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The cluster server is a collection of computers connected by a high speed link. It provides file services and job
processing services to client workstations via LAN. The architecture can realize a wide range of scalability and
low initial cost. The operating system of the server needs to provide a single system image by implementing a
distribution transparent file system, distributed shared memory and inter-process communication. An approach
to build an efficient basis for them is proposed in this paper. The approach improves the page data transfer per-
formance and control data transfer performance by introducing an architectural support called Pion and a new
kernel layer called CPI. Pion generates a data stream, which is handled by link hardware, from scattered data
on memory. It allocates memory to the data stream automatically, this frees software from packet marshaling

jobs.

CPI enables to fetch a remote page without invoking a server process. A file system using the support has
been implemented based on OSF/ 1 operating system. It has been shown that over 80% of file page transfer cost
is expected to be reduced compared with NFS by the approach used in CPI and Pion design.

1. Introduction

Microprocessors make various types of distributed
processing and parallel processing systems feasible. The
computing environment of today is built from a collec-
tion of a large number of processors and computers.
Each computer is designed as a component of a hierar-
chy of a distributed processing system. It operates as a
special purpose machine rather than a fully functioning
general purpose one, and its design assumes coopera-
tion with other computers. The strategy for integrating
whole systems into a harmonized one and the
technology to build each machine affect each other.
System designers and researchers are requested to take
them into account simultaneously.

The centralized processing by a large scale multiproc-
essor, distributed processing by high performance
workstations and client-server computing are typical
system configurations. The centralized processing pro-
vides high efficiency and the distributed processing pro-
vides a good man-machine interface. Client-server
systems of low cost compact client workstations and
powerful servers are expected to be able to realize both
merits at lower cost.

An approach to design cluster servers for the client-
server configuration is proposed in this paper. The
cluster server is composed of existing computers com-
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bined by a high speed link. It is classified into the
loosely coupled multiprocessor architecture. The con-
figuration provides a wide range of performance
scalability and low initial cost. On the other hand, the
overhead caused by the inter-node communication
becomes a problem and have a reduction is required.

We implemented a cluster server by connecting IBM
PS/55' workstations. The operating system is based on
OSF/12. We designed and coded an inter-node com-
munication mechanism with architectural support and a
new file system. The mechanism transfers pages be-
tween file buffers of cluster nodes without building com-
munication packets. It has been shown through measur-
ing static steps of the file system that the overhead is
expected to be reduced to a considerable extent in
comparison with NFS®, The design strategy and perfor-
mance estimation is stated in this paper.

2. Cluster Server

2.1 Client-Server Model

Figure 1 shows our target system configuration. A
compact client workstation provides a man-machine in-
terface including window management, command inter-

'PS/55 is a trademark of International Business Machines Corpora-
tion.
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3NFS are trademark of Sun Microsystems, Inc.
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Fig. 1 A Client-Server System.

pretation, text editing, graphic interface and
multimedia support. A server provides file management
facilities, high throughput job processing facilities and
parallel processing facilities such as numerical intensive
computation (NIC).

A command interpreter on the client workstation
decides the execution site of user commands and pro-
vides an integrated view of multiple server environ-
ment. When an user invokes a batch-like job such as
program compilation, the command interpreter asks an
appropriate server for its execution. When a user
invokes an interactive job such as text editing, the com-
mand interpreter executes the command locally. The
command interpreter is being implemented on the RT
PC! workstation with UNIX? operating system.

Users of a distributed system of workstations of
similar performance have attempted to execute parallel
programs on the network and to perform load balanc-
ing by migrating processes [10]. However, LAN is not
efficient for these purposes and does not provided
sufficient protection mechanism from illegal access. For
example, granting a resource access right to a remote
kernel is associated with the process migration, and the
grant between untrusted workstations via an untrusted
medium is dangerous. Multiprocessor systems are able
to perform them in a safer and more efficient way. End-
users of client workstations are freed from troublesome
jobs of managing data and programs on disk storage by
centralized file management. On the other hand, it is
hard to provide a good man-machine interface by cen-
tralized processing. The client-server system design is in-
tended to provide high performance with a good inter-
face by selecting job execution site based on its proper-
ty.

