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Design of the XERO Open Distributed Operating System

KazuHiko KATo*, SHIGEKAZU INOHARA¥, ATSUNOBU NARITA¥,
SHIGERU CHiBA* and TAKASHI MasuDA*

The XERO distributed operating system aims at providing an open distributed processing environment in
which logical information structures are preserved against geographic distribution, hardware and software ar-
chitectural distribution, and temporal distribution. This paper describes the design of the XERO operating
system. We propose a programming model at the operating system level, which supports muliticontexts and
multithreads in a virtual address space. XERO supports a complex object file system to preserve data types in a
file system and to develop distributed file systems systematically. Implementation techniques to realize these con-

cepts are also discussed.

1. Introduction

The recent rapid evolution of hardware technology,
such as in high-performance microprocessors, large
primary and secondary memories, and high-speed net-
works have been providing distributed computing en-
vironments in which computational power can be
distributed according to user requirements. In current
distributed computing environments it is uncommon to
find distributed systems using only single architecture
computers. Rather, the environments are composed of
computers using various architectures with users
wishing to organize them to make the best possible use
of individual components. Furthermore, since pro-
gressive innovations in both device and architectural
technologies have been continuous, computing com-
ponents have experienced successive changes.
Therefore, it is extremely important to create an
operating system made up of a heterogeneous and
distributed computing environment where computers
with various architectures can coexist, intercom-
municate and share data.

As well as this heterogeneity in hardware architec-
tures, heterogeneity in software architecture is also
important when designing distributed systems. By
‘“‘software architecture’’ we mean the logical structure
of program development and execution environments
such as programming language systems, database
systems and user interface systems. Nowadays, it is com-
mon to use various development tools and en-
vironments to improve both the productivity and
maintainability of application programs. In common
with the best choices in hardware for applications, the
best software development and execution environments
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should also be selected. Hence, distributed operating
systems in the near future should be able to com-
municate and share data among programs with different
software architectures on various hardware architecture
computers.

This paper describes the design of the XERO open
distributed operating system. By ‘‘open’’ we mean a
system conforming to the following four aspects':

1. Geographic distribution. A facility to com-
municate and share data among programs
located at different geographic locations. The
term “‘distributed transparency’’ used in
previous distributed operating systems cor-
responds to this. This facility will be im-
plemented with interprogram communication.

2. Hardware architectural distribution. A facility to
communicate and share data among programs
through computers having various hardware ar-
chitectures. This facility will be implemented by
transforming internal data representations such
as word length, byte orders, and floating point
number formats.

3. Software architectural distribution. A facility to
communicate and share data among programs de-
veloped using various program environments
each of which has its own software architecture.
This facility will be implemented by transform-
ing logical data representation, e.g. transforma-
tions among Pascal record type data, struct type
data of C language, and the S-expression of Lisp.

'Recently the word ““‘open’’ is heard here and there, especially in
commercial systems. However, as far as the authors know, no
academic research has been done on trying to reach the heart of
‘‘openness.”” We believe that openness is an indispensable property of
current and future distributed systems. We will attempt to reach an
understanding of what the openness is to provide an open computing
environment, in this and subsequent works.
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4. Temporal distribution (Persistency). A facility to
communicate and share data among programs at
different times. This facility will be implemented
by managing data persistently, i.e., retaining
data whether the system is up or not. It is
preferable to treat both volatile and persistent
data in a uniform way.

We term these four properties openness, and a com-
puting environment or an operating system having these
four properties is considered open.

The most crucial issue to achieve such an open
operating system is how to obtain a unified framework
providing the above four properties. To implement
this, we designed a programming model and developed
efficient implementation techniques. To share persistent-
ly typed data independent of any application program,
we designed a novel file system based on the complex ob-
ject concept.

The rest of this paper is organized as follows. Section
2 proposes a programming model of the XERO
operating system. Section 3 explains implementation
methods for the fast manipulation of threads and
dynamically loadable and unloadable multicontexts,
which represent one of the principal concepts behind
the programming model. Section 4 describes the design
of a complex object file system and its efficient im-
plementation scheme. Section 5 concludes this paper
and suggests future work.

2. Programming Model of XERO

The key issue in designing an open operating system
is how to preserve logical information structures, i.e.
data types against geographic, hardware architectural,
software architectural, and temporal barriers. One pro-
mising solution is to extensively utilize the concept of
abstract data types [24] (ADT for short). The program-
ming model for XERO, proposed in the rest of this sec-
tion, is designed to constitute an infrastructure to allow
ADT systems to be built providing distributed
transparencies against the four barriers.

2.1 Basic Concepts

The programming model for XERO is described
through the use of three basic concepts: task, context,
and thread (see Fig. 1).

Task: A task is a virtual address space assumed to be
addressed linearly. Any number of contexts and
threads can exist simultaneously in a task.

Context: A context is a basic unit to manage pro-
grams and data. Basically, a context has three
segments: text, data, and stack. A text segment is a
memory object that can be directly interpreted by a
CPU. Modifying a text segment is usually prohibited.
A data segment is a writable memory object that can
be manipulated by programs in a text segment. A
stack segment is a writable memory object that stores
the runtime information of a CPU.

385

Secondary Storage

Thread

Fig. 1 Basic concepts.

