Translation from Transactions of IPSJ

An Algorithm for Constructing Extensions
of Propositional Autoepistemic Logic
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Moore’s Autoepistemic Logic(AL) would be one of the most promising formalizations of nonmonotonic
reasoning for its desirable properties as a logic. AL is intended to model the beliefs of an ideally rational agent
reflecting upon his own beliefs. An important notion for AL is an extension which is the possible set of conclu-
sions drawn by autoepistemic reasoning. Constructing extensions may be viewed as realizing autoepistemic
reasoning. However, one of AL’s theoretical problems is nonconstructive character: Given a set of premises, it

is difficult to construct extensions straightforwardly.

In this paper, we propose an algorithm for constructing extensions for propositional AL. In order to resolve
the difficulty as stated above, we consider AL on possible world semantics, and present a new important
theorem specifying the relationship between extensions and possible world interpretation. Based on this
theorem, we embody the algorithm. Also we clarify that this algorithm is sound and complete, as well as that its
complexity is O(n2"). Finally shown are some execution results of the implemented algorithm.

1. Introduction

A major reasoning scheme used in current knowledge
processing systems is deduction based on first-order
predicate logic. Deduction is of form as: from ‘P’’ and
“if P then Q”’, infer *‘Q’’. It may be viewed as one of
the most fundamental reasoning schemes in human
reasoning. The conclusions drawn by deduction are the
facts which logically follow from a set of current
knowledge, i.e. completely valid propositions. From
this property, a deduction system is required to provide
all of valid knowledge about the domain to solve a prob-
lem. In other words, completeness of knowledge is
needed. Accordingly the disadvantage of deduction
system is that the reasoning potential is limited within
the knowledge which it inherently possesses.

In recent years, a number of approaches to extend the
reasoning beyond the framework of deduction have
been reported. Such reasoning is sometimes referred to
as higher order reasoning [1]. Nonmonotonic reasoning
is one of formalizations of higher order reasoning. The
term ‘‘nonmonotonic’’ stems from the following pro-
perty: knowledge drawn by reasoning does not increase
monotonically. On the other hand, reasoning with the
property that given knowledge increases monotonically
is called monotonic reasoning. It is known that deduc-
tion is, in fact, monotonic reasoning. Nonmonotonic
reasoning is concerned with the reasoning from in-

This is a translation of the paper that appeared originally in

Jaganese in Transactions of IPSJ, Vol. 31, No. 7 (1990), pp. 979-987.

Department of Communication Engineering, Faculty of Engineer-
ing, Osaka University, 2-1 Yamadaoka, Suita, 565 Japan.

Journal of Information Procersing, Vol. 15, No. 1, 1992

complete knowledge, e.g. knowledge including excep-
tions, and with the reasoning that allows tentative con-
clusions by defaults. Since nonmonotonic reasoning
system has no need of completeness of knowledge, it is
expected to make up for the disadvantage of deduction
system as stated above.

Nonmonotonic logic is a logic to formalize non-
monotonic reasoning. In the 1980’s, a variety of for-
malizations have been attempted. Autoepistemic Logic
(AL) [2], which we will consider in this paper, was pro-
posed by Moore in order to solve the problems of Non-
monotonic Logic by McDermott and Doyle [6]. Recent-
ly, several researchers have been focusing attention on
AL as one of nonmonotonic logics of interest [3-5],
because of its clear correspondence between syntax and
semantics.

In discussing a reasoning system in terms of a logic,
the process of drawing conclusions from a set of
premises is of great importance. For example, resolu-
tion is used for monotonic logics to obtain theorems to
be conclusions drawn. Extensions' in AL will approx-
imate to theorems in monotonic logics. Therefore, con-
structing extensions can be viewed as realizing
autoepistemic reasoning, and will be a prerequisite to in-
vestigate the logical feature of AL. As is often pointed
out, however, it is difficult to straightforwardly con-
struct extensions for given premises [3].

