Translation from Transactions of IPSJ

An Efficient Algorithm for Point Pattern
Matching Using Ordered Lists

HONGBIN ZHANG*, MICHIHIKO MINOH* and KATSUO IKEDA*

Matching two-dimensional point patterns is an important problem in the field of pattern recognition and com-
puter vision. Mathematically, it is a graph or subgraph isomorphism problem, and belongs to the class of NP
problems. An efficient algorithm is needed for practical applications. This paper presents an approach for mat-
ching point paterns by using ordered lists. The measure of matching error is defined, and a method of searching
for pairing points is then discussed. The algorithm uses ordered lists to limit the range searched for pairing
points, and avoids exhaustive combination of points. Experimental results show the effectiveness of the propos-
ed algorithm. Several problems that occur in certain applications are analyzed at the end of the paper.

1. Introduction

Many kinds of problems in pattern recognition can
themselves be represented by two-dimensional (2-D)
point patterns. For example, the feature points of a
fingerprint image (such as the branch points, and end
points) can be described by their coordinates in a
reference system. The identification of two fingerprints
can be viewed as a problem of matching two 2-D point
patterns. According to the statistics of experts, there are
up to a hundred such feature points in a fingerprint.
However, about ten feature points are enough to match
two fingerprints [1, 2].

There are also many kinds of problems that are not in-
herently point patterns, but that can be equivalently
represented by point patterns after appropriate transfor-
mations. For example, the boundaries of objects in an
image can be approximated by fragments and circular
arcs, whose end points constitute a point pattern. Thus,
the matching of an object to a model in a computer may
be treated as a point pattern matching problem.

As stated above, point pattern matching plays an im-
portant role in image understanding. In recent years, a
considerable amount of research has been done on this
problem [3-9].

The two-dimensional point patterns U and V can be
described as follows:

U={u, us, -, tiy -+, Um} l<i=m

V={U|,U2,"',Uj,"',vn} lSjsn,

This is a translation of the paper that appeared originally in
Japanese in Transactions of IPSJ, Vol. 31, No. 7 (1990), pp. 1005~
1014.

*Department of Information Science, Faculty of Engineering,
Kyoto University, Kyoto 606-01, Japan.

Journal of Information Processing, Vol. 15, No. 1, 1992

where u;= (X.i, Yui) and v;=(x,, y.;) are points of U and
V, (Xui» yui) and (x,j, y.;) are coordinates of u; and v, in
their coordinate systems, and m and » are the numbers
of points in U and V, respectively. The matching of U
and Vis a problem of searching for correspondences be-
tween the points of U and those of V.

Here, the term point may stand for various types of
object feature such as the centers of circles or ellipses,
the centers of gravity of areas, and the critical points of
object boundaries that have high curvature. In practical
applications, a point usually has an attribute or a type
with it, but in order to make the matching algorithm
robust, only geometrical information is used in the pro-
posed algorithm. Examples of analysis using the at-
tribute of a point will be given at the end of this paper.

It is well known that the problem of point pattern
matching has high computational complexity because
of its combinatorial nature. Mathematically, it is a prob-
lem of graph or subgraph isomorphism. If no heuristics
are used, it becomes an NP problem. Over the past few
decades, a lot of research work on point pattern
matching has been published: Simon et al. used the in-
ter-point distance to match point patterns. Their
method is applicable only to patterns that have equal
numbers of points [3]. An algorithm using a minimal
spanning tree was investigated by Zahn [4]. His method
is sensitive to the omission and addition of points.
Rosenfeld et al. proposed a relaxation scheme for point
pattern matching [6], and showed that the relaxation ap-
proach is more tolerant of global distortion than other
methods [5]. However, the convergence speed is slow in
their method. Ogawa formed a matching method based
on a fuzzy relaxation [8], and recently proposed
another algorithm using Delaunay triangulation [9].
The point pattern is partitioned into a set of triangles,

An Efficient Algorithm for Point Pattern Matching Using Ordered Lists

Fig. 1 Definition of Base Line Pair (BLP).

and the largest maximal clique of the consistency graph
is used to find the largest set of mutually consistent
point pairs. The method is invariant under affine
transformation of point patterns. But if the
distinguishing points, which determine the partition,
are selected improperly, the matching may fail to work.

