created in
parallel by idle processors.

3.2 Simple Parallel Scheme

One of the most intuitional schemes for parallel crea-
tion of multiple threads is that each idle processor
creates a thread at a time by using the message-pool.
Figure 2 shows the flow diagram of the simple parallel
scheme. When the multiple-thread-creation system call
is issued on a processor, the kernel on the processor con-
structs a message and puts the message into the corre-
sponding message queue in the message-pool for idle
processors to handle it. The message contains the
number of threads to be created. An idle processor ex-
amines the corresponding message queue and creates a
thread each time of the message access until all threads
are created.

3.3 Issues on the Simple Parallel Scheme

Performance of the simple parallel scheme depends
on tradeoffs between enhanced performance due to the
parallel processing and overhead due to the message
handling and memory/network contentions. The
overhead includes the following:

(1) Overhead due to message handling

Overhead due to message handling occurs:

1) A message must be created to enque the corre-
sponding message queue. This message construction is
performed only when the system call is issued.

2) Idle processors access the message queue to read
the message. The access occurs whenever the processor
creates the thread.

(2) Serial bottlenecks

The parallel creation may produce some bottlenecks.
There are two types of bottlenecks:

1) Shared data-structures access bottleneck: Shared
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Fig. 2 Flow diagram of the simple parallel scheme.

data-structures are provided to create the threads.
These structures include the free-THCBs-list, the thread
ready queue, data to produce the common and the
private information for each thread, and so on. Each
structure is sequentially accessed. For read-only data,
private cache alleviates this bottleneck. Most of the
data-structures owned by the kernel, however, are read-
write data. Operations on these data-structures must be
mutually exclusive. Therefore, the bottleneck will be an
obstacle to the performance of the kernel.

2) Memory access bottleneck: Even if multiple proc-
essors access different data-structures, these accesses are
serialized when the different data-structures are stored
in the same memory module.

(3) Network contention due to spin-locks

Mutual exclusion in the kernel is usually implemented
with spin-locks. Processors with busy-waiting to ac-
quire a lock, would produce excessive interconnection
network traffic, and disturb the processor which holds
the lock from executing the critical section.

(4) Network contention due to maintaining of cache
coherence

In systems with private cache, multiple processors
may perform write-access to data in the same cache
block. In this case, hardware-implemented cache
coherence protocols would increase network traffic.

3.4 Performance of the Simple Scheme

As described above, the performance of the simple
parallel scheme for the parallel creation of multiple
threads depends on tradeoffs between enhanced perfor-
mance due to the parallel processing and overhead due
to the message handling and memory/network conten-
tions. We evaluate the performance of the simple
parallel scheme by simulations.

3.4.1 Hardware Architecture Model
Although the operating system is for the Kyushu Uni-
versity Reconfigurable Parallel Processor, a hardware
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architecture model to evaluate the simple parallel
scheme is a common architecture to medium-size
multiprocessor systems for advanced multiprocessor ar-
chitectures:

1) Network architecture: Processors in systems are
connected by a nonblocking interconnection network.
This indicates that when two processors access different
memory modules no network contention occurs. As a
nonblocking interconnection network, the Kyushu Uni-
versity Reconfigurable Parallel Processor employs a
crossbar network.

2) Memory architecture: Memory in systems consists
of multiple memory modules. Each processing element
has a private cache. When a cache-miss hit occurs, data
of a given block size is fetched to the private cache from
the corresponding memory module through the inter-
connection network. Cache coherence between memory
and the private caches is maintained by using write-
through policy. This means that current data is in the
memory modules. Write-accesses to data which is not
cached are performed to the corresponding memory
module. A protocol to maintain cache coherence be-
tween the private caches permits only a single copy in-
side the caches for read-write data. This indicates that
when data modified by a processor is accessed by
another processor the processor must access to the corre-
sponding memory module rather than the private
cache.

3.4.2 Simulator Overview

The simulator assumes the following:

1) There are no network contentions due to spin-
locks.

2) The overhead due to maintaining of the cache
coherence is negligible.

3) Allshared data to produce the common informa-
tion and the private information for the thread is stored
in a single memory module. This single-memory-
module-assumption would cause memory contention.