Thread: A thread is the logical path of execution ex-
ecuting codes for the text segment in a context.
Typically a thread consists of a set of registers and
the program counter of a CPU. Any number of
threads can exist in a task and concurrent computa-
tion occurs by running threads on the contexts within
a task.

These three concepts are independent and orthogonal

to one another.

2.2 Types and States of Contexts

In the programming model all memory objects are
treated as contexts. Contexts are classified into the
following three types based on the segments in them:

+ Typel: Data.

+ Type II: Data+Text.

» Type III: Data+ Text+ Stack.

A Type I context represents data that does not in-
clude any machine-executable texts. Human-readable
texts and graphical image data are represented by Type
I contexts.

A Type II context includes a machine-executable text
segment as well as a data segment. A Type 1I context is
used to represent an ADT that encapsulates both inter-
nal data and operations, a library to be statically or
dynamically linked to other contexts, or an executable
program module.

When executing a program, a stack segment is needed
to store run-time information of a CPU. A Type III con-
text includes a stack segment as well as data and text
segments. A Type III context is used to represent and
preserve the execution image of a program.

For all three types, every context is in either an active
or inactive state. The active state indicates that the con-
text is loaded onto a task and a CPU can access the con-
text. The inactive state indicates that the context is not
loaded onto a task and the context is persistent, i.e., the
context exists whether the computer system is up or not.
To guarantee persistence, contexts in the inactive state
should be kept in persistent storage. Treating both the
active and inactive states of a context in a uniform way
achieves the ‘‘temporal distribution’’ mentioned in Sec-
tion 1.
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Fig. 2 Language system example.
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Fig. 3 Object-oriented database system example.

We illustrate how the above-mentioned concepts are

useful in various information management, using
language and database systems, as examples:
Language system example. The source program of an
ordinary programming language is represented by a
Type I context (see Fig. 2). A language compiler can be
regarded as a transformer that changes an inactive Type
I context (source codes) into an inactive Type II context
(executable codes). A linker generates an inactive Type
II context from several inactive Type II contexts, resolv-
ing the symbol references between them. A /oader adds
a stack segment to an inactive Type II context and
creates an active Type III context on a task. If a user
wants to save the existing execution image of the Type
III context after execution starts, an unloader creates an
inactive Type III context from it. The saved Type III
context can be loaded onto a task, which need not
necessarily be identical to the task from that the unload-
ed context was established.
Object-oriented database system example. In object-
oriented database systems [5, 25], which are currently at-
tracting much attention from database researchers and
developers, a database system manages methods (pro-
cedures) as well as persistent data, in the form of ‘‘per-
sistent objects.’”” With the programming model, such a
persistent object can be represented as a Type II con-
text. By using the extended RPC mechanism described
in Section 2.3, sending messages to a persistent object is
naturally realized. The activation of a Type II context
corresponds to beginning the transaction with the ob-
ject. Inactivation with write-back corresponds to com-
mitting the transaction and inactivation without write-
back corresponds to aborting the transaction. Using the
multilanguage RPC mechanism described in [21], it
would be possible to transparently send a message to
any object even if the user program languages and the
method implementation language differ.
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Fig. 4 Remote procedure calls between contexts.

2.3 Extended Remote Procedure Calls

In the programming model, intercontext communica-
tion is achieved through the use of extended remote pro-
cedure calls (RPC). Extension involves dealing with the
temporal distribution; the RPC mechanism is unique'
in not only providing message transfer between
different address spaces on different sites but also caus-
ing state transition of contexts.

Two active contexts of Type II or Type III com-
municate with each other in the style of RPC using the
primitives call(), receive(), and reply() as shown in Fig.
4. A caller context calls a callee by issuing the call{}
primitive specifying several call arguments. The callee
context receives the call by issuing the receive()
primitive. The call() and receive() are synchronized,
and the execution of either the caller or the callee issu-
ing the primitive beforehand is blocked until syn-
chronization is established. Just after synchronization
is established, the arguments specified by the caller are
passed to the callee, which continues the execution.
When the callee issues the reply() primitive specifying
several reply arguments, the block for the caller’s execu-
tion is lifted and the caller receives the reply arguments.

When a caller context and a callee context are located
on different sites with different CPU architectures, data
representation must be converted to preserve logical
data type information. We have developed a com-
munication technique to preserve all statically deter-
mined data types including the function type on
heterogeneous CPU architectures using multilanguages
[21, 28). With this technique, procedures accessing
local data are automatically transformed into pro-
cedures that access remote data automatically. Hence,
this technique makes data transfer from and/or to
remote procedures transparent to programmers.

The state of a context changes if the context issues
either callce() (call-with-current-context) or

'Scheme [30], a dialect of Lisp, supports a primitive called call/cc
(call-with-current-continuation), which integrates a function call
mechanism and a program context manipulation.
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Table 1 RPC primitives and state transition of contexts.

%a;:f:rT receive() receiveccl()
call() State transition does Callee is loaded to the
not occur caller task
callcc()  Caller is loaded to the Impossible

callee task

Task B———
i Callea Context -
Thread

receive() |

callec()

Fig. 5 Context migration between tasks with callcc() (before syn-
chronization).

receive()

»j]' reply()

Persistent Storage

Fig. 6 Context migration between tasks with calicc() (after syn-
chronization).

receivecc() (receive-with-current-context) instead of
call{) or receivel(), respectively. If an active caller con-
text issues callcc(), then the caller context changes its
state to the inactive state: the context is unloaded from
the task and is placed in a persistent storage. Similarly,
if an active callee context issues receivecc(), then the
callee context changes to the inactive state.

