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A Knowledge Acquisition Method Based on
a Multi-Attribute Utility Model
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In solving a design or planning problem, an expert sometimes selects a specific alternative on the basis of
multiple criteria. It is difficult to elicit the expert’s knowledge concerned with this kind of decision-making and
represent it in the form of if-then rules in order to build an expert system. Here, a method for knowledge acquisi-
tion and representation is proposed that can overcome this difficulty. In this method, a multi-attribute utility
function is employed as a knowledge representation model, which was originally proposed for decision-making
with multiple objectives in multi-attribute utility theory.

An initial model is obtained by the conventional utility theory technique. This model is modified in order to
eliminate conflicts between conclusions arrived at by the model and the expert. Modifications are performed by
using an assumption selection module and a control module for focus on the modification process control. In
order to improve the efficiency of modification, heuristics are used for assumption selection, backtracking plann-
ing, and so on.

The proposed method has been applied to knowledge acquisition problems in the construction scheduling do-

main, and its validity as a knowledge acquisition technique has been confirmed.

1. Introduction

Development of knowledge acquisition support
systems is one of the key issues for practical building
and use of expert systems. It is important to acquire
knowledge from domain experts, since an expert
system’s performance depends strongly on the quality
of its knowledge base. In practice, however, it is often
difficult to derive sufficient knowledge through inter-
views with experts, because they are not necessarily
aware of all the knowledge they use in everyday prob-
lem-solving processes. To compensate for this, several
support methods have been proposed for efficient
knowledge acquisition through interviews with domain
experts by a knowledge engineer [1-6].

One such method is MORE, which employs an inter-
view strategy that makes experts aware of their expertise
in the domain of diagnosis. Another is SALT, which is
based on an interview strategy for selecting or modify-
ing parameter values in the domain of engineering
design.

In some cases, however, it is difficult to obtain
knowledge representation in the form of rules, not
because experts are unaware of their expertise, but
because they cannot describe their expertise easily. In
selection of design alternatives, for example, a
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knowledge engineer and a knowledge supplier can iden-
tify dominant attributes in the design data such as cost,
reliability, and efficiency, but the supplier cannot
always clarify the detailed selection criteria for combina-
tion of these attribute values. The above-mentioned in-
terview-based methods are not necessarily applicable to
problems requiring selection of one of several alter-
natives on the basis of multiple performance indices,
such as multi-criteria decision-making problems. The
selection of a specific design out of many candidates is
one such problem.

The Analytic Hierarchy Process (AHP) [7-8] and
multi-attribute utility model [9-10] are methods for
multi-criteria  decision-making problems. These
methods analyze the preference order of a decision-
maker and choose a specific plan out of a set of alter-
native plans. They have been applied to planning the
site of an industrial plant [11], planning the investiga-
tion of plant equipment [12], and other tasks. The AHP
method is composed of two steps: assignment of the
decision-maker’s subjective judgment to alternative
plans, and ordering of the alternative plans according
to this judgment. It is advantageous when using
judgments that are not directly quantifiable, and for
simplying the ordering procedure, but it is disadvan-
tageous when the validity of a given subjective judg-
ment is ignored.

The multi-attribute model evaluates alternative plans
indirectly. It selects quantifiable attributes, defines a for-
mula for plan evaluation that specifies to what extent
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the criteria, represented in terms of attributes, are
satisfied, and evaluates plans according to the formula.
This method clearly describes the grounds and units for
the adopted evaluation measure, thus elucidating the
characteristics of the measure and taking account of the
evaluation’s validity. Judgmental criteria specifications
can be regarded as a kind of knowledge acquisition, as
can the extraction and quantification of an expert’s
preference. Expert systems in the domain of design and
planning require judgmental criteria for selection of an
appropriate one of several alternative plans, which are
usually in the form of rules. Although rules are not di-
rectly extractable from experts, they may be indirectly
obtained by the AHP or multi-attribute utility model
methods, since these methods are able to extract criteria
for plan selection according to judgmental results in
cases of problem-solving by a decision-maker.

In the context of the relationship between decision-
making and domain knowledge, recent papers have at-
tempted to integrate multi-criteria decision-making and
knowledge processing [13, 14]. The knowledge acqusi-
tion support system AQUINAS [15] evaluates perfor-
mance values for alternative plans by means of an AHP
model, for use as certainty measures of knowledge in
rule form.

