Translation from Transactions of IPSJ

The Software Development Environment: dmCASE

SAEKO MATSUURA* and MASAHARU OHBAYASHI*

In this paper, we propose a new software development environment: dmCASE on a new paradigm in the

1990’s which Dr. Balzer and others proposed.

This environment is composed of three major concepts. First thing is a design method: DMC (Design Method
based on Concepts) which is a kind of object oriented programing methodology. Secondly, we use the standard
ML which is a functional language, as an executable formal specification language which can verify formal
description. In addition, tools and technologies which support the formal description using DMC are impor-
tant. A flexible user interface like the process of human thinking plays an important part of our environment.

Our goal is to construct an integrated environment for software development such that we can be concerned

in more intelligent work.

1. Introduction

At present, with rapid progress of hardware
technology there are many tools which support the pro-
gramming activities with a flexible user interface. Never-
theless, an essential problem of software development
in the 1990’s is not yet solved. Several new software
technologies such as prototyping, object-oriented
programming, formal specification description, Al,
automatic programming, etc. [2-4] have emerged.
However, these are no established paradigm for the
design phase in a software development.

Accordingly it is our most important objective to
build an integrated software development environment
based on many useful tools and technologies. It also
should support a life-cycle model of software develop-
ment. It is expected that such an environment will im-
prove productivity, portability and reliability. We pro-
pose a software development environment named
dmCASE which is based on a paradigm proposed by R.
Balzer and others. To verify and maintain specifications
(but not programs) in an early stage of development, we
must write specification using a design methodology
and an executable formal specification language.
Moreover, a flexible user interface which assists human
thinking process will play an important role. Our aim is
to construct a new integrated software development
environment named dmCASE with a design
methodology, a formal specification language and a
tool which supports our design process. In addition we
propose a total design method with two view points.

This is a translation of the paper that appeared originally in
Japanese in Transactions of IPSJ, Vol. 31, No. 7 (1990), pp. 1091-
1103.

*Kanri Kogaku Kenkyusyo, Ltd. 1-9-6 Ebisuminami, Shibuya-ku,
Tokyo 150, Japan.

Journal of Information Processing, Vol. 15, No. 1, 1992

First is a Space Design to analyze and design a system
object with a three dimensional view. Second is a Plane
Design that divide this space object into several planes
so that we can design them as a two dimensional struc-
ture.

In this paper, section 2 discusses our concept on soft-
ware development environment. In section 3 we in-
troduce our design methodology named ‘‘Design
Method based on Concepts’’ and its features. Section 4
is on our formal specification language and section 5
discusses tools which support our design process. In sec-
tion 6 we explain the organization of dmCASE and its
features. Finally section 7 describes a few experiments
on specifications and its evaluation.

2. Software Environment

We propose a software development environment
which has a paradigm [1] proposed by R. Balzer, et al.
To verify and maintain specifications (not programs) in
an early stage of software development will make us to
engage in more intellectual works. Following four fac-
tors are important:

*A methodology which analyzes incomplete re-
quirements and constructs a model of an object from it
(identify its hidden or imprecise requirements).

*An executable, formal and verifiable specification
language.

*A technology with tools that supports our design
method.

*A translation of a specification into an executable
program.

Conforming to a design method we specify a require-
ment formally. Then its formalism enables to verify its
static justification and executing the specification
enables to verify its justification dynamically. Namely,

The Software Development Environment: dmCASE

to create a clear specification by a strongly formalized
language probably improves reliability of software.
Moreover, this increases productivity by decreasing a
process of back tracking. The difference of this process
from programming is that in the former we construct a
design structure with specifying objects at more
abstract level. In other words, we specify objects
without considering an environment of implementa-
tion, that is, several features of hardware and a con-
struction of windows, etc. And implementation pro-
gram will be create to instantiate an abstract specifica-
tion.

We realize the above four factors to our software en-
vironment dmCASE as shown under.

«An object-oriented method named ‘‘Design Method
based on Concepts’’ as a design methodology.

A functional language ML as a formal specification
language.

And our basic policy to support above paradigm
using tools are following.

*Support a flexible user interface and a design proc-
ess which assists human thinking process.

*An environment in which we will be engaged in
essential works on our design process.

*Constraints which never disturb our thinking.

*Verification and validation

We can design an extensible model which is easy to
maintain using the above ‘‘Design Method based on
Concepts’’. This point is very important to control col-
lectively a software development process. In above four
factors, we have not implemented the last factor.

3. Design Methodology

In this section, we introduce the ‘‘Design Method
based on Concepts’’ (abbreviation, DMC) [11] adapted
as a modeling method. And we compare it with other
several methods and mention its features. In the follow-
ing, we express our method DMC. And in the following
explanations, we write proper words of DMC are
marked with [].

3.1 Basic Concepts of DMC

DMC is one of the design methods such that we con-
struct a structure of computer system in our way of ob-
ject-oriented thinking. And it is based on ideas of
abstract data types. Bases in our design process are {ob-
jects) which represent concrete objects and {concepts>
which represent more abstract objects in requirements.
We call them [chips]. A requirement is regarded as a set
of these [chips]. Then we will create a system model
with describing the interaction of [chips] by a two
dimensional network diagram. We call this network a
[conceptual structure chart] and wired [chips] on this
chart [instances]. (see Fig. 1) Each [chip] is a set of
several data and processes (=functions) which have a
relation to an {object) or a {concept) that appears in re-
quirements. Such words which represents an {object>

117

Fig. 1 An example of *‘The conceptual structure chart’’.

or a {concept) is also a [chip] in a wide sense. In an ear-
ly stage of our design process, extracting such words or
selecting new words not being in the requirements, we
create a set of [chips]. We call this set a [word table]. A
[word table] will perform a part to arrange many infor-
mations. And we register a lot of design fragments on
our design process in it.

