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Linearization of Zipfian Distribution
for Chinese Characters

KM TenG Lua*

In this paper, we report our results of least-square fittings to 4 sets of data derived from Chinese characters,
namely, character strokes, radicals, characters and words. We have found that fitting using a power series, ie f*
versus R’ (f'is the frequency of occurrence, R the rank and ¢ is a constant) is better than the use of a logarithm
series derived from the original simple Zipf’s law, ie fR =constant, or log f=c-log R. The dependency of f ver-
sus R is found to be of order 5 as we have found that /=0.2. We have also discovered a secondary dependency
of fon R of lower order. This secondary dependency can be modeled using a cosine function.

1. Introduction

Now it has been established that the Zipfian [1]
distribution plays an important role in the modeling of
human activities, particularly of the variables studied in
bibliometrics and scientometrics. These include the ap-
pearance of characters, words, productivity of resear-
chers etc [2-5]. It has been established by Zipf in his
pioneer work done in 1948 [1] that the frequency of oc-
currence (f) of a symbol (a word in his original study) is
inversely proportional to its rank (R), ie

f=72— 1)

However, Zipf’s formulation which was derived from
his restricted observations based on the occurrence of
English words is at best only a very rough estimation.
Deviations has been reported widely. Likewise, we have
found significant deviations when we applied the for-
mula to the occurrence of Chinese characters and
words, the world’s only ideographical language [5).

In this paper, our objective is to search for a general
empirical formula that will accurately describe the
behavior of Zipfian distributions for Chinese language.
Such a formula will have useful applications in data
base design, information storage and retrieval systems
under the Chinese language environment.

Four sets of data from Chinese ideographic
characters are used in the present study: (i) occurrence
of character strokes (32), (ii) occurrence of character
radicals (623) (iii) occurrence of characters (5584) and
(iv) occurrence of words (46,520). The numbers in the
parentheses indicate the number of unique symbols in
the set. This is to say, we have 32 unique character
strokes, 623 radical components, 5584 Chinese
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characters and 46,520 words in the current exercise.

It has to be noted that Chinese words are formed by
characters; and characters are formed by radical com-
ponents and finally, radicals are formed by character
strokes. The selection of strokes, radicals, characters
and words in our study is to provide a coherent test set
for the least-square fittings from which the empirical
formulae are derived. Some inner regularities of the
Zipfian law might thus be discovered.

Four mathematical models are considered in the
least-squares fittings, namely (i) extended Zipf’s law in
hyperbola form (f versus 1/R), (ii) extended Zipf’s law
in logarithm form (log f versus log R) (iii) polynomial
series of f' versus R’ (t is a constant) and (iv)
Mandelbrot’s model, ie f=a/(R+C)".

Our conclusion is that the third model provides the
best result in terms of simplicity and accuracy. It has
the least number of parameters. The value of ¢ is found
to be very close to 0.2. We thus conclude that the
dependency of f on R is of order 5.

We have also discovered that there is a secondary
dependency of fon R at even higher orders. We can ob-
tain a numerical fitting to within the limit of experimen-
tal errors by fitting the observed data to a high order
polynomial of order 10 to 20. But this results in em-
pirical formulae with large number of parameters
whose significance are hard to interpret.

An alternative is to

(1) fit the observed data to a polynomial of lower
order (order 2-3);

(2) compute the residual errors by subtracting the
calculated frequencies of occurrence with the observed
frequencies of occurrence;

A=residual error
=calculated frequency — observed frequency

(3) model the residual errors using a cosine function
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of the form:

i=2

j=m
4 =cos( > b,x’) exp >, aix’ ?)
Jj=0 i=0

where x=log R or x=R’, depends on the formula
chosen. ¢ is a constant.

The current exercise has two major drawbacks. First-
ly, we are unable to obtain a formula that fits the entire
range of distribution. Often, the first few (or up to 10)
pairs of data are abandoned as they do not seem to fall
onto the same line. Second, the treatment of the
residual errors using a cosine function has no
theoretical support.

The only merit of this paper is the discovery of high
order dependency between f and R. We are still far
from being able to work out a simple enough formula
for the Zipfian distribution. We are even more remoted
from being able to provide a satisfactory theoretical ex-
planation for the observed distribution.