4) Each THCB to be initialized, the message queue
for the multiple-threads-creation, and the data-struc-
tures such as the free-THCBs-list and the thread ready
queue, are in different memory modules: Accesses to
different memory modules do not cause memory conten-
tions.

The simulator of the simple parallel scheme consists
of the following stages:

1) The message construction stage, M: The proces-
sor issuing the system call creates a message for idle
processors to handle the message. The message contains
the number of threads to be created. This stage is ex-
ecuted once when the multiple-thread-creation system
call is issued.

2) The message access stage, A: An idle processor
accesses the message and reads the contents. When the
processor finds that there are threads to be created, the
processor performs the next thread creation stage. The
processing of the stage A is serialized.
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3) The thread creation stage: This stage consists of
the following three stages:

3-1) Stage B: The processor examines the free-
THCBs-list, picks up a free THCB, and enqueues the
corresponding thread ready queue. This stage may in-
clude stack allocation for the thread. The execution of
this stage is mutually exclusive.

3-2) Stage C: The processor accesses the shared
data of 4 bytes to produce the common information
and the private information. Although each processor
has the private cache, the access is performed to the
single memory module rather than the private cache,
because we consider the worst case that the accesses per-
formed by multiple processors cause cache corruption.
When a processor (processor A) accesses the read-write
shared data cached by another processor (processor B),
the cached data are invalidated. Subsequent access to
the cache block performed by processor B would cause
a cache-miss hit. The processing of the stage C is serializ-
ed because of the memory contention.

3-3) Stage S: The processor stores the common and
the private information of 4 bytes, which is produced
from the shared data in the stage C, into the THCB or
the stack of the thread. The stage S can be executed in
parallel.

In the simulation of the simple parallel scheme, the ex-
ecution times Tu, T4, Ts, Tc, and Ts of the stages M,
A, B, C, and S are assumed to be 767, 260, 768, 78, and
69 clocks, respectively. These execution times come
from assembly language of the SPARC processor for
each of the stages under the following conditions:

1) An arithmetic instruction is executed in one
clock.

2) Data-access-time ratio of cache memory to
remote memory is 1:27.

3) When each of the stages is executed, first access
to data is performed to the remote memory rather than
to the cache memory. This assumption is based on the
worst case where consecutive 4-bytes-data-access is per-
formed to the remote memory because of cache corrup-
tion.

The data size of the common and the private informa-
tion are assumed to be 340 bytes and 116 bytes, respec-
tively, totally 456 bytes. Therefore, for creation of a
thread, the processor executes a pair of the stages C and
S 114 times after executing the stages A and B. That is,
the processor executes the stages A, B, C, S, C, S, . ...
Figure 3 shows an example of the simulation with the
simple parallel scheme, where the number of proces-
sors, N, is 3, the number of threads, th, is 7,
Tu=Ts=Tc=Ts=1, Tp=2, and the amount of data to
be initialized, D, is 8 bytes.

3.4.3 Simulation Results

Figure 4 shows the speedup rate which means the
ratio of the execution time of multiple threads creation
with the simple parallel scheme to that with the serial
scheme where multiple threads are created by a single
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processor. The serial scheme assumes the following:

1) The message-pool mechanism is not im-
plemented: The message construction and the message
access are not needed and there are no overheads due to
the message handling.

2) The private cache is utilized: The shared data is
quickly accessed.

Figure 4 says the following:

1) The speedup rate becomes saturated at the points
between 1 and 1.2. The effect of the parallel creation
with the simple parallel scheme is worse than expected.
This comes mainly from the following:

» First, with the simple parallel scheme, the shared
data is slowly accessed:

The data accesses are performed to memory because
of cache corruption. On the contrary, the serial scheme
allows the shared data to be quickly accessed due to the
effect of the private cache.

* Second, as the number of processors increases,
the execution time of a thread creation increases:

The stage C, where the shared data is accessed, is ex-
clusively executed 114 times for each thread creation
because of the single-memory-module-assumption.

427

The processor issuing the system call

]

Message construction

Idle processors

Creation of a template

‘Are there any threads ?
(Message access)

Terminate

Creation of a thread
(Only private information)

Fig. 5 Flow diagram of the parallel template scheme.