In order to treat this difficulty, Moore has derived
useful theorems from the viewpoint of possible world

'An extension is just identical to a stable expansion named by
Moore in [2].
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semantics[3]. In this paper, extending Moore’s
theorems, we present an algorithm for constructing ex-
tensions [7]. In addition, we discuss the correctness and
complexity of the algorithm and show a couple of execu-
tion examples.

2. Overview of Autoepistemic Logic [2, 5]

AL is a logic on the basis of the notion of beliefs, and
is intended to model the reasoning of an ideal agent
who recognizes both what he believes and what he does
not believe. This type of reasoning is called
autoepistemic reasoning in the sense that an agent will
derive conclusions, reflecting upon his own beliefs.
Even in the case that there is no confidence, humans will
be able to act based on beliefs. Moreover, the beliefs
will be revised under some situation. As is well
understood, it is impossible to formalize this sort of
reasoning on ordinary logics such as propositional and
first-order predicate logics which are the base of
monotonic deduction system [1].

AL is extended to augment a belief operator L to the
language of ordinary logics. That is, AL allows an ex-
pression Lp as a formula on AL language. In what
follows, we call a formula Lp an L formula. The belief
operator L is interpreted as ‘‘believed’’. Then, a for-
mula Lp is interpreted as ‘‘p is believed’’ or ‘‘the agent
believes that p is true’’. AL’s nonmonotonicity results
from the changeability of the truth value of L formulae.

Now we show the definitions about AL to be required
in the following discussions.

[Definition 1] An autoepistemic theory T is a set of
formulae.

An autoepistemic theory, simply called a theory,
specifies the beliefs of an agent.

[Definition 2] An autoepistemic interpretation / of a
theory T is a truth value assignment to the formulae of
T satisfying,

1. Iconforms to the usual truth recursion for ordinary
logics,

2. A formula Lp is true in 7 iff pe T.

In context, a truth value assignment may be called an
assignment. Next, we proceed to explain the two syntac-
tical properties which characterize a theory: stability
and groundedness.

[Definition 3] A theory T is stable iff it satisfies the
following three conditions:

1. T=Th[T].

2. If pe Tthen Lpe T.

3. If p¢ Tthen ~LpeT.

The notation Th[7] indicates a set of formulae logically
following from T, i.e. a set of theorems. Condition 1 in-
dicates that the set of agent’s beliefs is closed under
logical consequence. Conditions 2 and 3 indicate that
an agent knows what is believed as well as what is
disbelieved. Stability of a theory points out the state
where no further conclusions can be drawn. A stable
theory T semantically means that T contains every for-

mulae which is true in all autoepistemic interpretations
of T which satisfies all formulae of T.

Regarding a finite set of premises A as the knowledge
and belief given to an agent, we define groundedness be-
tween premises and a theory.

[Definition 4] A theory T is grounded in a set of
premises 4

iff T<Th[AUPB(T)UNB(T)],

where PB(T)={Lplpe T} and NB(T)={~Lpip¢
T}.

Here AUPB(T)UNB(T') is called a basis set. Lp and
~ Lp are called a positive belief and a negative belief, re-
spectively. We will discuss about the sets of PB(T') and
NB(7) in Section 3.1. Groundedness semantically
means that every autoepistemic interpretation of a
theory T which satisfies all formulae of 4 also satisfies
all formulae of 7.
Finally we define an extension.

[Definition 5] A theory T is an extension of A,
denoted by EX[A4]

iff T=Th{4UPB(T)UNB(T)]. )

From the definition of stability, it can be easily pro-
ven that if a stable theory T contains a set of premises
A4, then T2 Th[AUPB(T )UNB(T)]. The sufficient and
necessary condition of T=EX][A] is as follows: T is
stable, contains 4, and is grounded in 4. Although an
extension may be similar to a set of theorems in or-
dinary logics, it should be noted that for some premises,
there are no extensions or multiple extensions.

3. Algorithm for Constructing Extensions

3.1 Nonconstructive Character of AL

Obviously from equation (1), an extension is define as
a fixed point equation with respect to a theory 7. This
means that enumerating all the possible theories, we
should determine whether or not each of them will
satisfy the equation.