2. Sources of Data

The occurrence of character strokes and radicals are
obtained from A Dictionary of Chinese Character Infor-
mation [6]. The data on the occurrence of character
strokes are obtained from author’s own work [7]. The
occurrence of characters and words are derived from a
Electronic Word Frequency Dictionary [8].

From [6], there are actually two sets of data for
character strokes and radicals, ie a dynamic and a static
distribution. For dynamic distribution, the frequency
of usage of a symbol is considered and for the latter, the
occurrence is counted by the number of times it appears
in a list, with regardless of its frequency of usage. For
example, kuo [O] occurs 2,532,281 (5.6368%) times in
a text sample of 44.9123 million characters when the fre-
quency of usage is considered. But it appears only 1321
(5.94777%) times when we consider only its occurrence
in a character list of totally 23,2102 radical components
(from 7785 unique characters).

Likewise, the distribution of the character strokes are
derived from the analysis of the first 1000 most frequent-
ly used characters. A total of 8037 strokes were ob-
tained by decomposing the characters [7]. The frequen-
cies of occurrence of the characters in a text sample are
not considered. Therefore each character is only
counted once.

Our selection is based on the fact that the usage of a
symbol and its appearance as a component of a symbol
list (ie radicals in a character list) are two different en-
tities. The first is a combined function of the second
and the usage function. Thus our selection is concur-
rent with our desire to know how frequent a symbol oc-
currs when it is used to produce another set of symbol.
This assumption has important bearing in human
psychology.

When we read a text, we focus our attention on the
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words that make up a sentence. We seldom pay atten-
tion to the individual characters forming a word or the
character strokes forming a character.

Psychologically, we normally focus our attention on
one level. We switch our attention to a lower layer only
when we encounter some difficulty in an upper layer.
For example, when we read, we only attempt to guess
the meaning of a character from its constituent radicals
and strokes if we cannot recognise the character. Other-
wise, the character will be recognised as a complete sym-
bol without our further attention to its detailed struc-
ture.

The frequency-rank curves for strokes, radicals,
characters and words are shown in Fig. 1-4. Note that f
are in fractions.

3. Conformation to Zipf’s Law

Our item sizes vary from 32 to 46,520. In one of our
earlier work [7], we have found that the conformation
to the Zipf’s law depends on a ratio r which can be writ-
ten as:

_ number of possible symbols
number of unique symbols

logf

logR

Fig. 1 Occurrence of Stroke.
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Fig. 2 Occurrence of Radical.
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Fig. 4 Occurrence of Word.

We have found that the larger the value of r, the
more the distribution moves closer to equation (1). For
the present study, the values of 7 are 1 for all but the last
category, ie occurrence of words. For example, there
are 32 unique strokes in Chinese characters. In our sam-
ple, all the 32 strokes appear. Likewise, there are 623
unique radical components and 5584 unique characters.
All radical components and characters occur in the
samples. But this is not the case for words. In a word
base derived from news items, Beijing Information
Technology Institute collected 140,000 unique word
items (words and phrasal words) [9]. Thus r=3.0 or
greater. Thus the Zipfian curve of words behave
differently from the other three because of the larger r.
The first three distributions have sharp cutoffs at the
ends whereas the cut-off for the word distribution curve
is much slower.

We will therefore like to infer that only the first three
curves demonstrate a complete Zipfian distribution. If
we are able to compile our frequency data from a list of
more words, say 200,000 words, we properly will also
observe a complete Zipfian curve. [See Figs. 1-4 for
Zipfian distribution]. This observation is also confirm-
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ed by the fact that the parameters derived from word
distribution differ greatly from those obtained from
strokes, radicals and characters (See Section 5).

4. Empirical Formulations

As we know that simple Zipf’s law of Rf=constant
does not hold, we started from more general formula-
tions which were extensions of the original Zipf’s law,
equation (1) or,

log f=a~log R 3)
where a=log c. Equation [3] is being extended to:
J= i}: aR™* @
and
log f =:Z: ai(log R) &)

where a; and k are constants.

However, careful observation also shows the follow-
ing characteristics of the Zipfian distribution of Chinese
linguistic symbols, ie:

(1) There exist some types of symmetry between f
and R. The distribution is symmetrical with respect to
some axis starting from point (a, b) and inclined to the
Xx-axis at angle 6.