The call() and the callcc() primitives synchronize
with the receive() and the receivecc() primitives as
shown in Table 1. The rules for synchronization and
state transition are as follows:

*  When the inactive caller that issued callcc() syn-
chronizes with the callee that issued receivel(), the caller
in persistent storage is loaded to the task (callee task) in
which the callee exists as shown by Fig. 5 and 6.
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Fig. 7 Context migration between tasks with receivecc() (before
synchronization).
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Fig. 8 Context migration between tasks with receivecc() (after
synchronization).

*  When the inactive callee that issued receivecc()
synchronizes with the caller that issued call(), the callee
in persistent storage is loaded to the task (caller task) in
which the caller exists as shown by Fig. 7 and 8.

« Synchronization between the inactive caller that
issued callcc() and the inactive callee that issued
receivecc() is impossible since an address space to
which the two contexts need to be loaded has not yet
been determined.

After synchronization is established with callcc() or
receivecc() the semantics for these two primitives are
the same as call() or receive(), respectively.

2.4 Summary

The advantages of the described programming model
are summarized as follows:

« Method invocation to persistent objects (or
message transfer to persistent objects) can be treated in
the same way as that to volatile objects in primary
storage. This eases the implementation of persistent
ADT systems or object-oriented database systems.
From another viewpoint, we can think that the program-
ming model can be considered a starting point to
achieve a so-called single-level store system in
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heterogeneous distributed computing environments.

» The state transition mechanism of contexts in the
model can be used to attain context migration between
tasks. Generally, it is not easy to implement process
migration transparently to the migrated process itself or
other processes connected to the process, due to both
technical and performance reasons. In the model, a con-
text migrates between processes under the control of the
migrated context itself. Although context migration is a
fairly restricted way to process migration, we think that
it provides a realistic solution.

» RPC has semantics very close to the procedure
calls of programming languages. Using the fact that
almost all programming languages have procedure calls
or similar mechanisms to combine program modules,
we can implement multilanguage communication in a
distributed environment [28]. We have already devel-
oped a distributed C language, in which ordinary pro-
cedure calls are interpreted as remote procedure calls
[22, 26].

3. Internal Structure of the XERQO Operating System

Most of the recent distributed operating systems have
adopted the ‘‘kernelized kernel’’ principle, meaning the
kernel of an operating system should be minimized and
most operating system facilities should be implemented
as ordinary user programs. This principle is very attrac-
tive since distributed operating systems are required to
provide many functions that must evolve and change ac-
cording to user requirements. The XERO operating
system, too, is designed along the lines of this principle.

Unlike other recent distributed operating systems,
XERO has an outstanding feature in its structure; every
task has a program module in its user address space,
which supervises the execution of all programs in the
task. This program module is called a task supervisor
(see Fig. 9). When a task is created, the task supervisor
is invoked for the task and the control of the (virtualiz-
ed) CPU is passed to it first. The task supervisor
manages threads and contexts in the task, cooperating
with the kernel. The rest of this section describes how
the programming model has been realized in our cur-
rent implementation of XERO.

3.1 Attainment of Multithreads

In addition to the XERO operating system, many
other recent operating systems also support multithread
mechanisms.  Previously proposed multithread
mechanisms are classified into two: the user-level sup-
ports and kernel-level for threads. Examples of the
former are the Sun OS Lightweight Process Library [35]
and the Xerox PCR (Portable Common Runtime) [40].
Examples of the latter are the V system [7], Mach [37]
and Clouds [12].

In the user-level support of threads, the operating
system kernel is not aware of the existence of
multithreads in a virtual address space, and the kernel
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Fig. 9 Internal structure of multithreads.

provides only one unit of CPU execution to an address
space. Therefore, when one thread in an address space
issues a system call to the kernel, other executable
threads in the address space cannot run until the service
to the system call ends. We call this the thread blocking
problem. Because of this, the multithread mechanism
of the Sun LWP libraries has a defect in that concurren-
cy between multithreads in an address space is
prevented. On the other hand, thread switching in an ad-
dress space is very fast since it does not need any help by
the kernel.

In the kernel-level support of threads, the kernel di-
rectly controls and schedules threads. Hence, in this
system, even when a thread issues a system call and
waits for its completion, the execution of any other
thread in the address space is not blocked. Direct
scheduling of threads by the kernel, however, causes
considerable overhead to switch mapping between the
CPUs and threads in the task, since switching can be
performed only by the kernel and requires hundreds of
machine instructions, which is comparable to system
call processing.

The mechanism for thread management in the XERO
operating system combines the virtues of the above two
types of thread mechanisms while eliminating their
drawbacks. The approach taken by XERO is to control
the execution of multithreads by using the cooperation
between the kernel-level program module and the user-
level program module named the task supervisor (see
Fig. 9). The multithread mechanism of XERO is based
on ‘‘double-multiplexing”” CPU by a kernel and task
supervisors. That is, a kernel provides one or more vir-
tual processors for a task by multiplexing a physical
CPU. Furthermore, a task supervisor provides threads
by multiplexing the virtual processors provided by the
kernel. A virtual processor is a unit of CPU scheduling
from the kernel’s point of view, whereas a thread is that
from the user’s or the programmer’s point of view.
These two-level abstractions of a physical CPU, i.e., vir-
tual processors and threads, are completely transparent
to users. Users only recognize threads as virtualizations
of CPUs.