To do so, the system extracts the inter-attribute
dependency required for classification, and describes
the structure of rules. Although an AHP model is
useful for pointing out dominant attributes, it requires
direct comparison of attribute values. This makes the
model less attractive in the domains of design and plan-
ning, where alternatives are not exhaustively enumerated
and evaluated beforehand.

The multi-attribute utility model allows convenient
treatment of the extended evaluation of candidate plans
that are newly added, with minimum changes in the pre-
defined model. This suggests that the model may be ap-
plicable to design and planning problems. Straightfor-
ward application of a knowledge acquisition method
based on this model, however, would presumably cause
some problems, and the original model should be ex-
tended so as to match the knowledge acquisition proc-
ess. One requirement is that the knowledge should be
consistent for use in the knowledge base. In the propos-
ed method, knowledge is extracted from interviews with
experts by a knowledge engineer, and refined with
judgmental results in problem-solving cases by experts.
Knowledge must be free from contradictions:

1. No item of knowledge should fail to match any
other item of knowledge.

2. No decision made by the system with the
knowledge base should fail to match a decision made by
a human expert.

The original multi-attribute utility model does not
support the handling of mismatches between an expert
system decision and a human expert decision. Because
of its bottom-up style of modelling preference, the utili-
ty model does not pay enough attention to consistency

between the computational output of the model and the
real-world solution, though this kind of consistency is
crucial in the knowledge acquisition process. This prob-
lem derives from the intended use of the multi-attribute
utility model, which is for developing applications in
difficult situations when a decision-maker cannot di-
rectly determine the priority of alternatives. In the
original application domain, no reference solution is
given, and the quantification of a preference mismatch
is not meaningful, unlike in the building and refinement
of a knowledge base.

In order to apply this modelling method to the
knowledge representation model, it is necessary to ex-
tend the method’s treatment of output consistency.
Very few attempts have been made to extend the multi-
attribute utility model from the viewpoint of knowledge
acquisition. The objective of this study is to propose a
knowledge acquisition method that represents
knowledge on the basis of the multi-attribute utility
model, efficiently identifies knowledge in the form of
utility functions which ensure that the inference result is
consistent with an expert’s judgment, and facilitates the
utilization of the knowledge in a problem-solving
system.

2. Knowledge Acquisition Method

2.1 Technical Issues

The multi-attribute utility model offers a basis for the
identification of a decision-maker’s preference model in
the form of a utility function and for computerized deci-
sion-making according to the order of preference of
alternatives. These processes are based on the quan-
titative value of the overall performance of each alter-
native, while analysis based on the decision-maker’s
judgments provides a utility function and weighting fac-
tor for each attribute. The weighting factor is hereafter
called a trade-off coefficient.

Ux)=2ZW*U(x) 0
ZW=1 @
0< U<l

x: alternative plan

U: overall performance of alternative plan

U utility function (individual performance function)
of attribute i

W trade-off coefficient of attribute i

A utility function for each attribute is usually iden-
tified through reference experiments by the 50-50 lot
method, and defines a plan with U(x)=0.5. First, it ex-
tracts an indifferent value for an alternative plan x. The
decision-maker considers the preference of the lot hav-
ing this value with a 100% likelihood, which is
equivalent to the preference of the lot having the best
result with a probability of 50% and the worst result
with a probability of 50%. Several sample data are ob-
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Fig. | Example of a utility function.

tained by repeating this kind of procedure. Secondly,
the utility function is completed by fitting these sample
results. An example of a utility function is shown in
Fig. 1, where three representative and indifferent sam-
ple points Xo.s50, Xo.2s and Xo7s are obtained from the
results of the decision-maker’s judgment. Trade-off
coefficients are similarly determined by the use of in-
different points between attributes.

If the model is to be usable for knowledge representa-
tion, all possible means should be provided of adjusting
it so as to make its output of the order of preference of
alternatives consistent with that of the decision-maker.
These means will help the knowledge engineer to
modify utility functions, if any mismatch is detected be-
tween the model output and the decision-maker’s out-
put and modification is required.

