Regular Paper

A Local Operating System for the A-NET Parallel
Object-Oriented Computer

TsuToMU YOSHINAGA* and TAKANOBU BaBa*

The A-NET local operating system is designed to support a parallel object-oriented execution model. It is plac-
ed on each node of a multicomputer and provides several mechanisms such as message handling, context
scheduling, and object management. Its major design principles are a quick start of the method execution and
low-overhead context switching. To attain these goals, we use message selectors which include absolute ad-
dresses to reach the methods, and two sets of special registers. Our experimental results show that (1) the ratio
of executed machine cycles between user and system is approximately 1:10, and (2) we can reduce the method
searching cost by on an average of 2.9 times, by using addressed selectors.

1. Introduction

To be able to cope with the need for increased com-
putation power, a lot of research has been done to
design and develop parallel computers. These parallel
computers tend to include more than a thousand nodes
with improved node potential and memory capacity [1].
We need parallel operating systems to utilize effectively
the performance of these highly parallel computers.

The parallel operating systems for distributed-
memory, MIMD, parallel computers are divided into
the following two groups: (a) general hardware indepen-
dent, and (b) specialized machines that are well suited
to their execution model. Table 1 is a summary of the
parallel operating systems, machines and their features.
For (a), several machines use UNIX based system like
NCUBE2 [11]. These are similar to a distributed
operating system for workstations, connected to a local
area network. NX/2 [8] for the iPSC/2 and Reactive
Kernel for the Ametec Series 2010[10] also belong to (a).
These systems are suitable for controling relatively
coarse-grain parallel processing. PIMOS [9] for the
PIM, and COSMOS [6] for the J-Machine belong to (b).
They are designed to execute a parallel logic programm-
ing language KL1 and a concurrent object-oriented
language CST, respectively. Therefore, these design ap-
proaches are execution model and language combined.

The A-NET local operating system (hereafter refer-
red to as local OS) belongs to (b), and its goal is to sup-
port efficient execution of a parallel object-oriented
model [2, 14]. Execution performance is very important

*Department of Information Science, Utsunomiya University,
Utsunomiya, 321, Japan.

Journal of Information Processing, Vol. 14, No. 4, 1991

for a parallel operating system so that we have to make
clear some technical problems, such as low-overhead
message driven mechanism, synchronization between
objects, and difficulties in supporting dynamic program
structure with creation and deletion of objects. The
model is similar to the COSMOS’s model. However,
the local OS is applied from medium to coarse-grain
parallelism that is brought by the user defined objects.
While the COSMOS’s model which is suited to data ob-
ject level fine-grain concurrence. The local OS is placed
on each processing element (PE) and provides several
functions, such as message handling, context schedul-
ing, and object management. We say ‘‘local’’ because,
all the nodes include the same operating system code,
and its services are limited to inside the allocated PE.

In this paper, we describe an overview of the A-NET
project and fundamental functions of the local OS.
Then, we show some experimental results.

2. An Overview of the A-NET

2.1 A Parallel Object-Oriented Language A-NETL

We designed A-NETL [15] keeping in consideration
of a trade-off between its functions and the hardware
cost of its implementation. It includes quite a few
message expressions and constructs to extract
parallelism, whereas it has a few constructs of sequen-
tial controls and data structure. We summarize its
features as follows.

(1) Description for static load distribution

The A-NETL has three explicit declarations, group,
collect, and link, to express inter-object logical con-
figuration that will be reflected in physical mapping.

A Local Operating System for the A-NET Parallel Object-Oriented Computer

Parallel OS

The Number Memory

415

Table 1 A summary of the parallel operating systems.

Machine Node of Nodes /Node Features
UNIX NCUBE2 64 bits 8,192 1-64 MB Each computing element executes
Sv CPU, FPU independent UNIX kernel.
NX/2 iPSC/860 i80860 127 8-16 MB It supports a more streamlined and flexible
set of message passing service calls.

Reactive Ametek M68020 512 —8MB A small kernel that dispatches to handlers
Kernel 2010 M68882 according to the tag in the message.
PIMOS PIM 40 bits 512 —80MB It is designed to run a concurrent logic

original programming language KL1.
COSMOS J-Machine 36 bits 65,536 4KW+1 MW It is designed to efficiently support

MDP (36 bits) fine-grain actors.
A-NET A-NET 40 bits order of -320KB It is applied to medium to coarse-grain
Local OS Machine original thousand parallelism.