Now let us consider the basis set: AUPB(T )UNB(T).
If a formula p is a logical consequence of T, i.e. p is
true in all ordinary interpretations which satisfy 7, then
a formula Lp is a member of PB(7). On the other
hand, if a formula p is not a logical consequence of 7,
i.e. p is false in at least one ordinary interpretation
which satisfies 7, then a formula ~ Lp is a member of
NB(T'). The truth value of a formula Lp depends on
whether p logically follows from 7, in other words,
whether p is derived from 7. This suggests that there is
no direct correspondence between the truth values of p
and Lp.

To be a logical consequence and not to be a logical
consequence are equivalent to unsatisfiability and
satisfiability, respectively. On first-order predicate
calculus, there is a procedure to check the unsatisfiabil-
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ity, while there is no procedure to check the satisfiabil-
ity. Therefore, first-order predicate AL is unfortunately
not even semi-decidable [9].

In order to construct an extension, for an enumerated
theory T, we must investigate the coincidence between
T and the set of formulae of logical consequences of
the basis set obtained from 7. The difficulty with
straightforward construction of an extension from
given premises is known as nonconstructive character
of AL.

As described above, Moore gave valuable theorems
from the viewpoint of possible world semantics (PWS)
[3], as a strategy to deal with AL’s nonconstructive
character. However, he did not show the procedure for
constructing extensions in a definite form. Extending
Moore’s theorems, we proceed to embody such a pro-
cedure by deriving a new theorem concerning the rela-
tionship between extensions and PWS [7].

3.2 AL on Possible World Semantics

Before discussing AL on PWS, we briefly state the
fundamental notion about possible worlds. It is Kripke
that first introduces the idea of possible worlds. He de-
fined the interpretation of formulae of form Lp, Mp in
modal logic by means of possible worlds. Intuitively,
we will take account of a logical model using possible
worlds corresponding to the situations we will be able
to imagine. We now explain PWS as far as the follow-
ing discussion is concerned; see [8] for details.

An interpretation on PWS is determined by a set of
possible worlds, accessibility, and truth value assign-
ment. A binary relation R(w1, w2), representing that a
world w2 is accessible from a world wl, means that
one, who is in wl, can refer to the truth values in w2.
As for accessibility, the next properties are considered.
Reflexivity: R(wl, wl).

Transitivity: If R(wl, w2) and R(w2, w3) then R(wl,
w3).

Symmetricity: If R(wl, w2) then R(w2, wl).

A system characterized by a set of possible worlds,
called a structure, may change according to which pro-
perty will hold in it. For example, a system in which
only two properties of reflexivity and transitivity hold is
called S4 system. A system in which all properties hold
is called S5 system. The structures in S4 and S5 systems
are called S4 and S5 structures.

For brevity, let us consider propositional AL (PAL).
The following theorem guarantees that a stable theory
can be expressed as a complete S5 structure [3]. The
complete S5 structure particularly indicates an S5 struc-
ture in which every world is accessible from every
world.

[Theorem 1] A theory T is stable iff T'is the set of for-
mulae that are true in every world of some complete S5
structure.