Assuming that the decision-maker’s preference is cor-
rect, three items should be dealt with to modify the
model for consistency:

1. Attributes;

2. A utility function for each attribute; and

3. A trade-off coefficient for each attribute.
Modification targets for items 2 and 3 are processed by
trial-and-error, though item 1 can be selected by a
method similar to the AQUINAS system. In a trial-and-
error procedure for model adjustment, the following
steps are repeated until the model output is consistent
with that of the decision-maker:

1. Choice of target trade-off coefficients and utility
functions to be modified;

2. Specification of the requirement, direction, and
quantity of modification for chosen objects; and

3. Comparison of the order of preference of alter-

natives given by the modified model and that arrived at
by the decision-maker’s judgment.
It is difficult for a blind procedure to incorporate the
decision-maker’s preference into the model and,
therefore, it is also difficult to produce multi-attribute
utility functions efficiently and without mismatch.

One major technical issue in the application of the
multi-attribute utility model to knowledge acquisition is
how to realize an efficient modification process for utili-
ty functions and trade-off coefficients for attributes in

T. MiTsUTA, Y. KoBaYasH! and H. NONAKA

such a way as to reproduce judgmental results arrived at
by a decision-maker. To do this with a reasonable com-
putational effort, it is necessary to limit the scope of the
target objects to be modified to a tractable range in
response to the results of comparison, and to control
the change of focus in the scope, intelligently and at ap-
propriate times, according to information fed back
from the modification process.

2.2 Basic Configuration

In the problem of knowledge acquisition, additive in-
dependence is assumed in the formula for the
preference of alternatives. This means that evaluation
of an attribute is not influenced by that of other at-
tributes. The identification of multi-attribute utility
functions is identical with the specification of utility
functions and trade-off coefficients. These two proc-
esses are performed independently in the conventional
approach. The proposed approach is based on the
modification process with information fed back from
the comparison of preference results. The basic idea of
this approach can be summarized as follows.

If utility functions are given to each attribute, the
overall performance of each alternative plan can be
expressed as a function of unknown variables that is,
trade-off coefficients. If the order of preference is given
for a pair of alternatives, this relation is expressed as an
inequality as a function of trade-off coefficients.

As an example, consider a three-attribute utility func-
tion. When plan x is prefered to plan y, inequality U (x)
>U(y) holds true, and the following inequality is
derived:

{U ) — Ui(»)} Wi+ {U(x)— Ua( 1)} - W2
+{Us(x)— Ux(»)} - W3>0.

This suggests that a set of inequalities is defined in terms
of variables of trade-off coefficients according to a set
of preference relations for a pair of alternatives, which
are specified according to the decision-maker’s judg-
ment. Then, to identify a set of trade-off coefficients
that reproduce the decision-maker’s preference, the ine-
qualities must be solved and values for the variables,
satisfying all the inequalities, must be found. The latter
requires a search of the sub-space satisfying all ine-
qualities in the multi-dimensional space of the trade-off
coefficients. In practice it is not easy to search this sub-
space directly and to establish a satisfactory utility func-
tion. The proposed method identifies the multi-
attribute utility model through iterative modification of
the utility functions and refinement of trade-off
coefficients.

The procedure for this knowledge acquisition is
depicted in Fig. 2. Bounding the range of target objects
is based on the results of comparing a simulated judg-
ment by the model and a real judgment by a decision-
maker, and is carried out at four levels of preference
modelling:
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Fig. 2 Procedure for knowledge acquisition.

1. Level 1: Choice of target sub-space.

Choose the subspace that is presumed most likely to
be the true sub-space, and assume that the current
trade-off coefficients are compatible with the chosen
sub-space.

2. Level 2: Choice of target alternative plan.

Find a target pair of alternative plans for which the
current trade-off coefficients cannot reproduce the deci-
sion-maker’s preference, and choose one plan from the
pair as a plan to be modified according to the overall
performance measure.

This step is illustrated with an example. Set A is a set
of preferences of alternatives.

a;eA 3)
a;=<x;, x>: x; is preferred to x;. 4)

The statement that x; is preferred to x; is expressed as
U(x)> U(x;). There exists a relation U(x;)< U(x), if
trade-off coefficients based on the chosen sub-space fail
to reproduce preference a;. This wrong inequality must
be corrected to the target inequality U(x;)> U(x;). Two
choices for this correction process are to increase U(x;)
or to decrease U(x;)).

3. Level 3: Choice of target attribute.

Choose a target attribute from the attributes of the
chosen alternative plan to modify the utility function.
This step chooses one attribute from attributes U,(x;),
Ux(x;) and Us(x;) to be increased at step (ii) in the exam-
ple.