The group declaration is convenient for bundling a
group of related objects. The other two are used to in-
dicate physical allocation. The collect declares that col-
lected objects should be allocated to the same node. The
link declares the strength of the relationship between ob-
jects or groups so that they can be allocated to close
nodes. We have also developed an allocator which sup-
ports the fashion of network-topology independent ob-
ject allocation[3]. To use the function of static load
distribution efficiently, A-NETL has a definition of so-
called indexed objects to create multiple objects statical-
ly. The A-NETL compiler creates the indicated number
of objects with the same methods.

(2) Message passing expression

The A-NETL has three types of message sending
methods, i.e., past, now, and future, as does ABCL
[13]. For each type, a user can use a multicast mode that
sends the same message to multiple objects. The
message expression is executed by the PE’s high level
machine instruction. One message expression cor-
responds to one machine’s instruction basically. There
are 9 message-sending instructions out of 68 user’s
machine instructions. They include return, dynamic ob-
ject creation, and dynamic method appending and
changing. There is another function, Multi-receive.
Here the receiver may wait for multiple messages before
starting a method execution. It is convenient to describe
a method that needs multiple inputs. In this case,
arguments may be constructed as an ordered list. The
A-NETL allows a user to control the execution se-
quence by using these synchronous and asynchronous
message passing constructs.

Figure 1 shows a quick sort program described in A-
NETL. This program consists of 127 indexed objects,
quick [i], (i=1 to 127). A link declaration means that
these indexed objects make a task graph of a binary
tree. When a message with a list of some data sort: data
is sent to the quick [1], it checks the size of the list. Then
if there are fewer than four elements in the list, the ob-

ject sorts the data by itself. If there are four elements or
more in the list, it finds its subordinate objects and
passes half of the data to each. When subordinate ob-
jects don’t exist, it creates two dynamic objects. Each
subordinate object repeats the same process.

2.2 Hardware Organization

The A-NET computer is a distributed memory,
MIMD, highly parallel computer. Its node processor
[16] consists of a PE for executing methods, a router
for message passing, and a memory of 320KB, as
shown in Fig. 2. Its routing algorithm is changeable
so that several kinds of interconnection networks may
be realized.

The PE for a prototype machine is a microprogramm-
ed processor, controlled by horizontal microinstruction
of 73 bits. The major units include 32 bits of an
arithmetic-logic unit (ALU), a floating point processing
unit (FPU), 8 bits of a tag processing unit (TPU), an in-
struction preprocessing unit (IPU), 2 sets of special
registers (SR), and maximum 52 K words 40 bits per
word of local memory (LM). The TPU is used to check
a flag, which represents whether a return value for a
future type message is stored or not, and to compare the
data types. The IPU supports the variable length code
fetch, and the base addressed operand processing. Two
sets of the SR, for system and user, reduce the overhead
of context switching which is caused by message arrival.

The router provides packet switching using adaptive
virtual cut-through routing and compiled object code
transfer using circuit switching. The reasons why we
selected adaptive virtual cut-through routing are (i) the
organization of the router should be independent of the
network-topology, (ii) most of the messages are too
small to send by circuit switching, and (iii) adaptable
routing is more flexible to avoid deadlock than is
nonadaptable routing. The major reason why we use cir-
cuit switching together is that an object code is much
bigger than a message and transferring an object code

416
#define MAX 127
#define N MAX/2
link quick{1--N] (quick[j = 0--1: 2*selflndex +j])

extern classOfQuick.

object quick[MAX]
methods (
sort: data (

T. YOSHINAGA and T. BABA

" number of the indexed objects "

" relation for the binary tree "
" external reference "

" definition of the object name "
" method starts from here "
" data are list of the data to be sorted "

i sortedData noOfData min left right leftData rightData k p! " temporary variables "

sortedData with: nil.
noOfData = data size.
if (noOfData < 4) then {
while ((data size) <> 0) (
min = data first.