In principle, the problem of point pattern matching
can be represented by a tree, which we may call a
matching state tree, and solved by searching the tree. In
order to improve the efficiency of point pattern
matchings, considerable attention has been paid to the
approaches of searching trees and pruning branches
{101, but little thought has been given to the method of
combining points during construction of the matching
state tree. A general method is to pair the points of U
and V exhaustively, to examine their consistency, and
to determine whether or not to add this pair of points to
the tree. Here, we present a much more efficient
algorithm for solving the problem of point pattern
matching. A distinguishing feature of our algorithm is
the use of an ordered list of points to avoid exhaustive
combinations of corresponding point pairs. The
algorithm can confine the range searched for potential
pairings so that the number of pairings needing to be ex-
amined is greatly reduced. In Section 2, we introduce
some basic definitions and terminology. In Section 3,
the problem of pairing points in the matching process is
analyzed, and an algorithm based on the ordered list is
proposed. In Section 4, some experimental results for
synthetic and actual images are shown. In Section 5, the
computational complexity of the algorithm is analyzed.
In the last section, we make some concluding remarks.

2. Definitions

Due to the imperfection of image processing and to
noise, the point pattern extracted from an image may
contain spurious points and/or may not contain in-
dispensable points. There may also be uncertainty as to
the geometrical position of each point. Therefore, the
matching of a point pattern extracted from a sensed im-
age to a model is not simply a problem of determining
whether the two patterns are exactly the same; rather, it
must be performed according to some similarity
measure in order to find the matching that has the

109

minimal matching error and the maximal number of cor-
responding points. We introduce the definition of a
Base Line Pair (BLP) between U and V, and define the
matching error based on the BLP.

Definition 1: [base line L;; and L/}

Let u; and u;(i<j) be points of point pattern U. The
directed line segment u;u; is called a base line of U and
is denoted by L}, and its length by /, (Fig. 1). The base
line L% and length /, of V are defined in the same way.
Definition 2: [base line pair (L}, L)]

When Lj; is matched to L, the pair of Lj; and L is
called a Base Line pair (BLP). The length scale factor
SF associated with (L}, L) is defined as SF=/,/l,.
Definition 3: [matching error]

Suppose that (Ljj, L%) is a BLP of U and V. When a
point u, of U is matched to v, of V, the matching error
due to this pairing is defined as follows (Fig. 1): Let /}
denote the distance between u, and w;, and /4 the
distance between v, and v,. Let A} denote the angle be-
tween u;u, and u;u;, and A} the angle between v, v, and
v« v;. The matching error of u, and v,, associated with
(L%, L), is defined as

E(up, vg; L, Li)=KA%1AL— ALl + KLs 114~ SFsl}],

where KA and KL are the weights for angle error and
length error, respectively.

The reason for defining the scale factor SF is to cope
with a change of scale between U and V. Using relative
distance and relative angle ensures that the algorithm is
independent of translation and rotation of point pat-
terns.

3. Point Pattern Matching Algorithm

3.1 Problems in Searching the Matching State Tree

In principle, the problem of point pattern matching
can be described by the matching state tree (Fig. 2). The
root node in this representation scheme is the initial
state of the matching process. Each leaf node represents
a final state that denotes a possible matching of the
point patterns. An intermediate node represents an in-
termediate matching result, which is embedded by a
new pair of matched points of U and V into the parent
node. The incremental matching error caused by embed-
ding the new pair is associated with the branch connec-
ting these nodes. Thus, the path from the root node to a
leaf node that has the minimal sum of the incremental
matching errors represents the best point pattern
matching.

As stated above, some points of U (or V) extracted
from an image may be spurious, and/or some indispen-
sable points of U (or V) may be missed. Therefore it
may not be possible to match some points of U (or V)
to any points of V (or U). In this case, symbols such as
(u,, A) or (A, vy) are employed in the matching proc-
ess, where A denotes null. The incremental matching er-
ror is given as KA*A,+KLxL,, whose value is larger

110

H. ZHANG, M. MiNOH and K. IKEDA

(Cx, A))

ClUzgy vey) s (Upy

Cluggs vard s (Uge,vey))

(TR B (TRURTNS AN

(A vi)s e os CALVD)

L)
((Un;V"))

Clugs, vin) s (Ugg, V), (U, vy5)) © @ o

2 (Upy s vy,

“Root node

——— 1st -level node
((Uyys Vi)

——-—--- 2nd-level node

— 3rd-level node

. Nth-level node

Fig. 2 Matching state tree.

than that of the incremental matching error with a
matching point, where A, is the allowable angle error,
and L. is the distance between u, (or v,) and the starting
point of the base line (for v,, it is multiplied by the scale
factor SF).