Therefore, a processor must wait for another processor
to complete the execution of the stage C, and wastes
CPU times. As the number of processors increases, the
waiting time increases. For example, we assume that
only a pair of the stages C and S is executed m times to
create a thread and the execution times of these stages
are the same and equal to 7. Under the assumption,
when n threads are created by n processors, the execu-
tion time required for creating the thread, 7, is given by
T=(m—1)nt+27. This equation shows that the execu-
tion time, T, increases as the number of processors, n,
increases.

2) When the number of processors is small (smaller
than three in Fig. 4), performance degradation occurs.
This comes from the message handling overhead.

4. Improvement Schemes

As described above, the performance bottleneck
mainly comes from heavy accesses to the shared data.
To solve this problem, there are two approaches; i)
reducing the amount of accessed data area, and/or ii)
reducing the memory contention by utilizing local
variables. The latter approach can utilize the private
cache. According to the above two methods, we pro-
pose three schemes; a template scheme, a chunk
scheme, and a combination scheme.

4.1 Template Scheme

As described in section 3.1, the information of the
thread consists of two types; the common information
and the private information. The template scheme
allows the common information to be produced into a
template once the multiple-thread-creation system call



Processor 0 MCSA B CSA B CSA B CS,
Processor 1 A B CS A B ,C S
Processor 2 A B ,C ,S,A B ,C,S

[Lad) (LA TSN ol R LA ]

Fig. 6 An example of the simulation with the parallel template
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is issued, rather than whenever a thread is created (a
similar scheme has been proposed in [12]). On the other
hand, private information is produced whenever the
thread is created. The template scheme can reduce the
amount of the accessed data area. The parallel template
scheme allows the template scheme to be executed in
parallel; multiple threads are created in parallel, where
only the private data is produced, after a single proces-
sor creates the template. Figure 5 shows the flow
diagram of the parallel template scheme.

A simulation of the parallel template scheme is over-
viewed as the following.

The processor issuing the system call produces the
common information into the template after executing
the message construction stage M described in section
3.4.2. The procéssor executes a pair of the stages C and
S described in section 3.4.2 85 times to produce the com-
mon information of 340 bytes.

Idle processors are awaken after the execution of the
stage M, and create the threads. The processing of a
thread creation is the same as that in the simple parallel
scheme; the stages A, B, C, and S. For each thread crea-
tion, a pair of the stages C and S is executed 29 times
because the amount of the private information is 116
bytes. The processors create the threads until all threads
are created.

As described in section 3.4.2, the processing of the
stages A, B, and C is all serialized. The stage S can be ex-
ecuted in parallel. Figure 6 shows an example of simula-
tion with the parallel template scheme, where N=3,
th=17, Ty=T4=Tc=Ts=1, Ts=2, and the amount of
common information, D¢, is 4 bytes, and that of
private information, Dp, is 4 bytes.

4.2 Chunk Scheme

In the chunk scheme, chunk size threads are created
each time of the message access. This allows the
message access contention to be alleviated. In addition,
with the chunk scheme, the shared data accesses can be
reduced by producing local variables and utilizing the
private cache. When an idle processor anticipates the
multiple-threads-creation and performs the first thread
creation, the processor produces the local variables for
the processor and the local variables are cached. The
common information is produced into some parts of
the local variables. The private information is produced
by using contents of some parts of the local variables,
which are determined by using chunk size. For example,
for the thread identifier (ID), when the processor
creates the first thread of chunk size threads, the proces-
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(N=3, th=17, Ty=T,=Tp=Tc=Ts=T,=1, D=8)

sor copies the shared thread ID into the corresponding
local variable and the shared thread ID is incremented
by chunk size. Caching the local variables allows the
shared data access to be alleviated, and the local
variables are quickly accessed.

In a simulation of the chunk scheme, as the local
variables, the corresponding entries of the THCB which
is for the first created thread (called the local thread),
are used. Figure 7 shows the flow diagram of the chunk
scheme. In the simulation, the chunk sizeissettobe [ N/p]
or | N/p], where N and p are the number of threads
to be created and that of processors, respectively.

The simulation of the chunk scheme is performed in
the following way:—

The processor issuing the system call executes the
stage M. After this processing, idle processors create
the chunk size threads as follows:—

1) Stage A for the message access to get the chunk
size. This stage is executed once.