To establish a two-level abstraction of a physical
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CPU, i.e., virtual processors and threads, completely
transparent to users, the cooperating protocols between
kernels and task supervisors were carefully designed.
The protocols allow that a CPU control right is return-
ed to a kernel when the virtual processor cannot pro-
ceed its execution—e.g. when an exception including
page fault occurs, when a system call is issued, or when
the virtual processor exhausts its execution time quan-
tum (i.e. preemption). After the kernel recognizes the
return of control, the kernel passes the CPU-context
(namely the contents of all CPU registers including the
program counter and processor status word), saved by
the interrupt handler or the exception handler in the
kernel, to the relevant task supervisor. The task super-
visor saves the passed CPU-context to enable thread
scheduling.

To avoid the thread blocking problem, the task super-
visor informs the kernel, using task supervisor-kernel
protocols, that another new virtual processor should be
created for the task when blocking occurs. This means
that several virtual processors are created and allocated
to the task automatically. The created virtual proces-
sors are eliminated when the task supervisor requests
the kernel to do this or when the task itself is destroyed.
Further details on the cooperation between task super-
visors and the kernel in XERO are described in [16].

The cooperative approach of managing multithreads
just described has the following three advantages. First,
fast thread operation can be attained, such as creation,
switching, and destruction, since operations are per-
formed only in the user address space and do not re-
quire kernel service unless operations to virtual proces-
sor are required. The performance of multithread
operation will be discussed in Section 3.3. Second, the
cooperative approach avoids the thread blocking prob-
lem due to the carefully designed protocols between the
task supervisor and the kernel. Third, since a task super-
visor is only a user-level program module, it is possible
to create a task supervisor customized to a knowledge
of each application.

3.2 Attainment of Multicontexts

As described in Section 2.2, multiple contexts, which
may include text segments (i.e. compiled binary codes),
must be dynamically loaded to a task and unloaded
from a task. Such dynamic loading and unloading
facilities for contexts require the relocation of contexts
so that loaded contexts will function for any task.
While some previous operating systems [10, 15] provide
program relocation using specific CPU architectures
with a ‘‘segmentation’’ mechanism, XERO provides a
machine-independent relocation mechanism. This is
because XERO aims at providing the hardware architec-
tural distribution as described in Section 1.

Since Type I contexts cannot contain any program
codes that shouid be managed by the operating system,
we do not have to consider relocating Type I contexts.
As Type II contexts can be regarded as a subset of Type
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III contexts, we will describe a way to relocate Type 111
contexts in the following.

Two crucial aspects in attaining machine-indepen-
dent relocation are:

* Making text segments relocatable.

« Making data and stack segments relocatable.
The first aspect is achieved by modifying existing com-
pilers to generate relocatable codes. The second is
achieved by maintaining all address space-specific infor-
mation during the entire lifetime of each context. In the
following we discuss these two issues in more detail.

3.2.1 Generating Relocatable Object Codes

To minimize memory usage, text segments should be
able to be shared by all contexts loaded from the same
object codes to a task'. The requirements, relocation
and sharing of text segments using only standard hard-
ware, are satisfied by employing the CPU register-rela-
tive addressing mode to access all named memory cells
(i.e., symbols in programming languages).

Let us examine our modifications to the GNU C com-
piler [33] on a SONY NEWS workstation, which has a
M68030 CPU. Our modifications are twofold:

1. The a$ register of the M68030 CPU is used as a

‘“base’’ register, in which the starting address of
a loaded context is set.

2. Alireferences to the named memory cells are per-
formed using the register-relative addressing
mode of the CPU.

In the following, the left-hand generated codes of the

original compiler will change to the right-hand codes in
the modified compiler.

Before modification|

move.l d1,_var
jsr _printf

{ After modification |

=move.l d1,(_var,a5)
jsr (_printf,a5)

3.2.2 Maintaining Address Space-Specific Informa-
tion in Data and Stack Segments
The contents of data and stack segments are classified
into two types: basic data types and pointer types. Basic
data types, e.g., integers, float point numbers,
characters, etc., are types that can be directly inter-
preted and manipulated by CPUs. The values of pointer
types are addresses in an address space. While the basic
type is generally independent of any address space, the
pointer type is dependent on the address space on which
the segments exist. To relocate data and stack segments,
only the pointer type needs to be dealt with.
The way we relocated data and stack segments
without the use of any specific hardware is:
1. Each context of Type Il and Type IIl retains
memory-typing information called symbol

'In our current implementation the text segment of a context loaded
from the same object codes cannot be shared between distinct tasks.
Without using hardware mechanisms such as segmentation registers,
it is very difficult to share relocatable text segments between tasks.
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tables, which are initially produced by a com-
piler. (In the case of the GNU C compiler, such
memory-typing information is produced by speci-
fying the ‘‘-g’’ option in the compiler invocation
command.)

2. When a task supervisor loads a context to the
task, it adds the difference between the starting
address of the currently existing task and the
previously existing task, to every pointer type oc-
currence.

We will now describe how data and stack segments

are relocated.

Data segments. A data segment is composed of two
areas: static data area and heap area (see Fig. 10). The
static data area is statically typed when compilation oc-
curs and memory allocation is initially determined to be
invariable. In contrast, the heap area is allocated and
typed at the time of execution.