(2) The symmetric property of (1) breaks down
when R is small. This is due to fact that R must be an in-
teger while f is a real number.

Observations and experimenting again show that the
distributions can be linearized to straight lines of the
form (See [12], chapter XIII for description on lineariza-
tion):

f'=bo+ bR’ (6)

where by, b, and ¢ are constants.

Equations (4)-(6) are the three mathematical models
used in this study.

Only equation (6) has the required property of sym-
metry that agrees with the previously stated observa-
tions. It is a straight line with ¢ +1 gradient when we
plot f* against —bR".

Neither equation (4) nor (5) provide the required sym-
metry property for the distributions. We finally selected
(5) but abandoned (4) due to the following reasons:

(1) Least-squares fitting to equation (4) yield results
that over emphasis low R data due to the nature of 1/R
function. This is undesirable because it is the occur-
rence of high R symbols are more important in practice.
We normally wish to predict occurrence of high R sym-
bols from data of low R symbols.

(2) Equation (3) has a relatively higher degree of
symmetry due to the property of log fand log R (in com-
parison to that of fand 1/R).

Finally, we performed least-square fittings using equa-
tions (5) and (6). Equation (6) is further extended to a
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polynomial of power series of:
f'’=> biR" Q)
i=0

In selecting R value when several symbols have same
frequency of occurrence, we followed the approach of
Tangue and Nicholls [13]. Thus the maximum value of
R is selected (see also [14]).

5. Results of Least-Square Fittings

5.1 Logarithm Polynomial

It is important to know the magnitude of experimen-
tal errors for our 4 data sets [11, 12]. This can be ob-
tained by fitting the observed data with equation (5)
from order 1 to 15 [See Fig. 5-8]. The first order fitting
with equation (5) always results in the largest error. It
varies from 26% (word) to almost 60% (stroke). This
again confirms our earlier conclusion (in [5]) that the
simple Zipf’s law does not hold for Chinese characters.
However, the magnitude of error of fitting drops ex-
ponentially as the order increases. It levels off at two oc-
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Table 1 First and Second Minimal (Logarithm Fitting).

First minimal Second minimal
Type No of data

order error order error

Stroke 4 28.0% 9 13.2% 32

Radical 5 9.4% 7 2.8% 135

Character 4 3.7% 7 1.8% 222

Word 3 3.2% 8 1.4% 2416

casions. The first occurs at relatively low orders (from 3
to 5) but the later at much higher orders (from 7 to 9).
We call them the first and second minimal errors (See
Table 1).

We have to note that the first data pair for stroke
distribution and the first 10 data pairs for word distribu-
tion are excluded in the least-square fitting as they do
not seem to fall onto the same smooth curves. The
numbers of data pairs involved in the least-square
fittings are also listed in Table 1. These numbers are
different from those indicated in parathesis in section 1
as we only use one data point with the highest rank
when there are more than one data point having equal
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frequency of occurrence.
The error of fitting is computed as,

error in f=fmeasure —fcompuled (8)
and
. errorinf
percentage error in f =7 ©)

It is also observed that the error of fitting drops as the
maximum rank increases [See Fig. 17]. This can be due
to the fact that quantization error of R has maximum
effect when R is small.

5.2 Linearization

Linearization (see chapter XIII of [12]) can be
achieved by observing the value of b, during the fitting.
This is the value of # when b,=0 or to the nearest of it.

The ¢ values and the errors are given in Table 2.

It is again observed that error of fitting drops as R in-
creases. But comparing to the logarithm fitting, errors
from power polynomials are almost doubled.

Another significant result obtained from this fitting is
that t=0.1973 or close to 0.2 in the first three types
where r=1. But t=0.08 when r>1. We may therefore
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Fig. 9 Linearization (Stroke).
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Fig. 10 Linearization (Radical).
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Table 2 Linearization Factors and Errors.

Type t by b, Error of fitting
Stroke 0.197335 1.2708 —0.50396 20.9%
Radical 0.199088 0.6350 —0.13196 7.2%
Character  0.194546 0.4283 —0.05980 4.8%
Word 0.080245 1.0108 —0.29729 4.2%

Table 3 Comparing Logarithm and Power Fitting.