2) Stage B for picking up a free THCB.

3) Creation of a thread:

3-1) The first thread creation: Stages C and S are
performed because of the cache corruption. For each
thread creation, a pair of stages C and S are executed
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Fig. 9 An example of the simulation with the combination
scheme. (N=3, th=1, Ty=T,=Tc=Ts=T,=1, Tz=2,
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114 times.

3-2) More than the first thread creation: A new
stage, L, is performed. In the stage L, the THCB is in-
itialized by using the local variable of 4 bytes, which is
in the cache memory rather than the remote memory.
For each thread creation, the stage L is executed 114
times. In the simulation, the execution time of the stage
L is assumed to be 70 clocks. The stage L can be ex-
ecuted in parallel, because the local variables which are
locally-accessible are in the cache and the THCB:s to be
initialized are in the different memory modules from
each other.

The idle processor repeats the above processing 2)
and 3) after the processing 1) until all threads are
created. Figure 8 shows an example of the simulation
with the chunk scheme, where N=3, th=7,
TM= TA= Tg= T(:= Ts= TL'——' 1, and D=38.

As one of the alternative schemes, there is a scheme
where chunk size THCBs are allocated at a time. This
scheme is not considered in the simulation, and is a sub-
ject for further studies.

4.3 Combination Scheme

Another improvement scheme is to combine the
template scheme with the chunk scheme. In the com-
bination scheme, when the common information is pro-
duced the template scheme is employed. For creation of
the thread with only the private information, the chunk
scheme is employed. This scheme has features both of
the template and the chunk schemes. Figure 9 shows an
example of the simulation with the combination
scheme, where N=3, th=T7, Tu=Ts=Tc=Ts=T,=1,
TB=2, and DC=DP=4.

4.4 Simulation Results of Improvement Schemes

4.4.1 The Parallel Template Scheme

Figures 10(a) and (b) show the speedup rates which
mean the ratio of the execution time with the parallel
template scheme to that with the serial scheme de-
scribed in section 3.3.3 and with a serial template
scheme, respectively. In the serial template scheme, the
template scheme is performed by a single processor
without the message-pool mechanism. In Fig. 10(a),
although the speedup curves show super-linearity until
a certain value of the number of processors. This super-
linearity comes from the fact of unfair comparison of
the parallel template scheme with the serial scheme.
These schemes have different algorithm from each
other.

The speedup rate shown in Fig. 10(a) is about 3.7 for

the large number of threads (e.g., 200 and 1000 in
Figure 10(a)). This comes mainly from the fact that the
amount of total accessed data in order to produce the
common and the private information with the template
scheme is reduced by four times compared to that with
the serial scheme.

Figure 10(b) says that the parallel template scheme is
less effective than expected compared to the serial
template scheme. The speedup rate becomes saturated
at points between 1 and 1.2. This mainly comes from
the shared data access bottleneck. That is:

The serial template scheme utilizes the private cache.
With the serial template scheme, although shared data
accesses for the first thread-creation cause the cache-
miss hits, the consecutive accesses are performed to the
private cache. This results in fast accesses. On the other
hand, with the parallel template scheme, the shared
data accesses are serialized, and are performed to the
memory rather than the private cache due to cache cor-
ruption.

The parallel template scheme is not as effective com-
pared to the serial template scheme and leaves the prob-
lem of shared data access contention.

4.4.2 Chunk Scheme

Figure 11 shows the speedup rate which means the
ratio of execution time with the chunk scheme to that
with the serial scheme described in section 3.3.3. We
can see the following:

1) The speedup rate almost linearlly increases until
the number of processors reaches a certain value. The
certain value depends on the number of threads to be
created. The maximum speedup rate is about 10.5. The
speedup rate under the case of more than 2000 threads,
which is not shown in Fig. 11, is almost the same as that
under the case of 2000 threads. With the chunk scheme,
the amount of shared-data- and message-access conten-
tions can be reduced. In addition, the accesses in order
to produce common and private information are
quickly performed by the effect of private cache.

2) When the number of processors is beyond a cer-
tain value, the performance gains are degraded. The
reason for this is that the shared data and the message
accesses become bottlenecks under the condition where
the number of processors are beyond a certain value.
This means that there exists an optimum chunk size or
an optimum number of processors, which depend on
the number of threads to be created.