This theorem enables us to give an autoepistemic inter-
pretation of a stable theory in terms of a complete S5
structure. Hence, a possible world interpretation can be
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defined next [3]. From the feature of complete S§ struc-
ture, we are allowed to consider interpretation solely by
structure and truth value assignment, without ac-
cessibility.
[Definition 6] Let a stable theory T be represented as a
complete S5 structure K. A possible world interpreta-
tion of T is a pair (K, V') satisfying the following condi-
tions. V denotes a truth value assignment to proposi-
tional constants, which conforms to propositional
logic.
1. A propositional constant is true in (K, V') iff it is
true in V.
2. A formula Lp is true in (X, V) iff p is true in all
worlds in X.
3. A formula Lp is false in (X, V) iff p is false in at
least one world in K.
This definition states that K and V will define the
assignments to L formulae and propositional constants,
respectively. As an example, consider the possible
world interpretation of a formula LP—Q under
K={{P, Q}, {P, ~Q}}, V={P, ~Q}. Positive and
negative literals of propositional constants indicate
assigning true and false values, respectively. In this
case, Pis true in all worlds in K'; LP is true; Q is false in
V. Then LP—Q is interpreted false in this (X, V).
Note that for a stable theory, an autoepistemic inter-
pretation is entirely equivalent to a possible world inter-
pretation. A possible world interpretation stipulates the
relationship between the truth values of p and Lp
through possible worlds. This contributes to construc-
ting extensions. Further, there has been proposed the
next theorem about satisfiability of possible world inter-
pretation [3].
[Theorem 2] If (K, V') is an autoepistemic interpreta-
tion of T, then (K, V) satisfies all formulae of T iff the
truth value assignment V is identified with an assign-
ment provided by one of the possible worlds in K.
Based on Moore’s theorems, we will derive a new
theorem about extensions and possible world interpreta-
tions. Its proof will be described in Appendix 1.
[Theorem 3] Let K denote a complete S5 structure
representing a stable theory 7. T is an extension of a set
of premises A iff the following two conditions are
satisfied:
Containing condition: For every possible world inter-
pretation (X, V') which satisfies all formulae of 4, K
contains a possible world w which is identified with a
truth value assignment V.
Satisfying condition: All formulae of 4 are true in every
possible world w in K.

3.3 Description of Algorithm

From the preceding discussions, constructing an ex-
tension EX[A4] can be reduced to constructing a com-
plete SS structure K satisfying the containing and satisfy-
ing conditions of Theorem 3. Let us describe the details
of the proposed algorithm.

[Algorithm for constructing extensions]
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Table | A table for constructing extensions.

Unvj v, v, T K Label
Yy
Uy

Uimax|

(1) Let 4, denote the set of all L formulae appear-
ing in a finite set of premises 4. For each P of form LP
included in 4., if P has a subformula of form LQ, then
LQ should also be a member of 4,. Let 4¢ denote the
set of all propositional constants appearing in 4.

(2) Assign truth values U; (i=1," - -, imax) to each
formula of A4,. Similarly, assign truth values V;
(j=1, -, jmax) to each formula of Ac. Letting the
numbers of members of 4, and 4¢ be denoted by N and
M, respectively, imax=2" and jmax=2M.

(3) Fill the blank columns of Table 1, according to
the following procedure.

(3a) If the truth value assignment given by (U;, V)
satisfies all formulae of 4, then write ‘1’’ on a column
of (Ui, V), otherwise write ‘“0°’. This step iterates for
all of (U, V)).

(3b) For each U;, form a set of ¥;’s such that ““1”” is
on the column of (U;, V;), and write it on a column of
K.
(3¢c) For each U, check whether K satisfies the next
conditions:

For each Lpie 4,,

If Lp, is assigned true in U;, then Py is true in all V’s in-
cluded in K.

If Lp, is assigned false in U;, then Py is false in at least
one V included in K.

In the above case, if p, has a subformula of form LQ,
an assignment to LQ conforms to U;. If these condi-
tions are satisfied, then write ¢‘C (consistent)’’ on a col-
umn of Label, otherwise write ‘‘J (inconsistent)’’.

Steps (3a) and (3b) in this algorithm means selecting a
set of possible worlds satisfying premises 4. The condi-
tions at step (3c) are those for verifying that X should be
a complete SS structure.

3.4 Correctness of Algorithm

Since the proposed algorithm works for PAL, its
haltness is obviously guaranteed from the finiteness of
propositional calculus. We give a theorem about the cor-
rectness of the algorithm.

[Theorem 4] Let 4 be a set of premises, and K; be a
complete S5 structure labeled ¢“C’’ by this algorithm. T
is a theory represented as K; iff T is an extension of 4.