Type Error of power fitting  Order of logarithm fitting
Stroke 20.9%
Radical 7.2%
Character 4.8%
Word 4.2%
Table 4 Fitting to Mandelbrot’s Model.

Type a b C Error of fitting
Stroke 1.1634x 105  5.2349 19 30.4%
Radical 65.403 2.0023 60 17.2%
Character 4.8354x 10  9.1280 3600 16.6%
Word 1.9991 1.3463 151 13.7%
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conclude that the dependency between f and R is of
order 5. But we cannot derive dependency from the
word distribution as it is considered as an incomplete
Zipfian distribution.

We consider equation (6) a more appropriate
representation for the Zipfian distribution. This is
because for the same error of fitting, a much smaller set
of parameters are involved.

It is seen that only for the last type, a logarithm
fitting can perform as well as a power fitting.

One disadvantage of the power fitting is that it does
not provide the smallest errors when we extend the
fitting to higher orders. May be this is because the sec-
ondary dependency is of a lower order.

5.3 Mandelbrot’s Model

We have noted that Mandelbrot [15] also provided a

modified Zipf’s equation with three parameters, ie
a

= 10

Y (R+C) 19

where a, b and C are constants. C must not be a

negative value as it will cause problem during numercial

fittings. To compare this model with our linearization
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function, ie equation [6], we perform least-squares
fittings on the 4 data sets with various values of C. The
value C is selected when equation (10) yields the
minimum error of fitting (See Table 4).

The Mandelbrot’s model does not provide better
fitting than our equation (6) although the same number
of parameters are used.

6. Residual Errors

Normally, by using equation (3) to fit the data to high
order, ie N=15 and above, we are able to obtain an
equation that fits the observed data to within their ex-
perimental fluctuations. But such an equation suffers
from the disadvantage of having too many parameters.
Moreover, the series obtained is not converging.

Thus we chose to fit the observed data to a lower
order polynomial and do the final correction by treating
their residual errors.

The residual errors are modeled by equation (2). The
final representation of a Zipfian distribution is thus a
sum of equation (5) or equation (6) and equation (2).
Using this approach, although we are able to fit the
distribution to within its limits of experimental errors,
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we are still unable to explain its theoretical significance.

The fitting of the this equation involves two steps:

(1) obtain the envelope function, ie exp (@ +ax
+...)

(2) obtain the period function, ie bo+bx+. . .

The result of fitting is shown in Fig. 16 for the
residual errors of words. It is computed that after this
correction, the average error of fitting is reduced to
0.000596 or 1.6%. This last figure is comparable to a
minimum value of 1.4% obtained from the logarithm
fitting.

The residual error curves for other types are shown in
Figs. 13 to 15. It is seen that the errors are more random-
ly distributed than that is shown for words in Fig. 16.
However, the cosine nature of the curve can still be
seen.

We have also treated the residual errors which arise
from logarithm fitting. Same observations are made
and our conclusions that the residual error curves are of
the cosine functions remain.

7. Conclusion

In this paper, we report results of least-square fittings
to 4 sets of data which are derived from Chinese
characters, namely, character strokes, radicals,
characters and words. We have found that fitting using
a power series, ie f’ versus R’ (fis the frequency of oc-
currence, R the rank and ¢ is a constant) is better than
the use of a logarithm series derived from the original
simple Zipf’s law, ie fR=constant, or log f=c-log R.
The dependency of f versus R is found to be of order 5
as we have found that 7=0.2. We have also discovered a
secondary dependency of f on R of lower order. This
secondary dependency can be modeled using a cosine
function. Our results also show that the error of obser-
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vation reduces exponentially as the maximum rank of
the data increases.

The current exercise has two major drawbacks. First-
ly, we are unable to obtain a formula that fits the entire
range of distribution. Often, the first few (or up to 10)
pairs of data are abandoned as they do not seem to fall
onto the same line. Second, the treatment of the
residual errors using a cosine function has no
theoretical support.

The only merit of this paper is the discovery of high
order dependency between f and R. We are still far
from be able to work out simple enough formula for
the Zipfian distribution. We are even more remoted
from being able to provide a satisfactory theoretical ex-
planation for the observed distribution.
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