" initialize a list to store sorted data "
" number of the data to be stored *

" each datum is a leaf "

" sort less than 4 data "

" initialize minimum "

data do: [:each ! if (each < min) then min = each.].

sortedData addLast: min.
data remove: min.
} * while "
! sortedData.
} "if"
else (
if (selfindex < N) then {
k = 2 * selfIndex.
left = quick{k].
right = quick[k+1].
)
else (
left = classOfQuick new.
right = classOfQuick new.
)
leftData with: nil.
rightData with: nil.
p = (data first) + (data last) / 2.
data do: [:each ! if (each <= p) then
leftData addLast: each.
else rightData addLast: each.
1.
leftData = left sort: leftData.
rightData = right sort: rightData.
while (leftData <> nil)

" search the minimum from the data "
" remove the minimun from the data "

" return the sorted data "

" each datum is not a leaf "

" check whether this object is a leaf or not "
" there are subtree under this object "

" decide the two indexed objects "

" which are allocated "

“ on the children nodes "

"selfisaleaf, "

" so create two dynamic objects ”

" to share the subtasks "

" initialize the list of data to share "

" caluculate the middle value "

" share the data into two lists "

" values less than p are to the left "
" greater values are to the right "

" ask to sort the half of data "
" into two children objects "
" concatinate the lists "

rightData addFirst: (leftData removeLast]

! rightData.
} "else "
) " sort: "
} " end of the methods "

" return the combined list "

Fig. 1 An A-NETL sample program for quick sort.

occurs less frequently than message passing. The in-
itiative of data transferring is taken by the sending port,
using an FIFO in the receiving port as a buffer storage.

The PE and the router share maximum 12 K words,
40 bits of common memory (CM). In this memory, in-
put/output message queue, shared values between the
PE and the router, and the storage for packet assembl-
ing are maintained.

3. A-NET Local Operating System

3.1 Design Principles

We designed the A-NET local operating system (local
0S) to achieve efficient parallel object-oriented execu-
tion model of the A-NETL such as synchronous and
asynchronous message passing. The design principles of
the local OS are as follows:

(1) Fast message dispatching

In the A-NET, a unit of parallel processing is the

A Local Operating System for the A-NET Parallel Object-Oriented Computer 417

¥

Micro
Sequencer

T

Instruction

' ¥ 3
ool | | ALU FPU TPU

— |
=
s>y
Q
g
oa

C
A) l;z) Pz J'a
40bits i
Interrupt
Local Memory
E>1 L obit * S6kw S:;ml PE
Common Memory A
[€>]__obic * skw ¥
I
DMA Controller A o Router
-==r rhiui hl
I S, 3. W ! i
Shoy t iy g - '
| [Message| |Message | | Packet '
Receiver :

Crossbar Network
IPortO |
A
8+1bis w Y6 81y Y6 81y Y6 &3 Data
to Host to Network <-» Control

Fig. 2 Hardware organization of a node processor.

method execution, activated by a message. Thus, it
needs to start the execution of a user’s method as
quickly as possible after message reception.

(2) Low-overhead context switching

A grain size of massively parallel processing tends to
be small. To reduce the overhead of subdivision of the
execution, the context should be switched quickly.

(3) Local management

An object may be created, exchanged, and killed
dynamically. Therefore, it is difficult for all the nodes to
maintain global information. On the other hand, cen-
tralized control is not good either, because it brings a
bottleneck. So at first, we don’t introduce dynamic ob-
ject migration except for the explicit one based on a
user’s description. The present local OS manages only
the objects allocated on each PE.

(4) Debugging support

It provides functions to debug parallel programs such
as inspecting the states of an object, and saving
sent/received message histories to show a timing chart.

3.2 Basic Functions of the Local OS

In this section, we describe some ideas for fast and
low-overhead operation, and its implementation based
on the above design principles.

3.2.1 Message Reception Mechanism

When the router receives a message on a destination
node, it stores the message into the input message queue
on the CM, then it interrupts the PE. The local OS, in-
voked by the message interruption, reads the messages
one by one.

The ideas for fast receiver message dispatching are as
follows:

» The object ID, which becomes an address of a
message, contains an index of an object table for the
receiver as well as a node number. Therefore, it is easy
to check whether an object is alive or deleted.

* The message selector for a static object includes
an absolute address to find out method pointer. The
local OS needs to search a message dictionary only for
the message selectors of dynamic objects.

+ It copies the arguments of a received message
from the CM to the LM like one array without un-
folding.

* A method execution for a received message is
started without creating a context.

The local OS is described in the A-NETL as a single
object, called a system object. It is a collection of the
methods for system services. Figure 3 shows an abstrac-
tion of the system data structure and a message recep-
tion.