For example, we suppose there is a requirement to
design a library system of *The Library of
Nishiazabu’’. In the words appearing on this require-
ment, a word ‘“The Library of Nishiazabu’’ is a con-
crete {object) and a word ‘library’ is a {concept) as an
abstraction of the previous word. At first step, analyz-
ing the requirement we get a gist of this problem as the
following sentence. ‘‘In this library, we deal with many
and various books and operate a registration and search
of books.”” As a [chip] in a wide sense, we can extract
some words such as ‘library’, ‘book’, ‘register’ and
‘search’, etc. from this sentence. We can recognize that
the sentence “‘In this library, we deal with many various
books.”” means a concept ‘library’ is explained by the
works of a {concept) ‘book’. We suppose there is a rela-
tionship between a {concept) ‘library’ and a {concept)
‘book’. We describe this relation as an oriented segment
on a {conceptual structure chart). Because of this a
[chip] ‘library’ and a [chip] ‘book’ become concrete [in-
stance] in this *‘The Library of Nishiazabu’’ model.

The frame of our designing a structure of [instance] is
based on a notion of an abstract data types which is a
similar notion of an object in object-oriented program-
ming. This means that we can realize an information
hiding. However, we notice that a [instance] can include
not only its data and some mechanism to access them,
but also some processes which have a connection with a
{concept) of [instance]. In this mean, a concept of [in-
stance] is near to the object. Namely an [instance]
represents a composite abstract data types which in-
cludes not only its own data but also several data in con-
nection with its {concept). In the previous example, the
‘Book’ [instance] includes ‘book’ as a data. A data
‘book’ consists of some data, that is, ‘book_name’,
‘author’ and ‘subject’ which are regarded as attributes
of a data ‘book’. It also includes some functions to ac-
cess them. In this way, we will design a ‘Book’ [ins-
tance] as a set which consists of four data and three

118

functions with a ‘book’ {concept). Using the above
model constructed by ‘Library’ [instance] and ‘Book’
[instance] as a basis, in the next step we design some
data and functions which are necessary for satisfying
the requirement. In the previous example, we thought
about ‘‘search books in a particular subject area’ as a
transaction of ‘Library’ [instance]. We call it ‘sear-
ch_subject’ for short. And ‘Library’ [instance] sends a
‘search_subject’ message to ‘Book’ [instance] and gets
some information about searching books. In the other
word, ‘Library’ [instance] refers a function ‘sear-
ch_book’ which is a transaction of ‘Book’ [instance].
This enables us to realize a function ‘search_subject’
which is a transaction of ‘Library’ [instance]. Each data
belonging to an [instance] can refer some data in a
lower direction within a [conceptual structure chart].
As shown above, [instances] are [chips] wired by some
oriented segments within a [conceptual structure chart].
Moreover, to concrete a [chip] means that we add some
signatures of its connected [instance] to a set of
signatures belonging to the [chip].

As mentioned above, we construct an initial network
model for requirements and refinement this model by ar-
ranging some data and processes with their attendance
[instance] representing its {concept).

An [instance] specification describes a {concept) of
[instance] in formal and it consists of two collections
which are signatures and declarations. Signatures are
constructed by several type signatures belonging to an
[instance]. [n other words, they are a set of words which
represent data and processes and their types. On the
other side, declarations are a module and implementa-
tions of signatures. So signatures are the only interface
of an [instance] to which the other [instance] can refer.
A module hides own information from other modules.
There are two ways to instantiate [chips]. One is a
‘reference’ to the other informations and the other is an
‘inheritance’. ‘Reference’ is a relation between two [in-
stances] which they can call another process in own
process. ‘Inheritance’ is a relation which they can in-
herit another informations and request to call processes
as a ‘superclass’ in the object-oriented programming.
We designed a [conceptual structure chart] and some [in-
stances] like this. It follows that we can represent a con-
cept of data transparency and information hiding.

In the above step, while designing a [conceptual struc-
ture chart] and [instances] on it, we describe [instances]
specification as a formal specification by a formal
language. In other word, we express the structure of
data and the contents of messages related to the [in-
stance] by representing their concept using a formal
description language. One reason of separating
signatures from declarations in an [instance] specifica-
tion is to turn a module which has same signatures into
a software part. Since declarations are an implementa-
tion of signatures, we can realize another implementa-
tions and create another [instances].

We show design steps on DMC and some founda-

S. MATSUURA and M. OHBAYASHI

tions of decision for each step in the following Table 1.
In This explanation we adopt the Library Problem [10]
for an example.

In the process to construct a rough model from an in-
complete requirement and design each [instance] which
is an element constructing the model, it is a basic con-
cept on DMC to understand and arrange the problem as
a collection of objects with common concepts. We con-
sider that arranging with some common {concepts) is
very useful to improve readability and enables to extend
and maintain a specification.

What is the difference between DMC and other
methods? We mention it in the following. In the data
flow model, we are recommended to take note of data
transferred between processes and to construct a system
model by them. In the E-R model, we consider ‘entity’,
that is, a concept of existence and its relations. An ‘enti-
ty’ means an existence which has a notion about a crea-
tion and an extinguish, but doesn’t mean a complex col-
lection of data and processes such as {concepts) on
DMC. On DMC, we regard data and processes as one
collection and consider its behavior as a whole structure
and describe them. On the other hand, above methods
propose to analyze a system in a viewpoint of data and
from the different standpoint analyze processes. Never-
theless, I wonder whether it is more natural for human
thinking that we regard several objects as a {concept)
with data and processes as one collection than regarding
them as only data or processes. To speak more pre-
cisely, a model on DMC may be similar to a mental
model which means that we simulate an object in our
brain for the sake of understanding it. In the design
step, it may be easy to understand but is insufficient to
see its whole structure which enables us to analyze a
problem on the particular viewpoint. DMC proposes
that we construct a natural model similar to human
thinking and give a detail design on the previous model
as a basic model. Moreover, analyzing on several view-
points enables us to understand each element and the
whole structure well. In the case of DMC, we realize
this concept by understanding the whole structure of
problem using a [conceptual structure chart] and sup-
porting to analyze them on various viewpoints.

Then, what is the difference between DMC and obj-
ect-oriented programming (for example, Small talk)? In
object-oriented programming there are concepts which
represent ‘instance’, ‘class’, ‘message passing’ and ‘in-
heritance’. The last concept represents a relation of two
classes which inherit own informations to another. On
the other hand, on DMC, there are concepts of [chip]
and [instance]. In this design step, only related [in-
stances] on the structure are effective. In object-
oriented programming, a class definition is the first deci-
sion and its instance definition is the next, but on DMC
we design concrete [instances] at first. It may be difficult
to consider an abstract concepts with hierarchy on the
early stage of design phase and so we should consider
concrete objects at first. We will mention [chips] later as

The Software Development Environment: dmCASE

Working items

Step

119

Table 1 Design step on DMC.