In constructing the matching state tree, it is essential
to use geometrical constraints to reduce the size of
matching state tree by ruling out incorrect pairing of
points as soon as possible. The common approach is to
enumerate all of the combinations of points as pairing
candidates and then to remove inappropriate pairings
by using geometrical constraints. However, little atten-
tion has been paid to the method of combining points.
We now discuss how the geometrical relations of points
can be used to regulate the pairing process and to con-
fine the range searched for pairing candidates in the
matching process.

3.2 Strategy of the Algorithm

In order to avoid the exhaustive pairing of points of
U and V, the algorithm is applied to two ordered lists of
points of U and V. The ordered lists are generated as
follows: Let (Lj;, L) be a base line pair of U and V.
The points of U(and V') other than the starting and en-
ding points of the base line are sorted in ascending
order of the size of their angles to the base line (Fig. 3).
Associated with BLP (L}, L%), two ordered lists UL
and VL are thus obtained:

UL=Aw, tz," ", Up, Up+1," " ", Um-2} 1=ps=m—2

VL=A{v1, v2," " ", Vg, Vg1, * ", U2} 1=g=n—2

If we suppose that u, is matched to v, then the that
points that are candidates to match u,,; would be v4+,
or some points that follow v,., and are within the range
of the allowable angle error. Let A, denote the angle of
u,+1 to Ljj and A, the allowable angle error. Only these
points of VL that satisfy |4,—A,| <A, where A, is

Fig. 3 Sorting points of U by their angles.

their angle to L%, are feasible candidates, and the
others can be left out of consideration. Thus, the range
searched for corresponding point pairs is quite confin-
ed. Exhaustive pairing of points is avoided.

In practical applications, for some maximum
allowable error A,, the number of points in VL that can
be matched to one of the points of UL can be confined
within some constant. Assuming that the order of
points is not altered by noise, the matching of UL and
VL can be completed in a time that is linear with respect
to the number of elements of UL. Even if the order is
altered by noise, the size of the matching state tree is
considerably decreased. To simplify the analysis, we
will assume in the following discussion that the order is
not altered by noise.

3.3 Algorithm

The flowchart of the algorithm is shown in Fig. 4. A
PASCAL-like description of the algorithm is given
below.

Algorithm :
1. Determine all the feasible BLPs between U and
V.
2. BEST_ERROR=some maximum value.
BEST_MAP=null list.
3. FOR(each BLP (L}, Lu))DO;

An Efficient Algorithm for Point Pattern Matching Using Ordered Lists

START

[GenerateatiBLps |

T
Iﬁ Selec; aBLP J

r SotULandVL |

i
F Match UL and VL J
i

rcalculam matching error J

[Calculate minimum errorJ

Have all BLPs
been tested?

Fig. 4 Flowchart of the algorithm,

(a) For each point of U (and V) except the starting
and ending points of the base line, calculate the distance
to the starting point of Lj; (and L), and the angle with
u;u; (and v,w;). Sort the points according to the angles
and form two ordered lists UL and VL.

(b) p=1.

(c) FOR p-th element u, of UL, DO;

i. Let the angle of u, with Lj; be U_ANGLE.
ii. Search for the element v, of VL that has
not yet been matched and whose angle with
L%, V_ANGLE, is the smallest within the
allowable angle error.
iii. WHILE (ABS(V_ANGLE—U_ANGLE)
<A,
IF (u, and v, satisfy the matching condi-
tions)
THEN {
match v, to up;
calculate the incremental matching er-

ror;
set matched flags to u, and v,, respec-
tively;

p=ptl;

IF (p<m-—2)

THEN GOTO [(c)];
ELSE GOTO [(d)];
ENDIF}
ELSE {
v,=the element of VL next to v,
set the angle of v,=V_ANGLE}
ENDIF
ENDWHILE
iv. /*Since there is no point of VL that
satisfies the matching conditions within the
allowable angle error, */
{match u, to A;

111

calculate the incremental matching error;
p=p+1;

IF (p=sm-2)

THEN GOTO [(c)]

ELSE GOTO [(d)]

ENDIF

}

(d) Calculate the incremental matching error for the
elements of VL that have not yet been matched.

(e) Calculate the normalized matching error N_ER-
ROR. Hold the matching result in array MAP.

IF (N_ERROR < BEST_ERROR)
THEN {
BEST_ERROR=N_ERROR;
BEST _MAP=MAP}
ENDIF
4. 1If all of the BLPs are tested, end. Otherwise, go
to Step 3.