7
Define inequalities of unknown ity Y ¥ N .gzwn
trade-off coefficients according to u;(:): \'/\g\é) ’
preference orders and utility functions us(x))
i
7 A Preference orders
Search for a subspace satisfying all ‘
inequalities in trade-off coefficient space reproducible by trade-off <a, b> <c, d>
coefficients in sub-space Si

Ltevel 1 : Choice of target sub-space
Level 2 : Choice of target alternative plan
Level 3 : Choice of target attribute
Level 4 : Specification of modification requirement
in utility function value
ug(X) : Utility function
ug*(X) : Modified utility function

S; : Sub-space in trade-off coefficient space
U : Overall performance value
Auy : Modification quantity required

Fig. 3 Example of a utility function modification process.

4. Level 4: Evaluation of the modification require-
ment in the utility function.

Determine the direction and quantity of modification
in the chosen attribute to correct the utility function.
This step for utility function modification is not
straightforward and does not ensure a consistent set of
trade-off coefficients satisfying all the inequalities. This
is because a utility function is related to more than one
alternative. Utility function modification for a focused
inequality may have the side effect of violating other ine-
qualities that were previously satisfied. This results in
backtracking of modification trials at the same level.
The procedure iteratively checks and maintains the
validity of other preferences previously established
after modification of a target preference. If the correc-
tive action finally fails to find a proper set of trade-off
coefficients at the present level, further backtracking is
required at a higher level.

Knowledge acquisition is a kind of search problem
that requires a procedure to be solved by backtracking.
In this problem, the branches of the search tree expand
drastically as utility functions are modified. Figure 3
shows the utility function modification process. The in-
itially given utility functions are nodes placed at level 0,
and subspaces of the trade-off coefficient space based on
the utility function are nodes at level 1. Nodes at level 2
are sets of alternative plans, whose overall performance
is corrected. From a chosen node of level 3, nodes of
utility functions are corrected at level 4.
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modification requirements

Fig. 5 Modification requirement for planning alternatives.

From the result of utility function modification at
level 4, an updated utility function is generated that is a
node at level 0. If the procedure fails to give trade-off
coefficients reproducing  the  decision-maker’s
preference, the search tree expands below nodes at this
level. If not, no further node expansion occurs in this
tree.

The modification procedure for utility functions is im-
plemented, and has the configuration shown in Fig. 4.
It is supported by an intelligent backtracking
mechanism. The procedure is composed of hypothesis
selection modules for each level and a control module
for them. Each hypothesis selection module selects a

hypothesis at the corresponding level from candidates
for modification that are screened at upper levels. The
control module controls the flow of procedural steps. It
judges whether a corrective action is successful or not.
If an action is judged unsuccessful, the module
backtracks to an appropriate level and selects another
hypothesis on the basis of the predicted cause of the
failure.

2.3 Use of Heuristics

Heuristics are employed to enhance the efficiency of
the search for trade-off coefficients. These search
heuristics are not domain-specific knowledge but do-
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Fig. 6 Modification requirements for utility function values.

main-independent problem-solving knowledge, and
help to guide the interactive flow for model identifica-
tion. Two important steps guide a user in the
knowledge acquisition process:

1. How to start the corrective action (support the
process of initializing focus control for the modification
process); and

2. What to do next if the corrective action fails (sup-

port the backtracking process caused by the modifica-
tion failure).
A key to step 1 is the use of selection heuristics for boun-
ding target objects to be modified, in order to structure
the problem-solving process and suppress expansion of
the search space. An efficient process for utility model
identification is derived by the use of heuristics. Similar-
ly, a key to step 2 is the use of control heuristics that
realize an intelligent trial-and-error process in
backtracking. This is particularily helpful in cases
where modification failures are frequent. In the early
phase of knowledge acquisition, naturally, step 1 is
more important than step 2, as it guides the user in the
interaction for knowledge acquisition.

2.3.1 Heuristics for Bounding Target Objects

For utility model identification, selection heuristics
are available at each level. Examples are as follows:

1. Level 1: choice of a target sub-space.

A target sub-space is determined according to the ma-
jority decision principle, once the overall trade-off
coefficient space has been divided into sub-spaces by the
inequality planes. The primary and secondary rules at
this level are as follows:

-Select the sub-space that satisfies the most ine-
qualities.

-Select the sub-space with the most values available.

2. Level 2: choice of a target alternative plan.

Most alternative plans are assumed to have
preference relations with more than one other plan.