2.2 Overview of The Cluster Server

The cluster server consists of a collection of existing
computers as shown in Fig. 2. Node computers may be
uniprocessor workstations or tightly coupled multiproc-
essor machines. Hardware resources of node com-

IRT PC is a registered trademark of International Business

Machines Corporation.
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Fig. 2 A Cluster Server

puters, such as disks, are shared among all cluster nodes
by the help of an operating system. The core architec-
ture of nodes including processor, memory manage-
ment system and cache management system is not
modified from the original design. This makes the
difference from a pure loosely coupled multiprocessor
architecture. For example, Transputer' is designed as a
node of multiprocessor from the start point of design.

The link hardware transfers data between nodes. A
central switch or cube topology is used for data routing.
The link interface is implemented as an additional card
which is connected to the bus of node computer. Op-
tical link technology of today realizes the same transfer
bandwidth as the internal bus bandwidth. The link
assumes closed connection. Only small number of types
of trusted nodes are connected. The communication be-
tween nodes is performed without checking access right
and converting data format. A specially designed
efficient and simple communication protocol is used for
the communication. The standard LAN protocol such
as TCP/IP is not used.

LAN interfaces are connected to one or multiple
nodes. Clients access the cluster server by using a stan-
dard LAN protocol. The operating system of the server
provides a single system image to clients. The operating
system provides a cluster wide distribution transparent
file system, distributed shared memory mechanism [5],
inter-process communication mechanism and load
balancing mechanism. These functions are not exported
outside of the cluster because of efficiency and security.

2.3 Merits and Comparison

(1) Merits

The cluster server configuration combines existing
hardware. The initial system cost is made low by com-
bining mass product version of computers or combin-
ing computers already owned by the user. The
developmental cost is also reduced because the develop-
ment of a new core architecture is not required. The
reduction shortens the system development time, which
is important to catch up with the rapid progress of

'Transputer is a trademark of Inmos Corporation.
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Fig. 3 The Network File Service by a Cluster Server.

semiconductor technology.

The cluster server provides a wide range of scalabil-
ity. System configuration varies from a collection of a
small number of old version machines to a collection of
a large number of tightly coupled machines.

(2) Comparison to multiprocessor architecture

The tightly coupled architecture provides a desirable
parallel processing mechanism of machines with around
10 processors. The performance difference between
tightly coupled machines and cluster machines is not so
clear for areas of high throughput job processing and
file service. Not only CPU load but also 1/O load are
distributed by the cluster server architecture. The com-
parison depends on the inter-node communication cost
of cluster machines.

When the number of processors in a system becomes
greater than several tens, non-uniform memory access
(NUMA) class architectures [3] and loosely coupled
multiprocessor architectures [4] become standard. For
example, a hierarchical bus system can connect such
number of processors with non-uniform memory access
time. The cluster server architecture connects a large
number of processors by connecting a number of nodes
or by connecting tightly coupled machines.

Multiprocessor users prefer implementing their pro-
grams based on the shared memory model, and this is a
strong motivation of NUMA architecture. However,
the distributed shared memory approach makes possi-
ble to provide the shared memory model by using loose-
ly coupled machines. This technology eliminates the
difference of programming model between NUMA
multiprocessors and loosely coupled multiprocessors.
They are compared directly by their cost and perfor-
mance.

Operating systems of NUMA machines must copy fre-
quently accessed pages to local memory to reduce access
cost. The process creation and migration, which are
needed to maintain load balance, disturb the access lo-
cality. The operating system reconstructs the process
working set and file buffer pool by copying pages from
node to node after creating or migrating processes.
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Operating systems of loosely coupled multiprocessor
systems do the same thing by explicitly invoking com-
munication link hardware. The total performance is de-
termined by the cost of communication.

Current approaches to the operating system design of
cluster servers are based on the LAN distributed
operating system technology [6). Improvement of them
are possible to considerable extent. Concluding the com-
parison of architectures should be postponed until a
specialized operating system for loosely coupled
machines is implemented.

3. Reduction of Communication Cost

3.1 Communication Mechanism

3.1.1 Operation Modes of the Cluster Server

The measure of the communication cost depends on
operation modes of the cluster server.

(1) File server mode

The cluster server operates as a server of network file
system such as NFS. The service is simply realized by ex-
ecuting its server process on a node. Figure 3 shows an
overview of the structure. The cluster-wide file system
puts and gathers file pages on cluster nodes to/from the
network file server process. The total performance is im-
proved by parallel processing and a smart cache alloca-
tion. For example, different pages of a single file are
placed on multiple nodes to perform parallel disk opera-
tion. On the other hand, a specific page of a file should
be cached on one node and other nodes are better to pre-
vent from placing the cache pages locally to use of the
cache area efficiently. These strategies are only possible
when the response of cluster-wide file system is
sufficiently short.