Results

Viewpoints and bases of judgment to design works

1) ‘ Get a gist of the problem and denote
/it in some short sentences

You can explain to others what this system wants to do. If this eqSeveral sentences written by
planation is not sufficient, you should add further explanations of | natural language
words which appear in the sentence

(2) |Extract words which represent
[chips] as candidates for [instances]
‘from the above sentence (1).
Register these words to a [word
table]

(3) | Extract several [chips] which will per-
| form parts as data and processes |

;from the problem sentences.
iRegister these words to a [word
! table]

According to a basis of judgment like (1), you should considerﬁ [word table]
whether you can construct an explainable structure with these |

words. Mainly words are selected from the subjects and objects in

the sentences

You should select process words by extracting words which appear | A [word table]
in the sentence as system functions. And as data, you should select
words which are objects of processes. This means that these words
are selected from the subjects and objects in the sentences

(4) 'Construct a [conceptual structure
ichart] with these above words (2)

|

According to a basis of judgment like (1), you should consider | A [conceptual structure
whether you can construct an explainable structure. To speak cor- | chart] (see Fig. 1)

rectly, you should arrange these above words (2) by regarding the ‘
relation between the subjects and the predicates in the context of |
the above sentence (1) as a relation between upper and lower con- -
cepts on the [conceptual structure chart]

1
(5) | Arrange the above (4) words accord-
! ing to their usage

You should arrange the words by deciding their usage, that is, proc—TA fword table]
ess, data, exception handling

(6) | Assign these above (5) words to each
appropriate [instance definition
table]

You should assign the process word to its subject [instance]. And | An [instance definition table]
the data word should be assigned [instance] with its own name, or,

if it is a component of the word which has the same name with an

{instance], it will be assigned this [instance]

@) Describe the details of data and proc-
ess definitions using a specification
. description language

You should describe each process by sharing own work in other ‘ The definition of data and
processes. And data structure is decided by the context of the prob- ' processes with a specification
lem and the description of processes description language

8) ﬂlBack Tracking: Register the words
‘turned to clear their need at the

You should assign registered words to the [instance] or extract new { A [word table], a [conceptual
words according to their need. When an [instance] has too many ' structure chart], an [instance

! phase (7) to the [word table]. And
‘assign them to appropriate [ins-
| tance], reconstruct the [conceptual
, structure chart]. And the other work
is to repeat above work from (3) to
(@]

words for one [instance] to posses, you should divide this [ins- | definition table] and [in-
tance] concept to several concepts and reconstruct the {conceptual | stance] specifications (see
structure chart] by adding new [instances) Table 2)

- [R

a problem of dividing parts and reusability. Another
character of DMC is to describe a transference of
messages on a [conceptual structure chart] using a
graphic user interface. There are ‘refer’ and ‘inherit’
relations in the upper and lower relations between [in-
stances]. A ‘refer’ relation plays a role to transfer each
message. An ‘inherit’ defines a relation which is, what is
called a ‘superclass’ relation on object-oriented pro-
gramming. Nevertheless, on DMC, it is a means of un-
derstanding [instances] related by ‘inherit’ as one object
and these [instances] exist on the two dimensional struc-
ture. We can control ‘information hiding’ by changing
our selection according to the situation.

3.2 Extension DMC

In section 3.1 we have explained basic concepts of
DMC. However, it may be impossible to design a large
scale system by describing with one [conceptual struc-
ture chart]. So to take measures on this matter, we pro-

pose to extend the concept of DMC.

We call a basic unit of description on DMC a {board].
More precisely it means a unit of a model represented
by a [conceptual structure chart]. We design a [board]
as a two dimensional plane. At the previous phase we
considerd to design a system in three dimensional space.
Our aim is modeling objects existing in a real world as a
system model in space. At first we recognize our objects
in three dimensional space and next divide this space at
different viewpoints and design each plane so that we
can understand its structure easily. And we consider
how each plane performs in the space and generate a
system model from a three dimensional viewpoint. In
this way there are two design steps on DMC, that is, (1)
space design and (2) plane design which supplement
each other part. We will explain them as follows.

(1) Space design

First step is to divide a system object into several sub-
systems which are independent of each other. More pre-

120

(board]
Spac|e
Desifgn o
[Polymorophic
chipl

Plane design

Fig. 2 The multi-layer ‘‘board’’.

cisely, we select some keywords which can construct an
object system from given requirements considering
their independence and take up them as names of sub-
systems. This subsystem and a [board] has one-to-one
correspondence. And these keywords construct a three
dimensional system model. Namely a system model is
built by several [board] layers.

In this step, we extract some [chips] which express
each subsystem from requirements. These [chips] are re-
spectively instantiated within a [board] and turn into
concrete [instances). If a [chip] is used in some [boards],
it will turn into original [instance] in each [board]. This
means that we extend a concept of [chip] to [polymor-
phic chip] which has several sides as a [chip]. An [in-
stance] is defined uniquely in a system model, while [in-
stances] which are turned from [polymorphic chips]
and appear on more than one [boards] have a common
concept represented by the [polymorphic chip].

In the step of plane design about every subsystem, we
design two dimensional structure on a [conceptual struc-
ture chart] using these [polymorphic chips]. Some
[chips] added during our design step are also regarded
as [polymorphic chips] and instantiated in each [board].
And the system possesses these [chips] in common. In
this process, several [board] layers which construct a
system model are wired vertically along [polymorphic
chips]. Then three dimensional system model is formed
(see Fig. 2).

(2) Plane design

A design of [board] is equivalent to a plane design.
The scope of words used in this step is restricted within
a [board] except [polymorphic chips]. So it is not
necessary for us to mind the other [boards] design. In a
viewpoint of system model, we regard words on a
[board] as words with a tag which represents a sub-
system’s name. This enables us to guarantee the uni-
queness of each word on the [board].

One of the famous design methods is a hierarchical
system decomposition. In this method we can unders-
tand their vertical relations between decomposed
modules, but it is hard to find their horizontal relation.
Then many similar modules may appear on a whole
system structure. On DMC, we consider whole struc-

S. MATSUURA and M. OHBAYASHI

L ndeef—tb] LCon—st—chJ .r ~ Description System

.