This suggests the possibility that modification of the
overall performance of a plan is inconsistently re-
quested by different plans. It is therefore necessary to
select a target plan to be modified according to the im-
portance of its preference relations with other plans.

Figure 5 shows the results of classified requests for
modification of the overall performance U of each alter-
native plan. Here, alternative plans are classified into
three types: free, fixed, and conflicting. The free type
represents plans for which the direction and quantity of
the modification are both uniquely determined. The
fixed type includes plans for which the modification
direction is uniquely fixed, while the conflicting type in-
cludes plans for which a contradictory modification
direction is requested.

Furthermore, combinations of alternative plans that
fail to reproduce the target preference order are
classified into categories by using a pair of the types.
For each category, selection rules are used to specify a
target alternative plan to be modified in the course of
knowledge acquisition. Six categories are important
from the viewpoint of model modification:

-{free, free)
-{free, fixed)
-{free, conflict)
-(fixed, fixed)
-{fixed, conflict)
-{conflict, conflict)

Selection rules for each category are based on the

heuristic that a plan with more degrees of freedom is

preferred. The following are two examples of rules:
-Category {free, fixed): Select a free type of plan.
This results in less influence on the other plans.
-Category <fixed, fixed): Select a plan with less
possibility of disturbing the preference orders
already established.

As an example, let us take the case in which {x, y) is not
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Fig. 7 Examples of utility function and trade-off coefficient.

reproducible and <{x, p) and {y, g are both reproduci-
ble. Increasing the overall performance of plan x is bet-
ter than decreasing that of plan y, because the former
has a higher possibility of preserving the preference
order already reproduced.

3. Level 3: choice of target attribute

Level 3 of a modification tree handles the selection of
a target attribute to be modified, using selection
heuristics, which also concern the degree of freedom in
the modification process. Once the modification direc-
tion has been fixed for the overall performance of an
alternative plan, the same direction is assigned to a com-
mon policy for modifying the utility functions of the
target attributes of the plan.

An example is shown in Fig. 6. Here, several regions
are defined according to the range of the attribute value
and the fixed modification direction. Then, regions of
the attribute value are classified into three types as in
the level-2 description. The order of selection priority is
free, fixed, and conflicting, and a target attribute to be
modified is chosen for each alternative plan. In cases
where more than one attribute belongs to the class with
the highest priority, the following detailed criteria are
applied:

If there is more than one attribute of the free
type, select the target attribute of the target plan to be
modified according to the number of attribute values in
the range of the focused attribute. This selection results
in wider coverage for modification.

If there is more than one attribute of the fixed
type, select the target attribute according to the
likelihood of maintaining the preference order already
reproduced in the course of knowledge acquisition.

4. Level 4: choice of amount to be modified

The amount of the attribute value to be modified is
specified on the basis of the current value of the at-
tribute and the direction of modification. The
preference U(x)> U(y) is realized for a pair of alter-
native plans {x, y> that include target objects to be
modified. Various different values may be requested for
the modification quantity, since the value of an at-
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Fig. 8 Example of a modification process.

A =

tribute is related to more than one alternative plan. If
more than one value is requested, the modification re-
quest with the greatest absolute value is chosen. After
the value of each attribute has been fixed, utility func-
tions are re-defined over the necessary range of at-
tributes by fitting.

1 <g,b><j,d> (i, >
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2.3.2 Heuristics for Controlling Identification

A feasible region for all inequalities, which is the
target sub-space, may not be found after modification
of the utility functions and redefinition of inequalities.
In this event it is necessary to backtrack and evaluate
the effect of modification and reselection of the
hypothesis.

The process of backtracking is guided by the use of
control heuristics, which outline the step to which a
process is backtracked and the hypothesis that is
selected after the current selection failure. The follow-
ing are examples:

1. Where to backtrack

(1) If the failure occurs just after the modification
of a utility function at level 4, and no sub-space can be
found that satisfies all inequalities, and the number of
infeasible preference relations is reduced by the
modification, then return to level 1 for a newly
generated trade-off coefficient sub-space.

(2) Ifitis just after the modification of a utility func-
tion at level 4, and the gradient of the function has
become opposite to that of the previous one, then
return to level 3.

(3) Ifitis just after the selection of a target attribute
at level 3, and all selected attributes are of conflicting
type, then return to level 2.

2. What to select next after a failure

(4) If the process returns to step 3 after application
of rule (2), and other attributes of free type are found
there, then add them to the selected attributes.