4.4.3 Combination Scheme

Figures 12(a) and (b) show the speedup rates which
mean the ratio of the execution time with the combina-
tion scheme to that with the serial scheme described in
section 3.3.3 and with the serial template scheme de-
scribed in section 4.4.1, respectively.

As shown in Fig. 12, the combination scheme shows a
tendency both to the parallel template scheme and to
the chunk scheme.
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4.5 Considerations

(1) Issues on the parallel template scheme at
schiedule time
_In processing of the multiple thread creation, the
template scheme can reduce the amount of data to be
produced by using the template. However, the template
scheme would induce a new bottleneck; when the
created threads are scheduled by multiple processors at
the same time, the access contention to the template oc-
curs. To alleviate the contention, we must take some ap-
proaches such as one where the template is provided by
each processor. On the other hand, with the simple
parallel scheme and the chunk scheme, if each THCB
and stack is in different memory module the access con-
tention at schedule time would be avoided. Thus, con-
sidering the overhead at schedule time, the parallel
template scheme does not seem to be desirable.

(2) Issues on the chunk scheme

The chunk scheme is the most desirable among the
proposed schemes. With the chunk scheme, there exists
the optimum number of processors which participate in
the multiple thread creation, and linear performance
gain is attained until the optimum number. The simula-
tion results say that the optimum numbers are between
several and some tens. To get more performance gain,
some allocation methods of data-structures in the
kernel would be needed, as described in the next (3).
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Fig. 12 Speedup rate of the combination scheme.

(3) Problem of the single free-THCB-list and the
single thread ready queue

The proposed schemes assume that the kernel pro-
vides the single free-THCB-list and the single thread
ready queue. Because the accesses to these data-struc-
tures are serialized, these single resource management
methods produce another bottleneck. To alleviate the
bottleneck, the data-structures must be distributed over
the memory modules: A free-THCB-list and a thread
ready queue are associated with a memory module.
Each processor accesses different free-THCBs-list and
thread ready queue. The distributed allocation method
would allow the performance of the schemes to in-
crease.

(4) Simulation results

Although the simulations assume that there is no
overhead due to cache coherence protocol and no net-
work contention due to spin-locks, we can see the essen-
tial properties of the proposed schemes by the simula-
tions.

Overhead due to spin-locks depends on algorithms.
A simple test-and-set lock shows poor performance.
Queueing lock algorithms are the most scalable
algorithms among those studied in [13]. As shown in

Figures, parallel creation of multiple threads is ap-
plicable to the case where the number of processors
amounts to some ten. For this case, the queueing lock
and the ticket lock algorithms would reduce the
overhead. Overhead due to hardware-based cache
coherence protocol is not negligible for systems with
multistage interconnection networks. However, soft-
ware-based cache coherence strategies can eliminate net-
work traffic, because caches are independently manag-
ed. To acquire accurate performance of the schemes for
systems with hardware-based cache coherence
strategies, the above overheads may be induced in the
simulator.

We assumed the hardware model with private caches
and UMA architecture. However, the characteristics of
the schemes described in this paper also seem to be ap-
plicable to systems with NUMA (Non-Uniform
Memory Access) architecture. For systems with bus ar-
chitecture, although paralielism in the schemes would
be reduced due to bus contention, the chunk scheme
would also show better performance than other
schemes.
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5. Conclusions

The operating system under development is for the
shared-memory TCMP, and aims at extracting various
kinds of parallelism of the operating system itself to pro-
vide high-performance. To exploit the parallelism, the
operating system is constructed by using a message-pool
mechanism. A typical example of the parallelism is the
parallel creation of multiple threads. As for the parallel
creation schemes, we have proposed four schemes; the
simple parallel scheme, the parallel template scheme,
the chunk scheme, and the combination scheme.

With the simple parallel scheme, a thread is created
each time the message is accessed. The parallel template
scheme allows the amount of the accessed data to be
reduced. With the chunk scheme, chunk size threads are
created each time the message is accessed. The combina-
tion scheme combines the parallel template scheme with
the chunk scheme.

We have evaluated the schemes by using simulations.
Considering overhead at schedule time and from the
simulation results, the chunk scheme has been shown to
be the most desirable.
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