. Editor

1

Ll

: “m Static Anlysis

: Memo | : itor System

% 1) |

T Monitor

: [Memo] : Dl

{ i 1 = T

n-st-ch|_- __{Carg-pn R .
teporro] [Card] Soopd Dyramic Analysis

B H - . : System
| 1 1 1 1

I T l

. I ﬁbst Translation System

Knowledge Base
System

Fig. 3 The system model of dmCASE.

ture as a multi-layers system. This meaning is to decom-
pose a system to layers which are independent [boards]
and construct hierarchical structure on each [concep-
tual structure chart]. We can catch vertical relations be-
tween similar modules (=<concepts)) using [polymor-
phic chips] as connective concepts. For example Figure
3 shows a system model of dmCASE in which some
[polymorphic chips] such as [word table], [conceptual
structure chart], etc. appear on it as a common concept.

3.3 Software Parts

An [instance] is a specification which expresses a {con-
cept) of original [chip] by deciding relations between
the other [instances] on a [conceptual structure chart].
By turning some [instances] connected below into
parameters, we can create a [part chip]. In the previous
example, we can apply a matter of ‘‘In this library, we
deal with many various books’’. to a case of a rental
video shop. That is, abstracting the signatures of [in-
stances] to which ‘Library’ [instance] refers, we can reu-
se its algorithm as a part. In general, most of [part
chips] may be [chips] which have tight condition of con-
nections. Because it depends on the way to design the
[instance]. Anyway we have a possibility to reuse
[chips}] as [part chips].

4. Specification Description Language

4.1 ML as A Specification Description Language

As mentioned above, it is very important to describe
rigorous and correct specifications with a formal
specification language. Because, we must verify it at the
stage of requirement of definition or design phase in the
software development process. For this purpose, we
think that a specification language has to possess the
following factors.

(1) Clear model for calculation =

Improve readability of a specification.

(2) Formalism to be able to analyze, verify and

The Software Development Environment: dmCASE

transform =

Static verification and generate executable codes.

(3) Executable =

Dynamic verification like prototyping.

(4) Abstract description =

Separate specifying from an implementation.

Viewed from these points, we have adopted a func-
tional language ML (Standard ML) [5, 6] as our
specification language. ML was developed at Edinburgh
University as a language which describes a logical proof
system and its features are the following.

1. Higher order function

To be able to treat functions as data, so we can
describe specification compactly by subdivision of proc-
esses.

2. Pattern matching

We can describe variable patterns as arguments of a
function.

3. Exception handling

ML has many expressions for handling exceptions
and we can describe complex operations using an excep-
tion identifier.

4. Type inference mechanism

ML is a strongly typed language and has a
mechanism to infer types of their expressions [8].

S. Polymorphism

We can define a function with any type represented
by type variables. Such a function whose types are type
variables performs a general-purpose function and we
can reuse them in various cases.

Correspondence with above factors, we will mention
the reasons for adopting ML as our specification
language.

(1) The calculation model of ML is a functional
model. A function has two aspects. First is to express a
clear correspondence as a mapping from a set to
another set. This performs a role of a message between
[instances]. Second is to be regarded as a process to com-
pute output values from input values. When we
specified requirements, whether to describe ‘‘what is a
requirement’’ or ‘‘how to satisfy a requirement’’ is
often discussed. In this case, above two aspects it seems
that the former express ‘what’ and the later express
‘how’. We think that is important for a specification
language is to have semantics which do not depend on
their process to compute. Moreover, this enables the im-
provement of the readability and portability of a
specification. The concise description using higher
order functions enables us to easily determine errors of
function’s behavior. The above nature may allow us to
say that functions have what it takes to be a specifica-
tion language.

(2) ML is based on the theory of lambda calculus
and we can make use of the various results of lambda
calculus. For example, we can translate a source pro-
gram in ML into its categorical combinator code accord-
ing to categorical combinatory logic and execute it on
an abstract machine.

121

ML is a strongly typed language. In general, it is a
troublesome task for programmers to write types ex-
plicitly in their programs. However, in case of writing a
specification, to define data types of a function which
means defining its input and output values as data types
will be useful for us to clear our purpose in describing
its functional property. Moreover, its type inference
mechanism enable us to verify a specification.

(3) Functions are rules of calculation and we can ex-
ecute them by reducing expressions. It is possible to ex-
ecute them symbolically. Accordingly we can execute a
specification with some undefined symbols.

(4) When we describe a specification, we must
describe it at the independent level to implementation
environments (that is, characters of machine and a con-
struction of windows etc.). It is desirable that we
describe what is required essentially and translate them
into implementation programs automatically or interac-
tively. And we can generate a program from a specifica-
tion by its instantiation. This means that one language
plays several roles which correspond to its abstraction
level. We can make such an abstract description using
ML and it may be possible to translate them into im-
plementation programs.

For the reasons mentioned above, we adopted ML as
a formal specification language. Nevertheless, there are
some problems to use it as a specification language. For
one reason, as what is generally said, it is difficult to
understand a formal language and hard to get used to
its formality. In spite of that, probably supporting tools
enable to cope with this difficulty. And we think that we
should overlook some difficulty for improvement of the
quality.

For another, ML does not have a mechanism to
describe parallel processes with independent actions. A
specification language PAISLey [4] based on an opera-
tional approach concept is also a functional language.
And besides this, we can simulate the actions of parallel
processes by describing some functions named ex-
change functions in which communicate each other. To
simulate the actions of parallel processes, it may be
necessary to extend ML itself.

4.2 Adaptation ML to DMC

We adopted ML (Standard ML) as a formal specifica-
tion language. To use it in the design step on DMC, we
added a mechanism of modularization {7] to it. An [in-
stance] specification consists of the signatures and
declarations of {type declaration), {value declaration,
{exception declaration) and its lower [instances] (Table
2). Each declaration corresponds to the definition of a
data structure, a process and error handling respec-
tively.