Theorem 4 is proven by showing both that a complete
S5 structure K; labeled ‘‘C”’ by this algorithm satisfies
the containing and satisfying conditions of Theorem 3,
and that a structure K; satisfying such conditions is
always labeled ‘“‘C” by this algorithm. Namely,
Theorem 4 states that this algorithm is sound and com-

plete. Its proof is precisely described in Appendix 2.

When there are consistent multiple extensions, this
algorithm will yield the corresponding non-empty struc-
tures labeled ‘‘C’’. When there is no extension, it labels
“I’’ to all structures. For inconsistent premises which
may be viewed as a peculiar case, there is only one incon-
sistent extension to be the entire language of PAL. In
such a case, this algorithm yields an only empty struc-
ture labeled ““C”’.

3.5 Computational Complexity of Algorithm

In this section, we will consider the computational
complexity of the proposed algorithm. We begin by con-
sidering an input size n for this problem. The input is a
finite set of premises 4; More strictly, the input is a set
of L formulae 4; and a set of propositional constants
Ac as shown in step (1) of the algorithm. Letting

AL={5L:‘“=1,"',N},
AC={5Cj|j=1,’ MY,

the input size n is the total number of elements in 4,
and Ac, i.e. N+ M.

Next, the procedure at steps (2) and (3a) can be re-
garded as evaluating a formula A4'(S.,- -, oim,
dc1, " *, Ocn) Which is a conjunction of premises. There
are 2™ and 2" kinds of way to assign truth values to pro-
positional constants and L formulae. Thus, 4’ can be
evaluated with 2**¥=2" combinations. Since there are
at most finite number of elements J,:, dc; appearing in
A’, evaluating 4’ for each assignment will take a com-
putation cost of O(n)'. The computation cost at steps
(2) and (3a) is, therefore, O(n2"). Each cost at steps
(3b) and (3c) is at most 2M*" and N?", respectively.
Since N<n, M+ N=n, the cost at these steps will not
exceed O(n2"). Consequently, the computational com-
plexity of this algorithm can be concluded as O(n2").
Following computation theory, the problem discussed
in this paper may be said intractable [10].

From practical point of view, we may provide the
following three strategies.

1. Restrict ¥ from the interpretations for ordinary
(propositional) formulae.

In case that 4 contains a single literal such as p or ~p,
for instance p appears in 4, we need not investigate the
interpretations of V in which p is false, then we are al-
lowed to deal with only half of all interpretations. Ac-
cordingly, if there are k single literals, we will be able to
restrict 27 times interpretations. A usual knowledge
base is likely to have these formulae, so we will expect
to get efficient computation. For other formulae such as
p—q, we can ignore the interpretations ¥ in which p is
true and g is false. Thus, we can get efficient computa-
tion by prioritizing the interpretations for ordinary for-
mulae.

'Strictly, supposing that / is the number of clauses in conjunctive
normal form of A’, the computation cost is O (nl). Here we assume
that / is constant order of n.
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2. Restrict U from the relation between p and Lp.
The definition of extensions guarantees that Lp should
be true in an extension which contains p. If p appears in
4 and Lpe A,, then we need not investigate the inter-
pretations of U in which Lp is false. In such a case, we
are allowed to consider half of all interpretations of U.
3. Restrict U from the relation between Lp and L ~p.
In case that Lpe 4, and L ~pe A4,, both formulae are
never true in an extension, so we can ignore such an in-
terpretation of U.

3.6 Related Work

The algorithm proposed in this paper is, in fact, an
algorithm for searching logical models of extensions.
Since a logical model of an extension can be viewed as a
set of formulae satisfied in an extension, it is no prob-
lem to regard this algorithm as a kind of decision pro-
cedure.

So far, a method which utilizes a semantic tableau
has been proposed as a decision procedure of PAL [5].
Basic operation of semantic tableau method is making a
proof for a given formula in order to determine whether
or not it is included in an extension. The major
difference between semantic tableau method and this
algorithm is where the theoretical base is stressed. The
former is based on autoepistemic interpretation (cf.
Definition 2), whereas the latter on possible world inter-
pretation (cf. Definition 6). Semantic tableau method is
essentially to investigate the membership relation be-
tween a given formula and extensions. Although the
relation between other formulae and extensions are
given as a side effect, the content and the number of ex-
tensions will not be given in such a clear form as this
algorithm.