In the above algorithm, BEST_ERROR is a variable
that records the minimal matching error, and
BEST_MAP is an array that records the matching
result.

The matching conditions for 4, and v, are as follows:
CONDITION 1: 14,—A,| <A,
where A, is the angle of u, with L}, A, the angle of v,
with L%, and A, the allowable angle error threshold.
CONDITION 2: |L,—L.|/L, <%,
where L, is the distance between u, and the starting
point of Lj;and L, the distance between v, and the start-
ing point of L},. &, is the threshold of the allowable rel-
ative length error.

As stated in Section 3.1, for those elements of UL
and VL that are not matched, the length error and the
angle error are also calculated and added to the total
length error L_ERROR and the total angle error A_ER-
ROR.

The normalized error N_ERROR is defined as

N_ERROR=KLxL_ERROR/LN
+KA*A_ERROR/ AN,

where KL and KA are weighting factors for the length
error and the angle error, respectively. LN and AN are
normalization constants and are defined as follows:

LN=3 (the length of u,)+ Y, (the length of v,)+SF

AN=(m+n)*A,,

where m and »n are the numbers of points of U and V, re-
spectively.

The first step of the algorithm is to generate all the
feasible base line pairs. A BLP represents an initial par-
tial matching and the algorithm will make the initial
matching grow pair by pair. A BLP can be created by
pairing two points of U with two points of V. In prac-
tice, one can use compatibility of L}; and L}, to reduce
the number of BLPs considerably: if the scale factor of
U against V is known in advance, one may use this fac-
tor to rule out unfeasible pairings of L;; and L%,. This
will greatly reduce the number of BLPs.

112
4. Experimental Results

Experiments were done, using synthetic and real
data, and showed that our algorithm is very efficient.
Experiment 1: Synthetic data obtained by a 2-D random

number generator are used. N points are generated to

form the point pattern V. Then, m points from

V(m<n) are picked out randomly and rotated, the

scale is changed, and spurious points created by noise

are added to form the point pattern U. That is, let v,

be a point of V, and let its coordinates be (x,). The

coordinates of u, of U, (x’, y’), the counterpart of

v, are obtained as follows:

x'=(xxcos f—yxsin B)=(f+c)
¥’ =(xx*sin f—yxcos B)x(f+¢),

where f is the angle of rotation around the origin, fis a
scale factor, and c represents noise chosen from the nor-
mal distribution with mean 0 and standard deviation o.
Supplying different initial values to the random number
generator, we generated seven cases of data with
different numbers of points. Each case consists of ten
groups of different point patterns. The parameters used
in the experiment were as follows:

The allowable relative length threshold %, is 0.15.

The allowable angle error A, is 10.

The standard deviation o is 0.025.
For all of these data, the algorithm successfully found
the correct matchings. The average CPU time is shown
in Table 1.
For comparison, a general matching tree algorithm was

Table 1 Average CPU time of the algorithm (ms).
(Experiment 1)
No. of pointsin U § 6 7 6 7 6 8
No. of pointsin V15 16 15 18 17 21 16

Av. time (ms) 345 673 B85S0 999 1,266 1,781 1,473

(on NEC/MS 190)

H. ZuaNG, M. MINOH and K. IKEDA

executed on the same data, that is, an algorithm that ex-

haustively enumerates all of the pairings of points of U

and V, then uses the distance and angle constraints to ex-

clude unfeasible pairings. The results are shown in

Table 2.

A comparison of Table 1 with Table 2 shows that our

algorithm is much faster. This is because the search

range for pairing points is considerably restricted by the
ordered lists.

Experiment 2: Various point patterns with different

numbers of points are generated by the same method
as in Experiment 1 in order to investigate the relation
between the number of points and the execution time
of the algorithm. As shown in Table 3, the results are
satisfactory for problems that consist of a few tens of
points.
The relation of the average CPU time to m=n, the pro-
duct of the numbers of points of U and V, is shown
in Fig. 5. This curve approximately coincides with the
time complexity analysis of Case 1 in Section 5.

Experiment 3: The algorithm was applied to shape
matching of 2-D objects. Figures 6(a) and (b) are
polygonal approximations of 2-D shapes. Figures
6(b) shows a model contained in (a). The numbers of
points in (a) and (b) are 27 and 16, respectively. The
matching result is shown in Fig. 7. In this and later
figures, small circles denote correctly matched points,
and small triangles points matched with A. The CPU
time for matching is 31,128 milliseconds.