(5) 1If step 2 has just been returned to after applica-
tion of rule (3), and the other plan that makes a pair
with the just-failed plan is found to be of free type, then
select the plan as a target plan for the next trial.

3. Implementation and Evaluation

3.1 Application of Method

A prototype program has been implemented on the
basis of the proposed method and experimentally ap-
plied to a knowledge acquisition problem extracted
from actual knowledge base handling. The knowledge
studied concerns the activity sequence of plant construc-

tion scheduling. Skeletal rules are extracted through in-
terviews with plant construction engineers. One of them
is as follows:

“‘If pipes are initially installed in a construction sec-
tion, the sequence of installation activities simultaneous-
ly depends on the characteristics of the sub-system to
which the pipe belongs, its diameter, and the method by
which it is attached to components.”’

This rule is not applicable to general situations for
handling pipes of different sub-systems, diameters, and
connection methods, since it does not mention the
preference order of pipe installation activities for com-
bination of these factors. The rule should be refined so
as to cover the detailed relationships among factors.
The knowledge acquisition problem is to refine the
skeletal rule so as to provide sufficient coverage of the
combination of attributes in the preference decision-
making.

First, the hypothesis of additive independence was
confirmed to be acceptable in this case, and the initial
guess was extracted for a utility function for each at-
tribute, as shown in Fig. 7. Initial utility values are de-
fined as their roughly estimated values, since the at-
tribute values are discrete, not continuous. The upper
and lower bounds for attribute values are engineers’ sub-
jective data obtained through interviews. Twelve cases
were collected from previous scheduling activities by ex-
perts and used as basic data for determining the order
of preference of pipe installation activities. The
knowledge representation model with a set of utility
functions is identified by the proposed method accord-
ing to the basic data.

Figure 8 shows an example of a modification process
of a utility function. At level 4 in the figure, the
modification trials finally fail because of violation of
constraints on the upper and lower bounds. Later trials
are conducted with the use of 32 heuristic rules. This
suggests that a proper model is not identified in sub-
spaces S1 and S2. Trade-off coefficients derived from
sub-space S3 cannot reproduce preference orders for
the activity pairs i, ¢, {j, d>, <b, e>, and {j, D. A
satisfactory model that satisfactorily reproduces ex-
perts’ judgment is identified in sub-space S3 at the stage
when i, j, and b are chosen for target activities to be
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modified, U2 is chosen for i/ and j, and Ul for b as at-
tributes to be modified.

The prototype program is written in Common LISP.
The final trade-off coefficients are also shown in Fig. 7.
The computer use time for this case is about 30 minutes
on a workstation with a speed of about 1 MIPS. This
result demonstrates that model identification can be
completed with a reasonably small computing effort. A
model identified as trade-off coefficients by the above-
mentioned procedure is transformed into knowledge in
the rule form shown in Fig. 9. The predicate ‘‘eval-task-
pref”’ in the fourth conditional clause is related to a
meta-rule that judges the preference between items in
arguments. Being invoked from the rule, the meta-rule
calls the pre-defined function that compares the priority
of activities specified, and determines their order of
preference.

A set of a rule, meta-rule, and procedural function
completes the general knowledge representation scheme
available for various kinds of pipe installation activities
in plant construction scheduling. Once this triplet has
been given to a knowledge base, the system can be easily
extended to accept tasks of a new type and to automate
the ordering of activities in a schedule chart.

This result suggests that more refined judgmental
knowledge is semi-automatically acquired from
previous cases judged by an expert on the basis of the
proposed method, if the assumption on the additive in-
dependence of attributes is valid. It is clear in the at-
tributes related to activities of pipe installation that the
assumption is acceptable, because no attribute value
has any influence on other attribute values. The propos-
ed method offers a general means for representation of
judgmental knowledge to establish the preference order
of objects from multi-attribute values.

If an attribute value depends on other attribute
values, the assumption concerning attributes cannot be
approved. Even then, however, the proposed method is
applicable in principle, though choice of a target at-
tribute is complicated at level 4 of the model adjust-
ment. This modification step requires careful treatment
in order to fix some attribute values as constant and to
reduce the number of target attributes until they obey
the condition mentioned in the assumption of additive
independence.

One of the key issues in building better knowledge ac-
quisition tools is visualization of the acquisition proc-
ess. A more elaborate user interface should be provided
to display the sub-space in the trade-off coefficient
space, and to plot utility functions. The user interface
makes it easier to grasp the whole process of model iden-
tification and to acquire new heuristics.