(2) Job server mode

Job execution requests are submitted from command
interpreters on client workstations to server processes
on the cluster via LAN. These jobs are executed on an
arbitrary node to balance the load of nodes. File system
performance is important because they access files on ar-
bitrary nodes. The CPU and memory consumption of
the file system should be small to attain high
throughput of job processing. The response of file ac-
cess is not important because the access delay is cancel-
ed by multiprogramming.

(3) Parallel processing server mode

Parallel processing on the cluster server is based on
the distributed shared memory mechanism and syn-
chronization mechanism such as inter-process com-
munication. A virtual space is shared among processes
on different nodes by moving pages between nodes. The
consistency maintenance mechanism determines the
timing of page transfer by catching page faults. The ex-
ecution time of the page and control data transfer
becomes important for the parallel processing server
operation.
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3.1.2 Distributed File System [6]

It is important to investigate the access cost of an ex-
isting distributed file system to build an efficient cluster-
wide file system. The NFS on UNIX system is an ap-
propriate candidate because of its popularity.

The file system of UNIX is implemented by the cache
management mechanism and access methods corre-
sponding to media. The cache system contains file pages
whose size is typically 8k byte. The “‘read’’ system call
handler searches the cache first. An access method is in-
voked when the cache misses. The local disk file system
and NFS are typical access methods.

The remote file read mechanism using NFS is compos-
ed of:—

1) Cache look up,

2) Free page allocation when cache misses,

3) Send request to server node by invoking network
service,

4) Cache look up on server node,

S) Page acquisition,

6) Page transfer by network service,

7) Passing of the page to user.

Table 1 shows the total steps of client and server side
programs. The figures are derived from the OSF/1
operating system code written in C language. The net-
work service corresponds to 3) and 6), which include
RPC, UDP, IP and Ethernet interface driver. It is ap-
parent from the table that the principal part of the pro-
gram is the network service layer.

The packet building is the main reason of the
overhead of the layer. The typical file page size is 8k,
but the Ethernet system can transfer packets of less
than 1.5k byte. The network service layer needs to
generate a series of packets of the size. The sender side
divides a file page into multiple packets and associates
protocol headers to them. The receiver side strips the
headers and builds a file page from multiple packets.
These are done by allocating, copying and freeing link-
ed buffers called ‘““mbuf.’’ They increase not only pro-
gram steps but also size of data copied by processor.

3.1.3 Remote Page Access

Distributed shared memory is implemented by a
similar mechanism to the distributed file system. As de-
scribed earlier, the grater part of the overhead is caused
by the page transfer mechanism.

3.1.4 Inter-Process Communication

The performance requirement of the inter-process
communication is tight because it is expected to be ex-
ecuted very frequently. The average data size of
arguments of inter-process communication is known to
be small [8], and the actual data transfer takes only
small part of the overhead. A large part of the overhead
is caused by the synchronization and packet marshaling
mechanism. The synchronization mechanism includes
process switching and waiting queue management. The
packet marshaling cost refers to packing and unpacking
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Table 1 Static Steps of NFS.

Static Steps

Layer (C source code)
passing of page to user 114
cache lookup 25
free page allocation 50
page read from disk 493
network service 2591
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Data| ]

|

Reference }

i ﬁ\ @ —— Input |

/ Stream}

S

Node
Computer Computer

Fig. 4 An Overview of Communication System Using Pion.

a packet from/to complicated data structures of
arguments of the inter-process communication.

3.2 CPI and Pion

We have designed an inter-node communication
mechanism with an architectural support called Pion
and a protocol layer called CPI (Communication
Primitive Interface) to reduce overhead. CPI provides a
common page transfer mechanism to access remote
resources including file and memory, and provides an
interprocess communication mechanism of RPC
(remote procedure call) style.

3.2.1 Page Transfer Mechanism

(1) Overview

CPI accepts requests of putting pages to remote
nodes and getting pages from remote nodes. The page is
identified by virtual address which consists of virtual
space identifier and offset within the space. The virtual
space identifier identifies a file or logical address space.

Pion is attached to a node computer as shown in Fig.
4. Detailed specification of it is shown in (3). Pion of
sender node generates a data stream, which is handled
by inter-node communication link hardware, from data
scattered on memory. Pion of receiver node allocates
memory areas and receives data into them. Pion in-
teracts with the processor via FIFO buffer.