In Fig. 3, a system method for receiving messages is
started by using an interrupt vector table. The contents
of the interrupt vector table are the addressed selectors
for the system methods. The addressed selector points
the message information that includes a method
pointer, information of the arguments, and the informa-
tion whether it needs to wait for the other messages
before starting its execution or not. Firstly, a user ob-
ject corresponding to the message receiver is confirmed
in its existence by checking an object reference table.
Then a method that corresponds to the message selector
is searched. If there are message’s arguments, they are
copied onto the LM and removed from the queue.
When there is structured data in message’s arguments,
the local OS needs to relocate the pointers with copying.
Each structured data has one word of the data entry
that include data type and size. The arguments are pack-
ed into a message so that all data entries are listed first,
then data cells follow. This structure isn’t needed to
copy the cells one by one with understanding the data
types. After that, the local OS executes the searched
method or the method executed before the interruption.
The Method execution from the received message is per-
formed by a privileged receive instruction. It started
after setting the user’s special registers (UR) and a pro-
gram counter (PC) without creating a context. When an
interruption occurs while carrying out the user’s execu-
tion, its image isn’t stored so that it can only be reac-
tivated by setting a flag register (FR) and the PC.

3.2.2 Context Management
The context sheduling needs to reflect the parallel ob-
ject-oriented execution model. Our ideas for low-

418 T. YOSHINAGA and T. BABA
Vector Table
Interrupt | _
e
1 []
Router : J PE
: Object Reference Table
Message ["~ 1D S
Receiver _yj‘i__.
]
®
User Registers System Registers| |S
€] [PC] Context
/" |FaglpC! =] Flag[FC
| | History | Dest
T IBR
Message /// LBR LB}
“// SBR SB
h)lnput queue User Object System Object | [Ready Context Lists
Re State State -
Sel - > Recoption€— {FlaglP C |
Seader | Addressing | | Mothod Moo | | Histery |
[RSeF_ | @ Literal Literal B
#Arg=1 [—a | L
Eatry L] S
il \COT\" Receiver
Argument \Y Method
Sender
: ©) RSel*

Fig. 3 System data structure and a message reception mechanism.
*Rsel: Return Selector

overhead context switching are as follows:

* Using two sets of a few special registers and
memory oriented machine instruction set, we reduce
not only the number of times to store an execution im-
age but also the amount of the image that should be
stored and restored.

* A synchronization for the future type message is
performed by an exception process. It is hardware sup-
ported and caused when the TPU checks a flag for each
data.

When a received message needs to wait for another
message’s arrival before starting method execution, a
context is created to control its waiting. When a receiv-
ed message is a reply, the local OS activates contexts,
which have been suspended for synchronization, using
a return dictionary (RDict). The RDict is made when a
now or a future type message is sent.

A variable that is to be stored a return value in it is
called a future variable. When the future variable is ac-
cessed before the arrival of the return value, context
switching occurs. It is called a future trap. In order to
use a block transfer for saving and restoring an execu-
tion image, the structures of the UR, the context and
the message are unified. Figure 4 shows these structures
and their relation to saving and the restoring context. A
context, which is stored by a future trap, is listed in a
return dictionary and suspended until an arrival of a re-
quired reply.

User Registers Context
40 bits 40 bits
Entry Header
[Flag [PC €~ Flag | PC
| History List -7 History List
TBR ¢+ TBR
LBR €--) LBR
SBR €+ SBR
19 E Receiver W
--------- e 1
16 i |_Send M
[Er 1« : bt

---» Saving
<--- Restoring

TBR : Temporary Base Register
LBR : Literal Base Register
SBR . State Base Register

Fig. 4 Saving and restoring context.

A Local Operating System for the A-NET Parallel Object-Oriented Computer 419

3.2.3 Memory Management

We selected generation scavenging [12] for storage
reclamation. Figure 5 shows a memory map of the LM
and the CM. A heap area, which can be used in execu-
tion time, is divided into three parts for the ‘‘garbage’’
collection.

User defined objects are allocated in an old area from
the beginning, because they were rarely deleted from
our initial programming experience. An allocation and
deletion of a user defined object is performed to book
and erase to/ from the object reference table. To reduce
the overhead for relocation, we use self-relative address-
ing for branch addresses and the base addressing for
operand addresses. Therefore, the local OS needs to
relocate only the pointers included in a literal frame
because we use 16 bits of absolute address for the
speed-up of struct operation.