3.2 Construction Scheduling System with a
Knowledge Acquisition Function

Two kinds of difficulties are anticipated in the process
of putting the proposed method to practical use on a
large scale:

T. MiTsuTA, Y. KoBAYASHI and H. NONAKA

1. Massive computer efforts due to the size of real
world problems such as the number of attributes and
the number of previous cases, and

2. Massive human efforts for experts and users to
review cases and identify utility functions.

In the domain of construction scheduling, from
which an example is taken, practical schedules are essen-
tially planned on a trial-and-error basis. Unlike in other
engineering  scheduling domains, standardized
guidelines and reference cases have not yet been
established or computerized in this domain. Scheduling
tasks including activity sequence choice are processed
by a human expert with the support of highly interac-
tive scheduling systems.

Unit sections for construction scheduling in in-
dustrial plants include hundreds of objects to be install-
ed, such as components and pipes. Each object has
several major attributes, though the number depends
on the type of object. Scheduling experts seem to pay
more attention to two or three attributes at a high
abstract level than to the objects themselves when mak-
ing decisions on the activity sequence. In view of the cur-
rent style of problem-solving by human experts, it is sug-
gested that expert systems for construction scheduling
should be based on the man-machine interaction proc-
ess.

Most domain knowledge to be extracted is relatively
simple and is written as rules with a limited number of
conditional clauses. In the course of putting the propos-
ed method to practical use, the first of the above-men-
tioned difficulties is less serious than the second and,
therefore, countermeasures to cope with the second are
more necessary in light of this.

This direction offers a promising approach. Thanks
to advanced computer graphics technology, simulation
systems have been computerized and utilized as prac-
tical design tools in the field of plant engineering [16].
Such systems are also promising as tools for visualizing
the time-dependent process of plant construction,
which contributes to quicker understanding of the state
of construction in a target section and to a more de-
tailed evaluation of the timing of transportation and in-
stallation of components, pipes, and so on.

As a framework for integrating this knowledge ac-
quisition method with an overall construction schedul-
ing system, simulation systems play a key role in the
real-time collection of cases showing experts’
preferences. It is not easy in this domain for a
knowledge engineer to extract empirical knowledge
with high availability. Expert systems with incomplete
knowledge often draw a preference conclusion incom-
patible with an actual expert’s preference. It is natural
for this knowledge representation model to accom-
modate a variety of preference cases and to emulate
human expert judgment in preference decision-making
through structured modification of utility functions.

The knowledge acquisition and refinement process
can be executed on a workstation as a background job
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to the main task of specifying the activity sequence by
man-machine interaction with a simulation tool. The in-
teractive scheduling process with a simulation tool leads
to integration of the knowledge-based problem-solving
and knowledge acquisition, which is one route to
alleviating the knowledge acquisition bottleneck.

4. Concluding Remarks

A method for acquiring judgmental knowledge from
experts on the order of preference of alternative plans
has been developed on the basis of the knowledge
representation model of the multi-attribute utility
model, which is frequently applied to multi-criteria deci-
sion-making. In this method, knowledge is semi-
automatically extracted from previous preference cases
through model identification, if the attributes to be
referred to are known but detailed and combined rela-
tionships between attributes are not available.

Model identification is completed in two steps: Com-
parison of the preferences of alternative plans
calculated by a human expert and by the model, and
modification of the model with feedback from the com-
parison result. In the latter step, the model is modified
by two kinds of modules, namely, the hypothesis selec-
tion modules, to limit the target objects to four levels,
and a control module for overall procedural control.

Heuristics for hypothesis selection are useful in realiz-
ing an efficient modification process. From the results
of experimental application to an activity sequence
problem in construction scheduling, the system suc-
cessfully identified knowledge that reproduced the se-
quence determined by an expert planner. This suggests
that the proposed method is applicable to the extraction
of knowledge that determines the order of preference of
objects by balancing several attribute values, though
this kind of knowledge is not easily acquired in the
framework of conventional rule refinement.

Interactive computation efforts for utility model iden-
tification were reduced by integrating the proposed
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method with a scheduling support system. The propos-
ed method is a promising way of overcoming the
knowledge acquisition bottleneck in building and using
practical expert systems in engineering domains. Future
studies should be directed to the handling of preference
cases without additive independence and preference
cases with multiple experts.
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