All typing information for the static data area is in-
cluded in the symbol table generated by the compilers.
When a task supervisor loads a context to the task, the
difference is added between the starting address of the
currently existing task and the previously existing task,
to every pointer type occurrence in the static data area.
In our current implementation on the SONY NEWS
workstations, this calculation is denoted as:

[New Pointer Valuel=[0ld Pointer Value]
+({new_ab—old_ab)

Typing information for the heap area is not deter-
mined in advance and may change dynamically. As a
result, programmers must explicitly provide typing in-
formation for the heap area using a library routine
which for convenience has been named typing.

typing(ptr, type, elements)

char *ptr; /* pointer to the variable */
char *type; /* type name {of an element) */
int

elements; /* number of elements */

typing(ptr, type, elements) specifies that the heap area
starting from the ptr address contains type related data,
and the data number is designated by elements. An ex-
ample of this usage written in C language is:

ptr=malloc(sizeof(struct S)*100);

[* )/
typing(ptr, ‘‘struct S**, 100); /*(2)*/
free(ptr); [*(3)*/

[*(4)*/

untyping(ptr, “‘struct S'’, 100);

The typing information provided by the system func-
tion typing() is added to the symbol table. untyping()
removes the typing information from the table. The
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Fig. 10 Internal structure of a context.

symbol table of a context includes type declarations of
the source programming languages. Line (1) in the
above example specifies that one hundred times the
number of bytes in the C structure S are allocated in the
heap segment of the context. Line (2) specifies that the
allocated heap memory starting from address ptr should
be typed with the following one hundred C structures,
each having type struct S. After executing typing(), the
calculation for relocation is the same as static memory
areas in data segments. When the allocated heap
memory is useless, type information must be explicitly
removed. Lines (3) and (4) free the allocated heap
memory and remove the additional type information
from the symbol table.

Stack segments. A stack segment is a dynamically
allocated memory like the heap area. Unlike the heap
area, both typing information and size of the stack seg-
ment can be determined automatically. The size of the
stack segment is obtained by checking the stack pointer
register. The typing information of a stack segment is
obtained by analyzing ‘‘stack frames’’ (see Fig. 11).
Since all variables allocated on a stack segment are
limited to the local variables of functions or procedures
and all typing information on local variables for every
function or procedure is stored in a symbol table, the
typing information of a stack segment can be obtained
by following the frame pointers and checking the return
addresses pointing to local variable definitions in the
symbol table.

The typing information for the i-th stack frame is ob-
tained by examining the ‘‘return address’’ of the (i+ 1)-
th stack frame (1 </<n) in Fig. 11. How can the corre-
sponding function to the top frame (fun_n() in Fig. 11)
in a stack segment be identified? In the XERO program-
ming model a context is unloaded from a task only
when it issues the callcc() or receivecc() primitives as
described in Section 2.3. A function corresponding to
the top frame can be identified by constituting the two
primitives to initially call a dummy suspend_context().

After typing information on the stack segment is ob-
tained, the calculation for relocation is the same as for
static memory areas in data segments.
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Virtual address space
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Fig. 11

[ NULL
A(n): Arguments.
|__ A R(n;: Return address.
Stack frame of R(1) F(n): Frame pointer.
fun_1() F) o L(n): Local variables.
L(1) n designates n-th
stack frame.
Stack image
to be saved A(n-1)
Stack frame of Rin-1)
fun_n-1() F(n-1)
L(n-1)
A(n)
Stack frame of R(n)
fun_n() F(n) P
L(n)
Stack frame of — R(n+1) )
suspend_context& F(n+1) ./

Stack segment; fun1_(}calls . . ., fun_n-1() calls fun_n(),

and fun_n() calls suspend_context().

3.3 Achieved Performance

The mechanism for the multithreads and
multicontexts have been implemented on SONY NEWS
workstations with MC68030 CPUs and MC68881
FPUs. The kernel and the task supervisor of XERO are
written in both C language and assembly language. In
the current version of the XERO Kkernel, a portion of
the 4.3 BSD UNIX kernel codes was used to build the
XERO kernel. Approximately 4,300 BSD code lines
were modified and approximately 4,200 C code lines
and 3,200 assembly code lines were created from
scratch. The thread management portion of the task
supervisor has about 2,100 lines of C codes and 900
lines of assembly codes. Additionally about 5,600 C
code lines in the task supervisor were created to manage
contexts. About 200 lines of the GNU C compiler writ-
ten in C language were modified to generate relocatable
codes. Using this implementation we measured the ac-
tual performance of the multithread and the
‘multicontext mechanism.

3.3.1 Multithreads

The costs of primitive operations for threads, virtual
processors, and tasks were measured at implementa-
tion. Table 2 illustrates the expenses measured for the
number of machine instructions executed during each
operation. Measurement was done using the trace mode

of the MC68030 CPU. All codes for operations to
manipulate threads were executed in the user mode (i.e.
in the user address space) of CPUs, and all codes for
operations to manipulate virtual processors and tasks
were executed in the kernel mode (i.e. in kernel address
space). For purposes of comparison, the cost of
primitive operations on 4.3 BSD UNIX processes on the
SONY NEWS were measured in the same way. In the
table, N/ A (not available) appears when the operation
does not have a system call interface.