Data objects that are created in a new area during the
execution, the things such as cells from a list or an ar-
ray, are scavenged to a future area. Then older data ob-
jects are moved to the ol/d area to reduce the time spent
by scavenging more stable objects. This function is sup-
ported by the firmware to reduce pause time.

The CM is used with input and output message
queues, and common information between the PE and
the router such as queue pointers, the number of
allocated user objects, and the size of available areas.
The major reason why we selected this memory struc-
ture is that the router can access messages or usage infor-
mation of the LM without stopping the action of the
PE.

3.2.4 Debugging Support

To make good use of multiple nodes and to prevent
making a ‘‘hot’’ spot, we selected a distributed debugg-
ing model.

The A-NETL debugger consists of a master, which
works on the host for user interface, and /ocals, which
work on each PE as traditional parallel debugger [4].
The traditional parallel debugger means collection of se-
quential debuggers that use breakpoints and tracing [7].
We also use an event history that corresponds to
message sending, receiving, and context switching. The
locals consist of two levels, local OS and firmware. The
local OS level ones provide recording of received
messages with time stamps, setting conditions for break-
points, communication with the master, and switching
between normal execution mode and debug mode. The
locals use local, logical time stamps because the A-NET
machine doesn’t have a global clock. The master
displays global relations between objects after retriev-
ing local event histories, whereas a user can set onto the
debug mode per PE.

40bits X 64KW

0000 Interrupt Vectors
0100]System Stack
0200 System Variables
022010bject Reference Table |
0270]system Object 3K

""""""" Local
2000 Old Area 12K] | Memory

M)

5000 New Area 16K]
9000 Future Area 16K]
d000|1nput Message Queue 4K]
€000 fOutput Message Queue 4K Common
f000 {Shared Values Memory
ff20 [Storage for the Router (€M)
ffff -~

Fig. 5 Memory map.

4. Experimental Results

Now the local OS version 2 is available on a software
simulator [5]. To verify total balance between system
and user software, and hardware support, we have
made an experiment using the simulator. The local OS
version 2, which is used for the experiment, consists of
63 methods, 15.5KB, and it occupies approximately
25.5% of the old memory area.

Table 2 shows the results when we used a boolean n-
cube. we discuss about an execution grain size per
message and the effect of the ideas for fast message
dispatching in (1). Then we evaluate the cost concerned
to context switching in (2). (3) describes a parallelism
and an execution balance between system and user. Fi-
nally, we evaluate the memory capacity in (4).

(1) Processing grain size and speed for a message

An average number of user’s machine cycles which
are executed per message interruption is 398.7 (1
machine cycle=125 ns). It is a fairly small task that cor-
responds to 20 to 30 machine instructions. Figure 6
shows a process that is executed after a message inter-
ruption. In the figure, the arrows show the call and the
return of the system method, and the numbers express
the executed machine instructions and cycles in a typical
case. A user’s method is executed at the broken line.

The time that is needed to receive a message depends
on the number of arguments and their data types. The
average number of arguments per message is 1.4 from
Table 2. In the case of a message which has one argu-
ment, the speed up from version 1 was 17 to 49% [14].
This improvement is brought by object/method sear-
ching using the object reference table and addressed
selectors, message dispatching without creating a con-
text, and copying of message’s arguments described in
Section 3.2.1. However the local OS spends more than

420

T. YOSHINAGA and T. BaBa

Table 2 Simulation results.

TSP Color Simulation 1 Simulation 2 . Logical .
Program with neural matching of chemical of chemical B "&‘;‘;il:;i: Simulatiogn of cal c:{l;t;g:; Average
network puzzle reaction reaction a sequencer

The number of total object 32 194 6 14 15 28 21 4.3
Statically/ Dynammically 7/25 2/192 6/0 3/11 15/0 5/23 5/16 6.1/38.1
Average object size (wds) 297.7 343.2 187.3 210 209.1 67.9 163.8 211.3
Average number of methods 7.8 6.7 4 5.4 8.3 2.0 6.7 5.8
The Number of used PEs 16 16 6 14 15 16 16 14.1
Execution machine cycles

User 3,621,249 2,728,298 129,351 342,880 116,728 61,003 72,715 1,010,318

System 23,535,364 26,868,085 1,568,039 12,170,185 3,045,353 2,765,152 1,871,672 10,260,550