4.3 Translation ML into Categorical Combinator
Code

The way to implement a functional language using
the theory of categorical combinator logic was studied

122

recently [9]. Cousineau and others proposed an abstract
machine CAM (Categorical Abstract Machine) based
on this theory and designed a processor of ML (this is
not Standard ML) using this idea. We propose to ex-
tend this idea to the whole Standard ML without alter-
ing functions of CAM.

5. Supporting Tools

dmCASE is based on the method and the specifica-
tion language which we have explained in section 3 and
4. In this section, we mention how to support our
method and language and how to make use of these
features as tools.

A design phase is a process on which we will repeat
trial and error and so we should support these process
smoothly. Qur basic policy is the following. First is to
construct user interface which matches human think-
ing. Second is to realize an environment where we
devote ourselves to essential works of design by giving
moderate restrictions which never disturb our thinking.
Accordingly we notice that the following viewpoints are
important for an environment.

*Verification: A formal specification language
enables us to verify statically at the early stage of the
design phase. We make use of the rules of our method
and language as knowledge to verify. There are two
levels of verification. The first is to guarantee a con-
sistency in the model using a [conceptual structure
chart] and that there is no inconsistency in the process
of description. Second is a verification using types of
function which form [instance].

*Visualization: This is an indispensable aspect for
ease to understand a design process. Subject to visualize
is for example, a model of a system, data structure and
algorithm of process. Such a visualization aims at im-
proving the understanding of a specification and under-
standing its actions.

*Information arrangement: At the stage of design
with trial and error, it is a very important problem how
to arrange numerous and various information. A
system should provide a plain mechanism to arrange
them. We suppose the following mechanisms or func-
tions for example. A mechanism that users can select
and keep some available data from much information
offered by a system. Moreover, a mechanism to judge
its efficiency. A function to support to make notes what
come to mind, for instance an algorithm memo which
means to arrange several chips of algorithm.

*Generation of testing data: Test is one of the ways
to verify the specification dynamically. However, there
is no way to do a complete test for the present. Never-
theles, there are several ways to support a test phase.
For example, to derive the restrictions of data, that is,
creating a template of input data using types of func-
tions. Moreover, generating test data automatically to
some extent is considered.

S. MATSUURA and M. OHBAYASHI

*Guidance: We should use various information
which occurs at the design phase effectively. In order to
guide users effectively, it is necessary to propose a
mechanism of hyper text and interactive user interfaces
and represent various information visually.

*Navigation: There are several rules on method. So a
system enables to lead what a user can do or what a user
should do at the next step. If the system controls us com-
pletely, our work will not get along well. So we need to
consider a moderate lead.

*Monitoring: We hope an environment where we
devote ourselves to essential works of design. Accord-
ingly the system should monitor design steps and pro-
vide some information as the need arises.

*Documentation: At first the requirement is written
by informal natural language. After we translate these
into the formal descriptions and verify them, we need
documents written by natural language which reflect in-
tentions of the formal specification. It follows that they
are easy to understand. This documents aim is not to
maintain them but to assist in understanding the system.

«Flexibility: Human thinking is not always systematic
such that it is sometime top-down as well as bottom-up.
Particularly, the describing step is a process of trial and
error, so that the system should keep up with various
situations flexibly.

6. Outline of dmCASE

6.1 Design Process on dmCASE

The design process on dmCASE that we recommend
as a paradigm of a new software development is the
following.

(1) Process of constructing a system model

Requirements given at first stage are written by
natural language, that is, an informal specification.
From this informal specification we construct a system
model on DMC and describe specification of [instances}]
using ML. We notice that at the present we don’t sup-
port the space design mentioned at section 3.2.

(2) Simulation Process

By giving data to the described specification and ex-
ecuting it, we will verify the specification dynamically.
As this results, we must return the previous process and
reconstruct the model of specification.

(3) Translation Process

After a confirmation based on simulation of specifica-
tion, we will translate this specification into efficient
categorical combinator codes and execute them on an
abstract machine. By the way, we have not realized a
translation mechanism as that mentioned in section 2,
so that we omit its explanations.

6.2 Compositions of dmCASE

We speak of the system design method on dmCASE
using a notion of space design and plane design men-
tioned at section 3.2. First, as the space design, we con-

The Software Development Environment: dmCASE

sider the following six subsystems. This idea means that
we divide the system’s whole works into several parts at
the static viewpoint. Next we extract various [polymor-
phic chips] which represent each {concept) appearing
on dmCASE. Using them each charge of layer of the
system model designs own subsystem=a [board] as the
plane design. This result has been shown in the previous
Fig. 3 as the system model of dmCASE. In the Fig. 3,
each layer represents a [board] and each word encircled
by a square on it expresses a [chip]. When we look at
the system from a static viewpoint, each [board] plays
the following role.

*Description System [13): This system realizes
various functions to support describing a specification
using the [word table], [conceptual structure chart], [in-
stance definition table] and [syntax oriented editor].

Static Analysis System [14]: This system realizes to
verify a specification statically and gets various informa-
tion using the rules of DMC and ML as the following.
To check the usage of words arranged in the [word
table]. To guarantee the consistency between the rela-
tionship among several [instances] and the specification
composed of such [instances] on the [conceptual struc-
ture chart]. To verify the process specification (the

Gin TRITTOR
list

tag

(bex

form

lestar

123

description of value declarations) by the type inference
mechanism.

*Monitor: To protect users from a cntradiction in the
process of description. To show the need to execute the
specification again with the change of description, etc. . .
Monitor realizes to watch the process of constructing a
system model and simulation process like this.

*Dynamic Analysis System [14]: To analyze a
specification dynamically, this system realizes the
following functions. To execute a specification with a
[card]. To generate its execution environment.
Moreover, tracing, breaking, understanding an execu-
tion path and displaying the process algorithm, etc. . . .

*Translation System: This system realizes to translate
the specification into its categorical combinator codes
and execute them with an abstract machine.

«Knowledge Base System: This system realizes to col-
lect and manage various design knowledge such as a
[word table], a [conceptual structure chart], [instance]
specifications, [cards] etc. . . .

On the other hand, the design process mentioned at
section 6.1 expresses dynamic parts of the system on the
system model shown in the Fig. 3. The relationship be-
tween each [boards] as above mentioned and this proc-

BREAK
<AESET>]
GRAPHIGLOBAL

Conceptual Structure Chart

rder
m-n list ({Wanh-m}h@mn (varshoum ,ondsr , .)4 D,
shartage , . ..)