As clearly shown by Table 2, the costs for all thread
operations are very low. The costs for the operations of
the virtual processor are 5 times (when switching or
resumption)-14 times (in suspension) those of thread
operations. This is because the structure of the data
managed for a virtual processor is more complex than
the structure for a thread. The creation and destruction
of a task are 18 times and 15 times those in a virtual
processor, respectively. This is because the creation and
destruction of a task requires the expensive manipula-
tion of virtual address space.

The total costs for creation and destruction opera-
tions are 12,744 and 8,625, respectively for a thread, a
virtual processor and a task. The former cost is 6,233 in-
structions less than the cost of creation using 4.3 BSD
process. This decrease is due to the system call for the
4.3 BSD process creation, the fork call, which includes
the copying of contents from the parent’s process to the
daughtors. The cost for destruction is 4,301 instruc-
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Table 2 Performance of multithread operations (in machine instruc-
tions for MC68030; N/A: not supported as a system call; —:
no meaning.).

4.3 BSD

Operation  1hread P}lt;gel;;l) . Task  Total o oo
Creation 92 669 11,983 12,744 18,977
Switching 40 205 N/A - N/A
Destruction 90 546 7,989 8,625 4,324
Suspension 13 187 N/A - N/A
Resumption 46 226 N/A —_ N/A

tions more than the cost of destruction using the 4.3
BSD process. This increase is because multiple CPU ac-
tivities in a kernel must be settled in XERO.

3.3.2 Multicontexts

To examine the performance of the multicontext
mechanism, we repeated the loading and unloading of a
Type I1I context to and from a task one hundred times,
varying the size of the context (no effective work was
done by the contexts). The source codes for the exam-
ined contexts were extracted from 4.3 BSD UNIX utili-
ty programs written in C language. Table 3 shows the
average costs in terms of time. In the table, user time is
the required time for relocation, and system time is the
cost of executing disk file I/O. The response time in the
table is the whole cost in terms of time including user
time, system time, and physical disk operation time to
load and unload a context. All overheads to relocate a
context are included in user time since all relocating
operations are executed in the user mode. Except for
the program ‘‘Is.c,”” user time is 10-20% of the
response time. With ¢‘Is.c,”” user time is 55% of the
response time. This is because of the large size of the
symbol table and the large number of pointers in the
context. Current implementation does not use an
efficient table management technique. Performance
with a large symbol table and a large number of
pointers can be improved by using a more efficient table
management technique such as a hashing or a binary
searching table. Since we expect that loading and
unloading are generally not performed so frequently,
we are able to state that the relocation mechanism can
withstand the practical use.

4. Complex Object File System

Most of recently designed operating systems have sup-
ported file systems managing secondary storage as a
uninterpreted byte-stream file that is logically located in
a hierarchical name space [31]. By ‘‘byte-stream file”’
we mean a file that is just a sequence of bytes with any
amount of data in the file system being accessed by speci-
fying the byte offset from the top of the file (or from the
current offset pointer). We can see such a file system as
an untyped persistent heap memory. To achieve an
open distributed computing environment, however, per-
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Table 3 Performance for loading and unloading contexts (in
milliseconds).

Context
Program  Size

User System Response
(KBytes) (lg;y::s) Ponters

Time Time Time

echo.c 18 1.0 45 1.3 253 100.3
grep.c 36 6.6 19 23.1 404 170.8
mv.c 56 17.2 3 343 547 254.5
write.c 107 34.2 8 78.3  92.6 376.6

Is.c 31 109.1 990

665.0 220.0

1,215.0

sistent data types must be handled by operating systems
which share and interchange this data between pro-
grams on heterogeneous CPU architectures using multi-
ple programming languages. The approach adopted
here was to build a file system based on the concept of
complex objects, whose importance and usefulness
have recently been well established in the database
research community [2, 6] and whose mathematical
properties are currently being investigated [1,27]. A
complex object is composed of basic data type objects
with two simple and adequate data constructors: tuple
and set constructors. Each object has its own object
identifier (abbreviated OID) and composition is attain-
ed by embedding the OIDs of other objects within the
referencing object. More precise definition on complex
objects will be given in Section 4.1.

In the XERO operating system, instead of building a
complex object management system on a hierarchical
file system, our complex object management system is
built on the physical secondary storage management
layer as shown in Fig. 12. As will be described in subse-
quent sections, a UNIX-like byte steam file is
represented as an instance of the basic data type im-
plemented by software, and a file system with a hierar-
chical name space is implemented as an application of
the complex object system (see Fig. 12). We named this
new configuration of secondary storage management a
complex object file system. The complex object file
system has the following two advantages that the
previous file systems does not have:

» Persistent data types are managed independently
of any application programs. This feature represents
the bottom line in sharing persistent data between multi-
ple software architectures using multiple hardware ar-
chitectures.

* The configuration of a complex object file system
eliminates redundancies [18, 34] between the file system
layer of an operating system and the physical data
management layer of a database management system
(DBMS) in the configuration for the previous systems
(see Fig. 13). An instance of these redundancies is
found between the disk page management using a tree
structure in an operating system (e.g. UNIX i-node
structure [31]) and management using an index struc-
ture in a DBMS (e.g. B-tree structure [9]). Another in-
stance of redundancies can be found between the buffer
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Secondary Storage Device

Fig. 12 Secondary storage management in the XERO operating
system.

managements of an operating system and a DBMS.
With our complex object file system, such tree struc-
tures and buffer managements are unified, since DBMS
implementors can utilize the complex object facility pro-
vided immediately on the top of the physical storage
management layer. Due to the elimination of redundan-
cies, we can expect improvements in the performance of
the DBMS, compared to the previous configuration,
and can expect reduction in the cost of implementing
DBMS:s.