Recently Moore has proposed an algorithm for con-
structing extensions on the basis of Theorems 1 and 2
[11]. Moore’s algorithm is, in principle, similar to ours,
but the two algorithms differ in the details or the efficien-
cy. After describing the outline of Moore’s algorithm,
we will compare each other.

[Moore’s algorithm]

(1) From all possible truth value assignments V to
propositional constants appearing in a set of premises
A, generate complete S5 structures.

(2) Select the structures, generated in (1), which
satisfy 4 in every possible world.

(3) Generate a possible world interpretation (X, V)
for a selected structure K and every assignment V.

(4) Of all generated interpretations, select a (X, V)
satisfying all formulae of 4, check whether or not K
contains every V. A structure representing an extension
is K satisfying the above conditions.

The input size n of Moore’s algorithm is the number
of propositional constants appearing in 4. Now let us
consider the stepwise computation cost. At step (1),
there are 2" kinds of all possible truth value assignments
for n constants. In addition, there are 2% kinds of
generated complete S5 structures which correspond to a
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Table 2 Comparison between Moore’s algorithm and this

algorithm.
Moore’s algorithm This algorithm
Input Size M 3 M+N %
No. of Structures 92M ( 256) 2N O]
No. of PW Interpretations a22Mem (1856) 2M+N (32)
Complexity opn?M) O(M+N2M+N)

power set of a set of truth value assignments. Thus, the
computation cost at step (1) is O (2*"). The cost at step
(2) is O(n2%"), because all formulae of 4 are interpreted
for every generated structure. Each cost at steps (3) and
(4) does not exceed O (n2%"). Therefore, the complexity
of Moore’s algorithm can be concluded as o(n2*).

Table 2 shows the comparison between Moore’s
algorithm and this algorithm with respect to the input
size, the complexity, and the numbers of generated
structures and possible world interpretations. When
A={LP—Q, LQ—R}, as an example, each value for
the items is also indicated in parentheses in Table 2.
Symbols in this table are identical to those used in
Sec.3.5. That is, M and N denote the numbers of pro-
positional constants and L formulae, respectively, ap-
pearing in 4, and 0<a=<1. For this example, proposi-
tional constants are P, Q and R (M=3), and L
formulae are LP and LQ (N=2).

Table 2 suggests that this algorithm will generate less
structures and interpretations than Moore’s. The latter
enumerates the structures exhaustively, while the
former largely reduces the structures to be considered,
by taking account of the truth value of L formulae
which is necessary to evaluate a set of premises A. Note
that if the number N of L formulae exceeds 2™, this
algorithm will contrary get worse with respect to the
efficiency.

3.7 Execution Examples of Algorithm

Execution examples of the proposed algorithm on a
computer for the next Examples 1 to 3 are shown in Fig.
1(2) to (c). In this figure, the input to a computer is
underlined. As you can see, a formula representing a
premise is inputted as a list form. Positive and negative
literals in interpretations of U and V represent to assign
true and false values to L formulae and propositional
constants. Symbols of ‘‘—"’ and ““&’* denote negation
and conjunction, respectively.

This algorithm is implemented with Common Lisp
language on SUN work station. The size of a program,
including input/output part, is 9K bytes.