Key ideas to reduce overhead are:
1) An architectural support for data stream genera-
tion and receiving,
2) A special kernel layer for page transfer.

(2) Remote file access sequence
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A remote file is accessed by the following sequence.
Figure 5 shows the relationship between system layers.
The file system layer allocates a free page from file page
cache and asks CPI to copy remote page contents into
it. CPI creates a control block to invoke the page fetch
mechanism on remote node. CPI passes a token which
holds the block address and size to Pion.

Pion on server side receives the control block and
allocates a free memory area to it. Its address and size
are passed to CPI in a form of token. CPI searches the
file page cache based on the information stored in the
block. When the requested page is found, CPI creates
an answer block and passes two tokens designating the
block and found page to Pion. The client side Pion
allocates two areas to them, and passes two tokens to
CPI. CPI analyzes the answer block and returns the ad-
dress of received page held in the token to file system.
The acquired file page is different from the one
allocated by the file system at the time of request. The
allocated page is pooled in Pion for future use.

When the CPI of server side can not find the page, it
up-calls to the file system. CPI is notified after the page
has been fetched from the disk.

(3) Pion design

Pion accepts series of command tokens each of which
is the pair of address and size of a memory region to be
transferred. Multiple tokens may correspond to a con-
tiguous region on receiving node. The instruction for
allocating memory on receiver node is kept in the com-
mand token. Pion associates the information to
transmitting data. Pion keeps the free buffer area for
data receiving, and the memory of required size is
allocated without software intervention. The free
memory area is kept by four queues of pointers each of
which points to a free memory area. The four queues
correspond to sizes of 16, 128, 4k and 8k bytes areas.
When the memory area shortage occurs, Pion broad-
casts discontinuation message to other nodes. The data
transfer is initiated without hand-shaking in other case.
The flow control scheme enables the connection-less

transfer.

Software is freed from packet marshaling and de-mar-
shaling by the Pion function. If the packet size of a com-
munication system is fixed, software needs to build data
structure by gathering multiple packets as seen in NFS
implementation.

By contrast, the memory area of exactly the re-
quested size is allocated and the data is directly moved
into it by the Pion design.

The allocated buffer can be passed to the upper layer
without copying or modifying. For example, when the
requested data size is equal to the physical page frame
size, it can be mapped into an user space immediately.
When the data size is equal to file buffer page, the file

" system can exchange free page with received page by
reference. Pion design enables to designate receive
buffer size from sender node.

(4) A special kernel layer for page transfer

CPI implements the page transfer by the special pro-
tocol. An interrupt handler of CPI layer scans the page
cache directly without invoking daemon process. The
approach reduces overhead of process invocation and
inter-process communication. Page transfer layer im-
plemented by CPI is clearly distinguished from page
allocation strategy implemented by upper layers, and
CPI does not depend on a specific allocation strategy.

3.2.2 Inter-Process Communication

Pion provides the packet marshaling and buffer
allocation service suited for a RPC style inter-process
communication. An argument of the RPC is designated
by three values; its address, size and pass direction of
“in’’ and/or “‘out.”’ Pion of caller side scans the argu-
ment list, and transfers the arguments marked ‘‘out.”
Pion of receiver side allocates a block to keep both
‘“‘out’’ and ‘‘in,”” and receives ‘‘out’’ data. Callee proc-
ess fills the “‘in>’ data. Pion of caller side copies back
““in”’ data to the caller process address space by re-scan-
ning argument list of caller.

A simple mechanism of CPI implements a RPC by
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the service. The caller process pushes arguments on its
stack and invokes a RPC primitive which is im-
plemented by CPI. The CPI passes the stack pointer of
caller process to Pion and waits for the answer. The
callee side CPI builds a waiting queue which links
blocks allocated by Pion. When a callee invokes the
primitive of RPC receive, CPI simply dequeues a block
and passes it to the callee.

4. Implementation

CFS (Cluster File System) is a file system using CPI.
We have designed and coded CFS and CPI as an addi-
tional function of the OSF/1 operating system. Current-
ly, the system is being debugged. The target hardware is
a cluster of IBM PS/55 workstations. The workstation
is equipped with the Intel 80386 CPU of 25M Hz clock,
16M byte memory and disk storage.