In the rest of this section we present the definition,
the use, and the internal structures of the complex ob-
ject file system in XERO.

4.1 Description of Complex Objects

A complex object is a typed persistent data that may
recurrently be composed of several other objects. For-
mally, a complex object O is represented by a triple:
(OID, type, value).

An OID is a unique identifier independent of the
physical location of each complex object. An OID is
generated by a system when a complex object is created
and it continually identifies the object until the object is
removed. Given an OID, the system is responsible for
finding the location of corresponding object and pro-
viding its own value to users.

A type s a definition of structure, and a value is an in-
stance of that definition. A type is either basic, tuple, or
set (see Fig. 14), and a value depends on its type:

1. Basic types are composed of two: machine-

primitive types and ADTs (abstract data types)
(Fig. 14). The former types are directly inter-
preted by CPU architectures, while the latter
types are supported by software [24, 39]. The set
of values of the type is only defined indirectly
since it consists of all values that can be
generated by the software module. Examples of
machine-primitive types are integers, floating
point numbers, and characters, among others.
An example of an ADT is the ‘“‘byte stream”’
type as in a UNIX file system.

2. A tuple type represents an aggregate of objects.
If Ty, ..., T, are types, then [T, .. ., T,]is a
tuple type. If Oy, . . ., O, are objects of types
Ty, . . ., T,, respectively, then [0y, . . ., Ox) is a
value of this type.

3. A set type represents a collection of objects for a
type. If T is a type, then {T} is a set type. Any
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Fig. 13 Secondary storage management in conventional operating
systems.

Machine-primitive types
Abstract data types

Tuple

Basic data types {
Composite data types { Set

Types of complex objects

Fig. 14 Type structure of complex objects.

set of objects for type T is a value for this type.
The number of objects in a set is variable.

4.2 Use of Complex Objects

The concept behind complex objects is quite ex-
pressive and many persistent data structures can be de-
fined using it. Here we illustrate how complex objects
can represent various data in both operating systems
and database systems. Although the usefulness of com-
plex objects has been recognized in the database com-
munity, the indication of usefulness for operating
systems is the first as far as the authors know.

4.2.1 Operating System Use

By using complex objects, several methods of infor-
mation management, each of which has been im-
plemented in an ad hoc manner in previous operating
systems, can be attained in a unified way. We
demonstrate usefulness by illustrating uses in managing
name tables and hierarchical file systems.
Name Table. To operate a distributed system, the
operating system must manage various name tables, for
example, the mapping tables linking user names with
their information (such as /etc/passwd in UNIX),
tables linking symbol names with network addresses
(such as netwoik name servers [13]), and mapping
tables linking symbol names with the identifier of persis-
tent data (such as a UNIX i-node table), etc. In XERO,
such a name table can be attained using a set of tuples,
each having mapping information. For efficient
retrieval to the table, users can add the index tree (B*-
tree). A name space can be in a hierarchical or even a
network structure by decomposing the name table into
aset of tables (table itself is a set of tuples) and referenc-
ing them with the OIDs of the tables.
Hierarchical File System. The following description
assumes knowledge on the internal structure of the
UNIX file system [3]. A UNIX-like hierarchical file
system can be built as an application of complex ob-
jects. To do this, prepare an ADT implementing the
data type of the UNIX-like byte stream file (i.e. UNIX
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ordinary file). Represent the i-node table by a set of
tuples, each of which corresponds to the i-node informa-
tion of a file, with each OID corresponding to the i-
number in UNIX. A directory file can be represented by
a set of binary tuples, each of which has a symbol name
(i.e. file name) and the OID of either an ordinary file ob-
ject or a directory file object. By using a network-wide
OID, the file system described here can be extended
naturally to a distributed file system [23].

4.2.2 Database Use

Relation. The first normal form relationships in the
relational data model can be represented as a set of
tuples, e.g., {[4,: Oy, . . ., A.: O4]}.

Nested Relation. The nested relation, discussed in
[29, 32] for example, can be represented as a set of
tuples whose attributes are other sets or other tuples,
e.g., {lA:{. ..}, .. LAzl . 1)

Shared Objects. Furthermore, the concept behind
complex objects can explicitly represent objects that
share several distinct objects. Any object can have multi-
ple parents referencing it via its OID; thus, the objects
being referenced are termed referenced objects, and ob-
jects that are themselves referencing are termed referenc-
ing objects. The referencing of an object is achieved by
including the OID of the referenced object in the value
for the referencing object.

4.3 Internal Structure

We will now describe how complex objects are inter-
nally managed in XERO. Basically, the management
differs according to the types. We present this in the
order of basic, tuple, and set type.

4.3.1 Basic Type Objects

As mentioned in Section 4.1 basic type objects are
composed of machine-primitive type objects and ADT
objects. With machine-primitive type objects, since the
internal representation of values for these types are
different for each CPU architecture in general, represen-
tation conversion is required when objects for these
types are moved (or copied) to other architectural sites.
In converting internal representation, the XDR library
[11] is used for the current implementation.