[Example 1] Input: A={~LP-Q, ~LQ—P}
Output: EX1={{P, Q}, {P, ~Q}}

EX2={{P, Q}, {~P, O}}

No. of extensions=2
These premises state the beliefs of *‘if P is not believed
then Q”’ and ‘if Q is not believed then P’’. We obtain
two extensions EX1, EX2 as a result. In EX1, since P is
true in all worlds, formulae such as P, LP, and ~L ~P
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Input Premises
7> CLaq
7> CALg)p)
? end
A= ("LP->Q, LQ->P }
OK? (y/n) y
AL = {LP, LQ}
AC={P, Q}
Ul = {LP, LQ)
U2={LP, 'LQ}
U3 =(LP, LQJ vi=(P, Q)
U4 =(LP, LQ} V4= (P, Q)
V1 V2 V3 V4 Label K
Ul 1 1 1 1 I {V1, V2, V3, V4)
U2 1 1 0 0 C (V1 V2)
U3 1 0 1 0 C {Vl, V3j}
U4 1 0 0 O I (vl
EX1={ (P, Q}, (P, Q) )
EX2={ {P,Q), (P, Q} }
No.of EXis...2

Vi=(P, Q)
V2=(P, "Q)

(a)

Input Premises
?E>Caepp
? end
A= {"LP->P}
OK? (y/n) y
AL = (LP}
AC={P)
Ul={LP} Vi={(P)
U2=(LP} V2={P}

V1 V2 Label K
U1 1 1 1 {V1,V2)
U2 1 0 I ({Vi}
No. of EXis...0

®)

Input Premises

?(>pQ

?7(>qr)

?(>&Lp CLDC
?p

? end

A={ P->Q, Q>R, LP & LR->R, P)

OK? (y/) y

AL = {LP, LR}

AC={P, Q R}

Ul=({LP, LR) V1i=(P, Q R} V5={P, Q R}

U2={LP, 'LR) V2={(P, Q, 'R} V6=("P, Q, R}

U3=(LlP,LR}) V3={(P, Q R} V7={P, "Q R}

U4 ={LP, LR} V4=(P, Q, "R} V8={P, Q R}
V1 V2 V3 V4 V5 V6 V7 V8 Label K

U1 1 0 0 0 O O 0 O Cc (vy)

uz 0 0 0 0O 0 O 0 O I {)

U3 1 0 0 o 0 O O O I (V1)

U4 1 0 0 0 0O O 0 O I {Vl}

EX1={ {P, Q. R} )

No. of EXis ... 1
©

Fig. 1 Execution examples of the implemented algorithm.

are true. Since the truth value of Q is distinct in the two
worlds, formulae such as ~LQ and ~L ~ Q are true.
This means that logical consequence formulae of such
formulae are also included in EX1. In EX2, formulae
which is replaced P by Q for EXI1 are true. This exam-
ple is a well known multiple extension case which is
specific to nonmonotonic logics.

[Example 2] Input: A={~LP—P}

Output: No. of extensions=0

These premises state agent’s inconsistent beliefs of *‘if
P is not believed then P’’. The execution result in-
dicates that there is no extension; no consistent conclu-

sion is obtained.
[Example 3] Input: A={P—-Q, Q-R,
LPA~LR— ~R, P}
Output: EX1={{P, Q, R}}

No. of extensions=1
The third formula of premises states a default represen-
ting ‘‘if P then normally ~ R [4]. In this example, we
may derive an inconsistent conclusion: both R from or-
dinary formulae and ~ R from defaults. The execution
result indicates that only one extension consisting of a
single world is given, and formulae such as P, Q, R,
LP, LQ, LR are true.

In general, an extension is expressed as a theory
which is a set of formulae. An expression in terms of a
complete S5 structure, which is an output form of the
proposed algorithm, enables us to understand the for-
mulae to be true in an extension easily. This advantage
is due to expressing a theory which will become infinite
as a finite form.

4. Conclusion

In this paper, we have discussed about the non-
constructive character of AL, and have stated the
difficulty in constructing extensions which are conclu-
sions drawn by autoepistemic reasoning. In order to
resolve this difficulty, we have considered AL on possi-
ble world semantics, and have presented a new impor-
tant theorem stipulating the relationship between exten-
sions and possible world interpretation. Based on this
theorem, we have given an algorithm for constructing
extensions for PAL. Also we have clarified that this
algorithm is sound and complete, as well as that its com-
plexity is O(n2").