User:System 1:6.5 1:9.8 1:12.1 1:35.5 1:26.0 1:45.3 1:25.7 1:10
GC/Node 1.7 2.6 0 1.4 0.1 0 0 1.4
Message Interrupt 3,634 4,305 289 2,024 558 582 255 1,663.9

Size (wds) 8.2 6.1 6.7 5.9 5.6 5.68 6.45 6.38
The Number of arguments 23 1.5 1.6 0.7 1.0 0.9 1.7 1.4
User /Message 996.5 683.2 3429 169.4 209.2 104.8 285.2 398.7

(Machine cycles)
Future trap 111 2,365 0 22 168 25 44 390.7
Maximum parallelism 15 14 5 11 10 8 9 10.3
Average number of active nodes 6.8 8.0 0.9 5.2 1.9 4.1 2.1 4.14

PE: 1 machin cycle=125 ns, Local memory: 1 word =40 bits.

Interrupt
105 Reading an entry of a message(3*)
359 Update the entry in an input queue(17)
Reading and checking receiver,
700 selector, message type, i.e.(26)
Checking the number of Arguments,
332 and conditions to execute a method(13)
Getting an area for temporary
216 variables (10)
500 Copying the arguments(20 ~)
150 To execute user (6)
398.7 i User (20 ~ 30)
116
Update the input queue,
421 reading the next entry (20)
71
77 Checking the system stack, i.e. (14)
155
Machine —» <—
cycles Call Return

Fig. 6 A message reception detail.
*the Number of executed machine instructions

4000 machine cycles per message reception. This means
that the local OS spends about ten times longer than
fine-grain user’s execution. The ratio of total executed
machine cycles between the user and the system is 1:10
in the average. It is equal to the ratio of the grain size be-
tween the user and the system per message.

The average number of methods included in an ob-
ject is 5.8. It means if a user defines the indexed object,
addressed selectors reduce 2.9 (=5.8/2) times message
dictionary searching in average.

(2) Cost of the future trap and context switching

The local OS executes approximately 700 machine
cycles for a future trap. The smaller the grain size of a
user’s execution becomes, the more likely future traps
happen because the interval time between message sen-
ding and reference of its return value becomes short [2].

The context switching between user and system also
occurs when the message interruption takes place dur-
ing user’s program execution. The local OS makes it
low-overhead using two sets of special registers. It is per-
formed 16 machine cycles (only to store user’s PC and
flags) plus 50 machine cycles (starting system’s execu-
tion) in order to switch user to system, and 14 machine
cycles to restore user’s execution image.

(3) A relation between system and user program

In the Table 2, maximum parallelism means the max-
imum number of nodes that are executed simultaneous-
ly except for initialization. As the simulator doesn’t
allocate dynamic objects on its class node, almost all
the number of used PEs are executed at the same time at
the peak time.

Figure 7 shows the processes when we execute a travel-
ing salesman problem with the boolean 5-cubes. The ver-
tical axis expresses the number of executed PEs and the
horizontal axis expresses a real time of the A-NET
machine. Three graphs show (a) total, (b) system, (c)
user respectively. In this example, 25 objects for
neurons are defined using the indexed objects. After the
allocation of the user objects and their initialization, an
evaluation function is calculated six times. Then the
evaluated value is reduced. We notice that the activity
of the system varies according to the user’s algorithm.
They reach the peak throughout its execution time while
the average numbers of the executed nodes are (a) 9.9,

A Local Operating System for the A-NET Parallel Object-Oriented Computer 421

32

16

System

Fig. 7 Execution process of a traveling salesman problem.

This program is solved by a neural network using the Hopfield model. It includes 25 objects which correspond to the neurons to mal_(e com-
pletely connected network for § cities. We used a boolean S-cubes network topology which includes 32 nodes for above simulation.

(b) 8.1, (c) 1.8, respectively.

(4) Local memory capacity

The consumption of storage space depends on ap-
plication programs and their algorithms. The ‘‘gar-
bage’’ collection happened 0 to 4 times on each node
when we executed such sizes of programs. Therefore,
there aren’t so many persistent objects that survive for
several generations. We can conclude that the size of
the new and future area is enough. We can also estimate
that 211.3 words of 58 average user defined objects are
able to be allocated in the old area. The number is
enough to use collect declaration which is described in
Section 2.1.