Internal structure of tuple-type objects.

ADT objects are implemented using the Type II con-
texts as described in Section 2.2. A Type II context has
inside a data segment and an text segment. When a
Type II context is used to represent an ADT object, a
data segment should contain the internal stafe and the
text segment should contain the methods manipulating
the internal states. These internal states and methods
are encapsulated, and the user of an ADT object can
only call published methods for the object. The calls to
an ADT object are performed by the RPC mechanism
which is extended to the persistent space, described in
Section 2.3.

The management of physical storage for basic type
objects is the same as the management for single at-
tribute tuple type objects, as described next.

4.3.2 Tuple Type Objects

Tuple and set-type objects are basically managed
with a B*-tree [9]. Figure 15 shows the internal struc-
ture of tuple-type objects. All instances of the same tu-
ple type are stored in the leaf pages of a primary index
B*-tree. The set of leaf pages in a primary index can
have several secondary index B*-trees for any of the at-
tributes to accelerate content-addressing. Refer to the
content of tuple T in Fig. 15 consisting of OID, Type
ID, and Value. The OID of T 'is just the object identifier
for T. The Type ID of Tis in reality the OID of a tuple
object specifying the type of T (note that the specifica-
tion of a type is kept in a tuple type object). The value
of T'is determined according to the type description of
T. When a user has only the OID of 7, the system
guarantees the user access to Type ID and Value by
retrieving through the primary index in the figure.
When a user has a value (perhaps partial) the user can
access tuples having the value using proper secondary in-
dices if the indices are prepared in advance; if there is
no proper index, the tuples for the type must be search-
ed in the tuple-by-tuple manner.

4.3.3 Set Type Objects

The management of set type objects is similar to that
of tuple type objects, except that each leaf page of a
primary index for a set object contains the OIDs of
member objects of the set. Figure 16 illustrates the inter-
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Fig. 16 Internal structure of a set-type object.

nal structure of a set type object. For each set type
definition, a primary index for the set type is maintain-
ed and its leaf pages include OIDs of the instances of
the set type. For each set instance, a primary index is
maintained to keep the member elements of the set in its
leaves.

4.4 Performance Enhancement with Persistent

Caching

Complex objects are able to represent logical persis-
tent data structures directly, but this virtue appears to
be at the expense of the physical manipulation. The use
of only the above straightforward internal structures
certainly results in poor performance, especially to per-
form the navigation operations that follow the OIDs in
accessing the referenced objects. Navigation operations
are difficult to implement efficiently since every opera-
tion inherently causes single disk access operation. To
overcome this we developed a technique termed persis-
tent caching [17, 19] to notably accelerate operation of
the navigation by increasing the effective number of ob-
jects on one disk page. The main concept behind the
technique is threefold. The first is to store a cached
value within a complex object referencing another com-
plex object. Second, when a referenced object is to be
updated, update propagation to the persistent caches is
delayed until the cached value is referenced. The third
idea involves the use of a hashed table on the main
memory to efficiently validate the consistencies between
the cached values and the original values. Further
discussion on the algorithm and an analysis of perfor-
mance are given in [19].

In the implementation of a complex object file
system, the persistent caching technique is used exten-
sively. Refer Fig. 17. When a tuple object includes
reference to another object stored on a different disk
page (page 2 in the figure), the values of ‘‘referenced’’
objects can be copied and retained on the disk page
(page 1 in the figure) on which the ‘‘referencing’’ object
is stored as a persistent cache. As long as the persistent
cache is not invalidated, a navigation operation from
the referencing object to the referenced object is per-
formed by accessing only the first disk page.

r Disk page 1~
Persistent cache

Teterncns [ Tp] ]

(copied value)

( Reference by &D c«{pbd

*Referanced”
object (original value)

rsistent cache area

Fig. 17 Tuple object with persistent caching.

The persistent cache contains a copy of any informa-
tion whose validity can be checked based on OID. A
useful utilization is to persistently cache the physical ad-
dress of referenced objects in referencing objects. This
reduces the cost of object location by amortizing
lookup costs over multicasting location requests to net-
work sites [36].

As with tuple objects, persistent caching accelerates
accesses to elements of a set object. See Fig. 18. By per-
sistently caching a portion or all the element objects in
the disk pages storing set element OIDs, these elements
can be directly accessed so long as the persistent caches
are not invalidated.

5. Conclusions

We described an open distributed computing environ-
ment namely the XERO operating system providing a
programming model using multithreads, multicontexts,
and the extended RPC mechanism. The internal struc-
ture of the operating system includes two-level
multithread management, relocatable multicontext
mechanisms. XERO supports a complex object file
system to preserve data types in a file system. For
efficient management of complex objects, persistent
caching technique is used.

According to the design described in this paper, we
are now implementing the XERO operating system.
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Although our objective is to realize a heterogeneous
distributed computing environment, the current target
machines which allow implementation are SONY
NEWS workstations.

Future work will concentrate on the following
research:

+ Developing a set of toolkits to adapt existing pro-
gramming language systems to the XERO programm-
ing model.

« Integrating a complex object space with RPC-
communication. One idea is to use the concept of
distributed shared data [4, 14].

» Developing an easy-to-use manipulation language
such as [20] and a transaction model for distributed
processing to complex objects.

* Managing replicas of complex objects to quickly
access in distributed environments 8, 38].
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