Average CPU

400 time (s)

P300
$200

100

V’,,-»(x men

—w -— - - —————>
200 300 400 S00 600 700 800 900

Fig. 5 Curve of CPU time against number of points.

Table 2 Average CPU time of the general matching tree algorithm (ms).
No. of points in U 5 6 7 6 7 6 8
No. of points in V 15 16 15 18 17 21 16
Av. time (ms) 20,451 83,674 190,526 158,253 423,255 467,533 667,270 -
(on NEC/MS 190)
Table 3 Average CPU time of the algorithm (ms).
(Experiment 2)

No. of points in U 15 20 15 20 25 25 20 30

No. points in V 15 20 30 25 25 30 40 30

Av. time (ms) 7,450 39,430 59,921 72,916 118,298 224,254 325,961 399,136

(on NEC/MS 190)

An Efficient Algorithm for Point Pattern Matching Using Ordered Lists

perimental environment with those in [11].

113

Experiment 4: In Fig. 8, two models (a) and (b) occlude
each other and form an object shown in Fig. 8(c).
Note that the scale of model (a) is changed in the ob-
ject. The matching result is shown in Fig. 9. The data
for this experiment were taken from [11]. Although
the experimental environments are different, it seems
that our results are much better than those in [11).
Table 4 shows a comparison of our CPU time and ex-

Experiment 5: Figure 10 shows a synthetic example in
which three models (a), (b) and (c) occlude one
another and form an object (d). It is necessary to
identify each of the models from the object. The

algorithm has successfully recognized the models (a),

(a) point pattern V (b) point pattern U

Fig. 6 Matching of 2-D shapes (Experiment 3).

Table 4 Comparison with Reference 11 (ms).

Matching time |

Computer used

atoc | btoc
} -
NEC/
Our algor. | 3.67 2.40 MS-190, 4.0MIPS
DEC/
Ref. 11 5279 | 42.90 PDP-10, 1.8MIPS

6 5
7 4
8
! 2
’ 3
Fig. 9()) Matching result of Figs. 8(a) and (c).
1 2
(a)
(c)

Fig. 8 Matching of 2-D shapes (Experiment 4). Fig. 9(ii) Matching result of Figs. 8(b) and (c).

114

(b), and (c) from (d). The result is shown in Fig. 11.
The CPU times for matching (a) to (d), (b) to (d), and
(c) to (d) are 0.93 s, 0.84 s and 2.40s, respectively.
The total CPU time for matching is 4.17 s. These
data are also taken from [11], where the total time for
matching was 152.7 s.

Experiment 6: Many approaches to recognizing overlap-

ping objects have been proposed in recent years [10,
11]. We applied the point pattern matching algorithm
to this kind of problem. Figures 12(a) and (b) repre-
sent polygonal approximations of the object boun-

Fig. 11 Results of Experiment 5.

H. ZHANG, M. MINoH and K. IKEDA

daries, extracted from the images of two industrial
parts, respectively, and (c) is a polygonal approxima-
tion of the composite object consisting of (a) and (b).
The result of matching (a) and (c) is shown in Fig. 13.
The numbers of vertices in (a) and (c) are 21 and 23,
respectively. The CPU time for matching is 47.70 s.
In the problem of matching 2-D shapes or recogniz-
ing overlapping 2-D objects, there may be another con-
straint that can be used to accelerate the matching speed
further. We investigated the method to utilize the con-
tiguous order and structure of the point patterns, and
achieved good results [12].

Fig. 13 Result of Experiment 6.

An Efficient Algorithm for Point Pattern Matching Using Ordered Lists

5. Computational Complexity Analysis

In this section, we briefly discuss the computational
complexity of the proposed algorithm. The time com-
plexity of the algorithm depends on two factors: the
number of BLPs generated and the cost of sorting and
matching operations for each BLP. The matching of
UL and VL is bounded by a time linear with respect to
the number of elements in UL. The sorting of UL and
VL can be completed in O(mxlog m) and O(n+log n)
time, where m and n are the numbers of points of U and
V, respectively. Therefore, the cost of operations at
each BLP is bounded by O(p=+log p) time (p=max(m,
n)). The number of BLPs generated depends on the pro-
perty of the problem, on the noise level, and on the
amount of additional information. If no other informa-
tion is available, the number of BLPs depends mainly
on the reliability of points in U and V. Here, the reliabil-
ity means that a point in one point pattern has a corre-
sponding point in the other. Different cases are dis-
cussed below.