-u-un(

{s.wmu‘umy}m..a ¢
rand.list-of-shortage ,
order,...) 4...)

Instance Definition Table

Fig. 4 The word table: The conceptual structure chart- The instance definition table- The syntax oriented editor.

124

ess is the following.

(1) In the process of a constructing system model,
while writing our specification with the description
system, we verify it with the static analysis system. And
at the time the monitor system watches this process.

(2) In the simulation process, based on various ac-
cumulated knowledge the dynamic analysis system
analyzes and verifies the specification dynamically and
at the time the monitor system watches its analysis infor-
mation.

(3) Inthe translation process, the translation system
translate our specification into its combinator codes
and executes them.

And various information accumulated at each proc-
ess is controlled by the knowledge based system.

Moreover, among several [chips] appearing in figure
3 which consist of dmCASE, there is something to per-
form a part of user interface. That is, the word table,
the conceptual structure chart, the instance definition
table, the syntax oriented editor, the memo note, the
card, the card panel, the circuit chart, the scope and the
map of circuit chart. These [chips] are instantiated in
each subsystem. And they appear on the various proc-
esses as an [instance] and form a concept of the [board]
as an interface with users. The following explains these

1t=1100

suount . 2=600

S. MATSUURA and M. OHBAYASHI

<concepts) and in the explanations we show the part as
supporting tools which are mentioned in section 5 as
[[1]. And the figure 4 and figure 5, show an example
which describes the problem of the inventory manage-
ment system [12]. Then we use this example with the
following explanation.

(1) Word Table

This is a table which aims to register various words
which represent [chips] extracted from requirements re-
spectively. And its other aim is to arrange them to get
much information to describe a specification (see Fig. 4).
The word table consists of six attribute columns, for ex-
ample instance, data type, process, etc. . . . To arrange
them with their attributes enables us to decide the usage
of extracted [chips]. For example, we use ‘Warehouse’
and ‘Reception’ as an instance with which form a prob-
lem structure and ‘order-reception’ as a process name
which represents a task to receive orders. To arrange
words with their attribute is useful for us to simulate
the system model as a mental model. Moreover, it gives
some constraints which decrease to occur many con-
tradictions such that the usage of words are incorrect in
the specification. And the word table enables us to give
some information as to how to use these words. The
main works of the word table are functions such as in-

)mnp-l’lm (amount] ,amomnt3,...)

Fig. 5 The card- The circuit chart-

—
val amount1= 500 :int
and ameunt2= 600 :int

Map of Circuit Chart

The scope-The map of circuit chart.

The Software Development Environment: dmCASE

put, move, copy, delete, search, rename. [[Information
Arrangement]] [[Verification]] [[Flexibility]]

(2) Conceptual Structure Chart

The conceptual structure chart is a chart which ex-
presses the relations between several [instances]. It ex-
plains the problem structure using several [chips] work-
ing a central role of explanation (see Fig. 4). This aim is
to create a natural model as repeating a trial and error
in human thinking. Figure 4 shows that the instance
‘Delivery-preparation’ refers to two instances, that is,
‘Container’ and ‘Order’. While it is the way to catch the
entire structure of a problem at the describing phase, it
enables us to observe this model from different view-
points by confirming process actions and searching data
and processes on it. The main works of the conceptual
structure chart are functions such as editing chart,
display a process path, display a circuit chart, tracing,
breaking, etc. ... [[Visualization]] {[[Verification]]
[[Flexibility]] {[Guidance]]

(3) Instance Definition Table

The instance definition table is a table on which we
register various [words] which form each [instance]
specification (see Fig. 4). This means that we list what
we want to do in the [instance] and decide the outline of
behavior of it. Figure 4 shows that the instance ‘Recep-
tion’ consists of one data such as ‘request-book’ and
three processes such as ‘order-reception’, ‘load-recep-
tion’ and ‘book’. We register the appropriate word to a
destination instance by selecting from the word table
and indicating the position of the destination instance
definition table or instance on the conceptual structure
chart. There is some functions such as move, copy,
delete of words and starting an editor, display a list of
[instance] specification, display a description degree of
specification. Displaying a list of [instance] specification
is a textual expression with a form like Table 2. On
dmCASE, we can write a specification in Japanese and
so appropriate usage of words will allow us to make
clear our intention of [instance] to the readers. A proc-
ess consists of some lower processes by referring them.
So a display of a process specification is a function to ex-
press such a reference relation as a textual form. This

Table 2 An example of [Instance] specification.

125

function correspondences to another textual representa-
tion of a function to display a process path on the con-
ceptual structure chart. [[Information Arrangement]]
[[Documentation]] {[Monitoring]] [[Flexibility])

(4) Syntax oriented Editor

The syntax oriented editor is an editor of ML. And
we write an [instance] specification with it (see Fig. 4).
We edit them using template of ML syntax elements by
following two ways. First is selecting a syntax element
from the menu of syntax components of ML. Second is
selecting words from either the word table or the in-
stance definition table. Then we can refine them step by
step. Accordingly its syntactic correctness is always
guaranteed and we will be released from syntactical
mistakes. The calling form of process is derived from its
signature. For example, the pattern ‘record (brand-list-
of-shortage, order)’ is derived from the definition of a
process ‘record’ signature and embedded in the descrip-
tion of the process ‘order-reception’ by selecting a proc-
ess ‘record’ from the instance ‘Suspended-delivery’.
The [instance] specification consists of its signatures
and declarations. The signature of a process definition
is a description of the types of its input and output
values. These types can be decided using a type in-
ference mechanism, but the other side, users own
description of its types enables to verify its module
definition and confirm their intention. The main works
of the syntax oriented editor are functions such as
editing, type inference, hyper textual interface, etc. . . .
Moreover above {concepts) from (1) to (4) are very im-
portant in the description process and we proceed a
design by traveling these four components. So we
designed these components to be used without them be-
ing influenced by their operation’s order. [[Navigation]]
[{Verification]] [[Guidance]} [[Flexibility]}

(5) Memo Note

The memo note has a role to offer some information.
With it we can confirm various contradictions caused in
the description process repeating a trial and error and
keep its correctness. If some trouble of correctness is
caused, it will perform its purpose to preserve its infor-
mations for confirming and allow users to be able to