The average size of a message is 6.38 words, and the
average number of its arrival is 1,663.9 times for all the
nodes. It means that they spent 2.4 cycles of 4 K words
of cyclic input message queue.

5. Conclusion

We described an overview of the A-NET project, the
design of the local OS, and the experimental results.

From the evaluation, we found that the system
spends its execution time about ten times longer than
the average user. In the case of COSMOS, an average
fine-grain program spends about 70% of its active time
in the operating system and 30% of the time in user
code by using the hardware task scheduling and dispat-
ching mechanisms of the MDP [6]. One reason of the
system overhead is brought by a high-level user inter-
face of the object-oriented model.

We are considering two minor changes of execution
mechanisms to improve the ratio. One is the improve-
ment for message reception mechanism. If the router in-

puts an arriving message into the LM directly, the local
OS doesn’t have to copy its arguments from the CM to
the LM. To adopt this mechanism, we have to review
the load balance and role sharing between the PE, the
router, and the local OS. Because the router has to
cease the activity of the PE when it writes a message, we
have to set up so that the router writes a message just
after the PE finishes the previous method execution for
typical programs. Another idea is to use calling se-
quence without executing the local OS when a user’s
program sends a message to call a method on the same
node.

We are planning the next version of the local OS that
will support a file system, and a master debugger using a
graphical user interface. The evaluation of the debugg-
ing function is also future work. After that, we intend
to make an experiment with a highly parallel multicom-
puter using a network-wide simulator.

References

1. ATtHAs, W. C. and SEiTz, C. L. Multicomputers: Message Pass-
ing Concurrent Computers, /JEEE Computer (1988), 9-24.

2. BaBga, T. et al. A Parallel Object-Oriented Total Architecture: A-
NET, Proc. Supercomputing *90 (1990), 278-285.

3. Basa, T. et al. A Network-Topology Independent Task Alloca-
tion Strategy for Parallel Computers, Proc. Supercomputing ’90
(1990), 878-887.

4. HaAMADA, M. et al. Programming Debugging Scheme for a
parallel Object-Oriented Total Architecture A-NET (in Japanese),
Proc. 40th Annual Convention IPS Japan (1990), 1167-1168.

5. HAMADA, M. et al. Simulator for a Parallel Object-Oriented
Total Architecture A-NET, Proc. 42th Annual Convention IPS
Japan, 1H-8 (1991).

6. HoRrRwAT, W. Concurrent Smalitalk on the M Driven Proc-
essor, MIT Master’s Thesis in Electrical Engineering and Computer
Science (1989).

7. MacpoweLL, E. C. and HELMBOLD, P. D. Debugging Concur-
rent Programs, ACM Comput. Surv., 21, 4 (1989), 593-622.

422

8. PiErCE, P. The NX/2 Operating System, Proc. 3rd Conf. on
Hypercube Concurrent Computers and Applications (1988), 384-390.
9. SaTo, H. et al. Resource Management of PIMOS (in Japanese),
Trans. IPS Japan, 30, 12 (1989), 1646-165S.

10. SEeitz, C. L. The Architecture and Programming of the Ametek
Seres 2010 Multicomputer, Proc. 3rd Conf. on Hypercube Concur-
rent Computers and Applications (1988), 33-36.

11. NCUBE2 6400 Series Supercomputer, Technical Overview (in
Japanese), Sumisho Electoric System Co., p. 17 (1990).

12. UNGAR, D. Generation Scavenging: A Non-distruptive High Per-
formance Storage Reclamation Algorithm, ACM SIGPLAN Notice,
19, 5 (1984), 157-167.

13. YoNezawa, A. ABCL: An Object-Oriented Concurrent

T. YOSHINAGA and T. BABA

System—Theory, Language, Programming, Implementation and Ap-
plication—, The MIT Press (1989).

14. YOSHINAGA, T. and BaBa, T. Message Reception Mechanism of
the A-NET Local Operating System (in Japanese), OS Workshop
report, IPS Japan 48-5 (1990).

15. YosHINAGA, T. and BaBa, T. A Parallel Object-Oriented
Language A-NETL and Its Programming Environment, Proc. COM-
PSAC ’91 (1991), 459-464.

16. YosHINAGA, T. et al. A Node Processor for the A-NET
Multicomputer and Its Execution Scheme (in Japanese), Proc. Joint
Symp. on Parallel Processing 91 (1991), 189-196.

(Received May 7, 1991; revised August 26, 1991)