Case 1: If none of the points of U and V is reliable, all
of the pairings of base lines of U and ¥V must be
tested. In this case, the number of BLPs is equal to
m?n?, and the time complexity of the algorithm is
O(m*n*splog p). However, as we will see later, the
number of BLPs in practical problems is far less than
m?*n?, which is the worst case.

Case 2: When it is known in advance that a point u, of
U definitely corresponds to a point v, of V¥, the time
complexity is O(mnxp log p).

Case 3: When it is known in advance that a base line L;
of U is definitely a counterpart of L of V, then it is
not necessary to test the other BLPs. The time com-
plexity is O (p log p).

Case 4: Assume that all of the points of U are reliable,
that is, that all of the points definitely have corre-
sponding points in V. V definitely has a counterpart
for a base line of U. The time needed to find the
counterparts is bounded by O(n?. Therefore, the
time complexity is O(n’p log p).

It can be seen that the complexity of the algorithm
largely depends on the number of BLPs to be tested.
The proposed algorithm searches for the minimal
matching error, BEST_ERROR, among all of the poten-
tial BLPs. However, if the terminating conditions of
the algorithm were relaxed, for instance, if the
algorithm was terminated when the matching error,
BEST_ERROR, was less than some threshold, the
matching time could be greatly reduced.

115

6. Conclusion

We have proposed an efficient algorithm for 2-D
point pattern matching. The measure of matching error
has been defined and a method of searching for pairing
points discussed. The algorithm employs ordered lists
to confine the range searched for pairing, and can thus
avoid exhaustive combination of points. The algorithm
worked successfully and efficiently for several examples
of point patterns. Since the relative distance and angle,
as well as the scale factor, are used, the algorithm is in-
variant with translation, rotation, and scaling. It can be
applied to the matching of two general point patterns
with different point numbers, and at the same time with
spurious and missing points.

We concentrated only on the utilization of the
geometrical information contained in point patterns. In
practice, however, other information, such as the point
attributes and the point types can be incorporated into
the algorithm to reduce the number of BLPs further
and to improve the matching efficiency. The proposed
algorithm is simple and could be implemented on
parallel processing hardware.

Acknowledgement

One of the authors would like to thank Professor
Toshiyuki Sakai for his valuable advice and comments
on the early stages of this research.

References

1. MOAYER, B. and Fu, K. S. Syntactic Approach to Fingerprint Pat-
tern Recognition, Pattern Recognition, 7 (1975), 1-23.

2. The Science of Fingerprints, FBI Manual, U. S. Govt. Printing
Office (1963).

3. SiMoN, J. C., CsECROUN, A. and RocHE, C. A Method of Com-
paring Two Patterns Independent of Possible Transformations and
Small Distortions, Pattern Recognition, 4, 1 (1972), 73-81.

4. ZaHN, C. T. Graph-Theoretical Methods for Detecting and
Describing Gestalt Cluster, /EEE Trans, Comput., C-20, 1 (1971),
68-86.

5. KAHL, D. J., ROSENFELD, A. and DANKER, A. Some Experiments
in Point Matching, /EEE Trans. Systems, Man, Cybernet., SMC-10
(1980), 105-116.

6. RANADE, S. and ROSENFELD, A. Point Pattern Matching by Relax-
ation, Pattern Recognition, 12, 4 (1980), 269-275.

7. LAVINE, D., LAMBIRD, B. A. and KANAL, L. N. Recognition of
Spatial Point Patterns, Pattern Recognition, 16, 3 (1983), 289-295.

8. OcGawa, H. Labeled Point Pattern Matching by Fuzzy Relaxa-
tion, Pattern Recognition, 17, 5 (1984), 569-573.

9. Ocawa, H. Labeled Point Pattern Matching by Delaunay
Triangulation and Maximal Clique, Pattern Recognition, 19, 1 (1986),
35-40.

10. ERric, W., GRIMSON, L. et al. Localizing Overlapping Parts by
Searching the Interpretation Tree, I[EEE Trans. PAMI, PAMI-9, 4
(1987), 469-482.

11. BHANU, B. and FAuGErAs, O. D. Shape Matching of Two-
Dimensional Objects, IEEE Trans. PAMI, PAMI-6, 2 (1984), 137-
156.

12. ZHANG, H., MINoH, M. and IKEDA, K. Recognition of Overlapp-
ing Objects Based on Matching the Objects, Boundaries, Technical
Report of IECE of Japan, PRU88-144 (in Japanese, 1989), 32-40.