(1 signature @ Instance to inherit
3} type constructor (@ type of value declaration
@ exception identifier @ end of SIGNATURE

module name (® Instance to refer
(9) type declaration (10 value declaration
(D exception declaration @ end of MODULE

(D signature LIBRARY SIGNATURE

(@ instance

@ type library

@ val book-add MODULE

(9 exception

(®end

D module Library-Mod

®instance Copy-of-book

3 type library is copy-of-book-list

@0 val book-add(copy-of-book-list, book)=
let val numberofcopy =maxnumber(copy-of-book-list, book)
in store-bookshelf(library, copy-of-book-list

copy-of-book-list@copy(book, numberofcopy, —, —) end
(D exception

i end

126

revise it correctly using this information. More pre-
cisely, it watches the influence of delete operation of
words. When we delete a function or data which is refer-
red from other definitions, it will inform users of its in-
fluence and confirm whether the word may be deleted or
not. After confirmation by the user, it keeps the infor-
mation amended as a memo note. For example, in Fig.
4, if we delete the process ‘enough-stock?’ referred in
the definition of the process ‘order-reception’ from the
instance ‘Warehouse’, we should revise the definition of
the process ‘order-reception’. In such a case, a memo
note with this informations is created as above mention-
ed. If we have revised it, it may be destroyed.
Moreover, depending on the situation, the revival of its
definition may be possible. The work of a memo note is
the following. To watch the description process always
and renew its information. Moreover, to propose them
to users as the need arises. [[verification]] [Monitoring]]
[[Information Arrangement}]

(6) Card

The card is an environment in which the description
is executed (see Fig. 5). We can execute ML descrip-
tion by evaluating its {expressions). We indicate an ob-
jective process name and give its input appropriate
values. In the Fig. 5, the {expression) storage-confirm
(amount. 1, amount. 2) was evaluated as the situation
amount. 1 =500 and amount. 2=600. We can generate
several environments of input values and execute them
in various situations. The environment of input values
is written by the way to fill a template. The input types
or patterns indicated process are derived its process
definition and the system generates its input patterns.
Moreover, a pattern of type in the derived patterns are
also derived its definition. The environment of input
values is derived from the definitions, so that we can get
considerable test data from the definitions. Moreover,
as we can execute {expressions) including undefined
symbols, so we can examine its execution in the halfway
of derivations. Now we can only derive types of test
data. However, analyzing process definitions will
enable us to give some constraint of input values. The
main works of the card are functions such as editing
(derivation, delete, substitution), display an undefined
symbol, evaluation, generate more than one environ-
ment, starting a circuit chart, etc. . . . [[Verification]]
[[Generation of testing data]}

(7) Card Panel

On dmCASE we can analyze a specification
dynamically by executing each process using the card.
The card panel is a mechanism to manage the whole of
these cards. Cards are managed at each instance to
which a process belongs. And the main work of the card
panel are functions such as starting a card, card delete,
translation to categorical combinator code and execu-
tion and display card information. Card information is
composed of the need of reexecution and retranslation
with changing the descriptions and the state of each ex-
ecution (its input and output value) and a user note

S. MATSUURA and M. OHBAYASHI

about an execution result. [[Information arrangement}]
{[Guidance]] [[Monitoring]]

(8) Circuit Chart

The circuit chart is a graphic structure which
represents the described process specification. That is,
this correspondences to another graphic representation
of a function to display a process path on the concep-
tual structure chart and a function to display a process
specification on the instance definition table. As ML is
based on the theory of lambda calculus, we represent
the state of valuables binding and the structure of ex-
pressions as various graphic patterns (see Fig. 5). The
circuit chart aims to play a role of understanding and
confirming the described process algorithm and pro-
vides some information about valuables binding and
branches at the execution by the card. The circuit chart
has a hierarchical structure which consists of several
[blocks] being composed of [vertical line], [horizontal
line] and [rectangle]. A [block] expresses a process and
a [vertical line], a [rectangle] and a [horizontal line]
represents a wall of lambda binding, {expression) and a
flow of data respectively. If an {expression) has some
components, it will expand its structure in the lower
direction. The circuit chart in Fig. 5 shows a structure
of the process ‘add’ graphically. [[Visualization]]

(9) Scope

The scope plays a role to look through the binding
situation of some variables when process specification is
executed. And it starts from the circuit chart (see Fig.
S). Figure 5 shows the input values (the upper scope)
and the output values (the lower scope) of ‘add’ process
to which ‘storage-confirm’ process evaluated in the card
refers at run time. Looking at these values, we will con-
firm whether expected values are bound. Necessary
information, what we want to know for confirming the
actions of processes is to find out where errors have oc-
curred. As debugging method, to execute the process
specification partially on the circuit chart is a question
under consideration. So we would like to use this scope
as a setting value interface of the occasion. [[Informa-
tion Arrangement]]

(10) Map of Circuit Chart

The map of circuit chart shows the state of process
specification at run time by representing its hierarchical
level of process structure as a concentric circle. It shows
the whole structure of process in the form to put
together information of the circuit chart (see Fig. 5).
More precisely, it is a concentric image to which its
hierarchical level of process structure maps. Moreover,
a process, a structural expression and a constant or
valuable are illustrated on it by symbols [O], [0] and
[*] respectively. In the case that we set a trace or break
point to the process, the symbols become [@®] or [] re-
spectively. At the present, it is a medium which enables
us to understand the execution state by displaying the
path at run time and to observe the valuable state of the
process set trace or break points by opening the cor-
respondence circuit chart. Figure 5 shows the map of cir-

The Software Development Environment: dmCASE

cuit chart of ‘storage-confirm’ process executed by its
card. This map shows there are two processes such as
‘add’ and ‘sub’ which are referred from the ‘storage-
confirm’ process. And it also shows its trace of execu-
tion by several lines. When a trace point set to ‘add’
process, if the symbol [®] on the map is selected, the cir-
cuit shown in Fig. 5 will be opened and we will get
some debugging information. We would like to find the
instruction and branch coverage of processes by analyz-
ing these execution paths and display such quantitative
results to the map. [[Verification]] [[Visualization]]

Finally we mention its operational features. This
design process is a process of trial and error, so that a
consistent operation should be executed to avoid dis-
turbing our thinking. The issue of operation using a
keyboard and a mouse is discussed and mingled opera-
tions may be a troublesome task. The operation using
only a mouse is probably suitable for a trial and error
process. We then decided that inputting only words by
keyboard and other operations executed by selecting
and using a mouse.