The communication link and Pion functions are
emulated by another dedicated PS/55 system. The
emulator and node machines are connected by the bus
signal extender. The emulator can access physical
memory of node machines by the hardware. Processors
of sender nodes place Pion command tokens on their
memories and generate interrupts to Pion emulator.
The emulator tailors the memory image on receiver
node, creates tokens on memory, and generates an inter-
rupt on receiver.

CFS is integrated into OSF/ 1 kernel as a component
of V-node file system. CFS provides a single directory
tree among the cluster. The tree is built by executing
mount operation on every node. User program can ac-
cess file on any node transparently. The NFS protocol is
used to attain cache coherence between nodes. The
client side file cache is invalidated by time stamp. The
file page is transferred by page transfer service of CPI.
The control data, such as a file open request, is transfer-
red by the inter-process communication mechanism.

An actual optical link system is scheduled to be im-
plemented. A cross-bar switch of 8 edges switches the
communication. The Pion function is going to be im-
plemented by a processor and hard-wired logic on the in-
terface card.

5. Discussion

CFS performance is able to be estimated based on the
comparison of static steps of NFS and CFS. Two types
of cost values are used for the estimation. The total cost
value “‘“T”’ corresponds to the access response and the
CPU cost value ‘‘C”’ corresponds to CPU usage. The
cost value “‘C”’ is equal to the sum of C language source
code static steps of client and server. The unit of *“C”’
corresponds to approximately 1 micro second. The
value ““T”’ is calculated by adding the latency of
physical link and disk access to ““C’’ value. A transfer
of 10 byte through physical link is assumed to corres-
pond to an unit cost value and the disk access cost is

403

Table 2 Remote File Access Cost of CFS and NFS.

CPU Cost Total Cost
Case
NFS CFS NFS CFS
Page Transfer Cost 5999 485 6818 1304
Local Cache Hit 1015 1015 1015 1015
Remote Cache Hit 7014 1500 7833 2319

Remote Cache Miss 7507 1993 27507 21993

measured by its access time in micro second. Namely,
“T”’ of remote disk access is gained by:

T =(program steps of client)
+ (program steps of server)

+0.1x(bytes of data transferred by
communication link)

+ (disk access latency in micro seconds)

Disk access latency is assumed to be 2+10* (20 m sec.)
units.

Table 2 shows the costs of file page transfer and
remote file access in three cases. The ‘‘total cost’’ col-
umn values refer to the cost of transfer of a 8k byte file
page between file cache of two computers by using CPI
and LAN network service. The CPU cost is reduced by
92% and the total cost is reduce by 81%.

The file access costs of NFS and CFS in the client
cache hit case are same because they use the same
mechanism. A page is transferred between nodes when
the client side cache misses and the server side cache
hits. The disk is accessed when all caches miss.

The actual file access time is affected by look ahead
mechanism. In CFS, costs of local file access and
transferring page between nodes are approximately
same. It enables to fetch the next page from remote
server node in parallel with reading current page. This
affects cache allocation strategy. The local cache is not
always necessary and it is sufficient to fetch from
remote node for infrequently accessed files. It means
that cluster-wide cache allocation scheduling improves
performance.

6. Related Work

The improvement of the implementation of com-
munication software, the introduction of architectural
support and the design of light-weight protocol have
been done to reduce communication cost.

The 4.3 BSD Reno system addresses the improvement
of communication software efficiency [7]. Macro
statements are introduced to operate ‘‘mbuf’’ structure
efficiently. Remapping of virtual memory is used to pass
mbuf data to link hardware. These improvements
reduce CPU overhead by 12%.

Implementation of communication layers by hard-
ware is also tried. Nectar [1] is a general purpose pro-
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tocol engine implemented by a large scale hardware us-
ing RISC processor.

V system [2] provides VMTP protocol on IP for
efficient implementation of RPC.

Our approach provides an efficient way of data
transfer with assuming a relatively small scale architec-
tural support and a specific data link layer protocol. It
improves the data passing efficiency among file system,
communication software and link hardware.

7. Conclusion

The progress of optical link technology brings a new
era of the loosely coupled multiprocessor architecture.
We have shown that a simple architectural support and
a simple software mechanism provide a large amount of
improvement in communication performance. The
page transfer time is expected to be reduced over 80%
by this approach in comparison to NFS. Our next target
will be the showing of the validity of cluster server ar-
chitecture through the evaluation of total system perfor-
mance.
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