This algorithm depends theoretically on the fact that
a correspondence relation between truth values of p and
Lp is given through possible worlds. Its advantages are
as follows: we can straightforwardly construct exten-
sions; we can intuitively understand the contents of
each extension. It should be noted that this algorithm
will not halt for first order AL because there are infinite
models.

Remaining work is as follows: improving algorithm
efficiency, developing proof theoretic method, applying
this framework to knowledge base management and
knowledge acquisition. We are now developing a non-
monotonic knowledge processing system [12, 13] by in-
troducing the proposed algorithm. It will be reported in
a forthcoming paper.
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Appendix 1 Proof of Theorem 3

From Definition 5, a theory T is an extension of a set
of premises 4 iff 7 contains 4, is stable and is grounded
in A. First from Theorem 1, if T is an stable theory, it is
obvious that 7 contains 4 iff the satisfying condition is
satisfied. On the other hand, 7 is grounded in 4 iff
every autoepistemic interpretation satisfying 4 also
satisfies 7. From the semantical equivalence between
autoepistemic interpretation and possible world inter-
pretation, and Theorem 2, the above condition is
equivalent to the containing condition.

Appendix 2 Proof of Theorem 4

First assume that a structure K is labeled ‘“C”’ by this
algorithm. In order to let a stable theory T represented
as K; be an extension of 4, K; should satisfy the contain-
ing and satisfying conditions of Theorem 3. Now in
case that K; is labeled ‘“C”’, K; satisfies the condition at
step (3¢) of the algorithm, so U; is a truth value assign-
ment as: if P is true in every world of K;, then LP is
true, otherwise LP is false. Accordingly, for every truth
value assignment V to propositional constants, an
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assignment {U,, V), generated by a pair of U; and V,
can be viewed as a possible world interpretation of 7.
Then each of {U,, V> marked ¢‘1°’ at step (3a) is a possi-
ble world interpretation of T in which every formulae of
A is true, so there exist no other interpretations. Since
K;is defined, at step (3b), as a set of ¥ such that U, V)
is marked ‘“1’’, for every possible interpretation (X,
V) of T in which every formula of 4 is true, a world w
which is identified with Vis included. Hence the contain-
ing condition of Theorem 3 is satisfied.

In a world w, the truth values of L formulae of 4,
agree with U,. Letting V be an assignment to proposi-
tional constants in w, all formulae of 4 are true in <U,,
V) by the definition of K. Therefore, all formulae of 4
are true in every world of K;, so the satisfying condition
of Theorem 3 is satisfied.

In the opposite direction, assume that a theory T'is an
extension of 4. Let K be a complete S5 structure
representing 7. K satisfies the containing and satisfying
conditions of Theorem 3. Here we prove that X is con-
structed by this algorithm, and is identified with some
K; labeled ““C”’.

The truth value assignment to L formulae of 4,,
given by K, must agree with any of U, -, Uina.
denoted by U,. For any interpretation V, then, (U, V)
is a possible world interpretation of 7. Now let us prove
K; constructed from U, is equal to K, namely K;=K.

Assuming K;#K, we show that a contradiction will
be derived. If K;#K, then there must exist a possible
world w such that either we K;, we¢t K or w¢ K;, we K.

(i) Assume that there is a world w such that we K,
w¢ K. Since we K;, by steps (3a) and (3b) of the
algorithm, an interpretation <U,, V') satisfies A4, where
V is an assignment to propositional constants, iden-
tified with w. In addition, <U;, V') is a possible world in-
terpretation of 7. From these, the containing condition
is satisfied. Hence we K, which contradicts the assump-
tion.

(ii) Assume that there is a world w such that we K;,
we K. Since we K, all formulae of 4 are true in w,
from the satisfying condition of Theorem 3. For an
assignment V in w, (U, V) must satisfy 4. Then,
we K; by steps (3a) and (3b). This is a contradiction.

Next we show that such K; is labeled ‘““C’’. An assign-
ment to L formulae of 4,, given by K, agrees with U..
Since K;=K, K; satisfies the condition at step (3c).
Therefore, K; is certainly labeled “‘C”’.