7. Evaluation by Some Experiments and Further Prob-
lems

To actually use the software development environ-
ment that we proposed we must make clear what the
problem is and whether there is something lacking. Ac-
cordingly we tried some experimental descriptions for
the problems such as the inventory management system
[12], the lift control system [10] and the library system
[10]. We discuss evaluations of dmCASE and some of
its problems through these experiments. We noticed
that these experiments placed emphasis on the process
of constructing a system model. And we evaluated it
from the viewpoints such as the description ability, the
readability of specification and the user interface.

(1) Description Ability

In these cases, we created each model as one [board],
because the scale of each problem is small. We de-
scribed all processes which realize the requested func-
tions, but it turned out that the present mechanism
can’t deal with the modeling of parallel processes with
the synchronization between processes such as the lift
control problem. Nevertheless, for the lift control prob-
lem, we treat it as a model of processes acted with
states, that is, a state transition model. The structure
represented by a [conceptual structure chart] is static
structure. In order to simulate parallel processes with in-
dependent actions from each other, we should expand
the kernel language or add a mechanism describing
event sequences to it.

(2) Readability

The formal specification of dmCASE consists of a
[conceptual structure chart] and several finstance]
specifications. The [conceptual structure chart] is useful
to understand the whole structure of the problem. This
experiment is made by one examinee. It is expected that

127

another examinee will create another model. However,
a [conceptual structure chart] is a moderate material to
discuss the system model at the halfway stage of design.
It is not easy to discuss using very detailed materials,
but explaining with a [conceptual structure chart] which
has an extensive view may be easy to understand.
Moreover, an [instance] specification is a description of
each [instance] behavior, so that we would like to
understand their intention by reading them. On
dmCASE, we can write them in Japanese. So it seems
that effective usage of words enables us to replace
declarations written by ML syntax with sentences writ-
ten by a natural language. And we use them as a docu-
ment. Accordingly selecting and using words are key
points in the above matter and it is desirable to select
them effectively so that we take the intention of a re-
quirement into consideration and use appropriately.
Moreover dmCASE offers a mechanism of changing the
name of a word to more suitable word after selecting it.
This mechanism is the function of renaming words. So
this leads to improvement being easy to understand.

(3) User Interface

It may be suitable for human thinking to give some
conditions to support a describing process and execute
most operations using only a mouse. Moreover, we
think that a mechanism supporting information arrange-
ment should add to the frame of dmCASE. This
mechanism means the following. As the former stage of
describing by ML, we make some notes of process
algorithms and data structures that came to mind
within the framework of ML with guidance informa-
tion. We think that this allows us easily to understand
ML language.

8. Conclusion

It is not enough to keep up with improving software
productivity and reliability that we only systematize an
old traditional way of design. We must construct a new
environment which has a clearer framework of design,
so that we develop reliable software. We think that such
an environment enables one to improve software pro-
ductivity. In this paper we proposed a new environment
dmCASE based on three pillars such as the design
method, the formal specification description language
and supporting tools. We have not realized the follow-
ing yet. A space design using multi layered [board].
Translation a described formal specification to an infor-
mal document. Translation a description using ML at
abstract level into implementation programs. Consider-
ing the above facts including those mentioned in section
7 as future directions, we would like to see growth in
dmCASE.

Acknowledgement

A part of this study is the ‘‘Formal Approach to Soft-
ware Environment Technology’’ project produced by

128

Joint System Development Corp. supported by the
Information-technology Promotion Agency (IPA).

References

1. BALZER, R., CHEATHM, T. and GREEN, K. Software Technology
in the 1990’s: Using a New Paradigm, /EEE Comput., 16, 11 (Nov.
1983), 39-45.

2. BURSTAL, R. M. and GOGUEN, J. A. Putting theories together to
make specifications, Proc. of 5th IJCAI (Jul. 1977), 1045-1058.

3. Ftatsual, K., GOGUEN, J. A., JOUANNAUD, J.-P. and MESEGU-
ER, J. principles of OBJ2, In Proc. Symposium on Principles of Pro-
gramming Languages, ACM (1985), 52-66.

4. ZAVE, P. An Overview of the PAISLey Project-1984, SIGSOFT
SEN, 9, 4 (1984), 12-19.

5. WikstoMm, A. Functional Programing using Standard ML, Pren-
tice Hall International, Hemel Hempstead, 1986.

6. MILLNER, R. A proposal for standard ML, Conference Record of
1984 ACM Symposium on LISP and Fun-ctional Programming,
ACM (Aug. 1984), 184-197.

7. MacQueen, D. Modules for standard ML, Conference Record

S. MATSUURA and M. OHBAYASH!

of 1984 ACM Symposium on LISP and Fun-ctional Programming,
ACM (Aug. 1984), 198-207.

8. YokoTa, Type inference and ML, bit, 20, 3 (in Japanese), 74-83.
9. CousiNEAU, G., CurieN, P-L. and Mauny, M. THE
CATEGORICAL ABSTRACT MACHINE, Lecture Notes in Com-
puter Science 201, Springer-Verlag (1985), 50-64.

10. Problem Set for the 4th International Workshop on Software
Specification and Design, Proc. of 4th international workshop on
Software Specification and Design (1987), ix-x.

11. SExINE and OHBAYASHI, A new programing method—Design
Method based on Concepts (DMC), bit, 14, 7 (1982) (in Japanese),
102-114.

12. OHBAYASHI, Declarative Specification of an Inventory Control
System by the Design Method based on Concepts, Softw. Eng. 58-5
(1988) (in Japanese), 33-40.

13. MATSUURA, NAKAZATO and OHBAYASHI, Implementation of a
Program Development Environment with the Design Method based
on Concepts, Softw. Eng. 58-6 (1988) (in Japanese), 41-48.

14. MATSUURA and OHBAYASHI, An Analysis Support environment
in the Program Development System dmCASE, Symposium of CASE
Environment (1989) (in Japanese), 117-124.

