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Representation of Descriptive Name
and the Resolution Method with
a Semantic Network Structure

Fumiko Koupa* and HIDEHIKO TANAKA*

We propose a new name-resolution method suitable for descriptive names, for use in novel name-manage-
ment systems.

In conventional systems, some naming scheme uses attributes on administration as an identifier of an object.
However, there is no naming system where proper attributes of each object are used as identifiers. This kind of
naming scheme is also important to users. Therefore, we adopt the definition of a descriptive name from
1S7498-3, and consider such a naming scheme as indicating proper attributes of a computer resource.

Our purpose is to review how to represent proper attributes in descriptive names and to construct a new resolu-
tion mechanism suitable for them. We have paid attention to denotation classes of attributes, degree of generali-
ty in an attribute sort, relation among attributes within an object or between objects and ellipsis or order of at-
tributes in a description. We have analyzed their interrelations and clarified a rule among attributes: they could
be ordered partially based on a degree of generality level in each attribute sort.

Considering the resemblance between the partial ordering among attributes and a semantic network, called
KL-ONE, we constructed a name resolution algorithm for the descriptions of proper attributes by using the
structure of KL-ONE. In this algorithm, we have introduced some new concepts, for treating various kinds of at-
tributes.

This enables us to treat descriptive names of proper attributes with various forms as a key element of com-

puter systems.

1. Introduction

We propose a new name-resolution method for
descriptive names which denote degree of meanings and
ambiguity of descriptions, and also work as identifiers.
We do this by discussing their representational forms,
analyzing their properties and by proving theorems.
Our proposed resolution method is quite different from
ordinary ones because of considering the meanings and
ambiguity of names in it.

Conventional naming systems use administration-
dependent names for computer resources. These names
are reflected on the logical or physical structures and
have hierarchy forms. For example, Clearinghouse [9]
has a three-layered structure which is composed of a se-
quence of organization names, location and identifier.
Grapevine [1] has a two layered structure. Hierarchy
names have a fixed order of their elements and every ele-
ment must be included. Moreover, we have to know
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their element values correctly.

Sollins [13] showed categories for names from the
consideration of names in ordinary human life and pro-
posed a name management system for distributed proc-
essings. Attention is paid to the five aspects for the com-
parison criteria; they are ‘‘assignment”’, “‘resolution’’,
‘“‘usage’’, ‘‘ambiguity or uniqueness’’ and ‘‘degree of
meanings.”’

According to the criteria which she showed, a conven-
tional distinct name is assigned concretely, and it can-
not be abbreviated. So, it is easy to guarantee uni-
queness. Resolution of the name is comparatively easy
because it uses tree-structured directories. However,
there is a restriction when using such names; if we do
not know it correctly, we cannot access the resource
which is denoted by the name.

This problem occurs because of the fact that naming
is regarded as a tool only for administration and less
consideration is paid to users’ standpoint. Another way
is necessary to distinguish objects. A solution to this
problem is to consider both ambiguity and degree of
meanings in the notion of names. If we could use such
description of an object as an identifier, then we would
refer to that object even when we did not know the
distinct name correctly.
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A descriptive name is known as a name which
distinguishes objects by describing their functional
properties. Since description is not restricted to a fixed
form, descriptive names are able to show various levels
of descriptions, such as levels of ambiguity or mean-
ings. Therefore, it is important to be able to treat
descriptive names in naming schemes. As the basis of
our consideration, we adopt the definition of a descrip-
tive name from IS 7498 part 3 (Naming and Addressing),
and continue our discussion.

In the next section, the requirements of descriptive
names and the policy of name resolution for descriptive
names are described. Section 3 discusses information
bases for descriptive names. Section 4 analyzes name
resolution for descriptive names theoretically and in-
troduces a new algorithm for it. Examination and
discussion are in section 5. Section 6 concludes this
paper.

2, Representational Requirements and the Manage-
ment of Descriptive Names

2.1 Consideration for Representation of Descriptive
Names

The definition of IS 7498 says, ‘A name that identifies
a set of one or more objects by means of a set of asser-
tions concerning the properties of the objects of the
set.” According to the definition of IS 7498-3, a descrip-
tive name is a name which identifies objects by describ-
ing their properties or attributes. This definition defines
no concrete representation nor the scope of properties
of objects. So, we will consider the representation of
descriptive names under the following conditions
within the area of computer resources.

From the standpoint of using computer resources,
the following information is important because it ex-
plains attributes of resources: 1) the functionality or
roles of the resources and 2) feasibility of accessing
resources, that is, to be able to use it permanently or
temporarily.

An example of an identifier using attributes is X.500
of CCITT [8]. It treats attributes necessary for manag-
ing resources, such as those of a nation or an organiza-
tion. The property of an object itself is out of the con-
sideration in X.500. On the other hand, our proposal
treats properties which an object possesses.

There are many ways to represent functionality of
computer resources. Let us consider how they are de-
scribed.

In the description of processing functionality, there
are cases that describe attributes in general and without
mentioning details, or the cases which describe specifica-
tions according to the system structure. The former
description can be applied widely even in a
heterogeneous environment and can be used in com-
mon, but the latter cannot. From this fact, it is
necessary to consider in the descriptions different

degrees of generality. The notion to indicate a class is
called attribute type, and each value in the class and
each specification of a generality level is called an at-
tribute value. Let us consider a set of files, as an exam-
ple. If we need to look at the active functional file, we
will write ‘filetype is active.” Otherwise if we need a set
of file commands, then we will write ‘filetype is a com-
mand.’ Furthermore if we want to know only a set of
built-in commands, then we will write ‘filetype is a
built-in command.’ In these cases, the attribute type is
filetype, and attribute values are active, command and
built-in command, respectively. Attribute values show
different levels of generality.

Candidates of attribute types for users or files are ac-
cess right, version, code, functionality, etc. Their at-
tribute values are defined according to their generality
degrees. Profile [11] calls an attribute type a tag and
uses name, address, phone, mail, login, home and so
on.

Consideration of temporality is also necessary. Some
properties of an object always hold and some do not.

In case of having dependencies among properties,
they are to be included in the description of properties.
The relations are observed as both intrarelation among
attributes for an object and interrelation among at-
tributes for several objects. An example of an interrela-
tion is that of a version of a compiler, and feasible files,
when we perform compiling. Otherwise, if two proper-
ties have no dependency to each other, they hold
separately in an object. We call this an ‘‘and’’ relation,
in the meaning that both properties hold in the same ob-
ject.

On the other hand, it is important to offer some way
to represent flexibility of description, namely, to select
necessary attributes for users or to leave out some con-
stituting elements which are not needed by them. This is
because it is necessary to provide users with a way to
describe the objects which they really need to access or
refer.

2.2 A Descriptive Name and its Indicated Objects

For a descriptive name to work as an identifier, it
must be clarified what objects are indicated in the
representation of the descriptive name. When we use a
descriptive name, we think principally of its meanings
and we don’t necessarily aim at unique identification.
Therefore we will take a position that if a descriptive
name refers to several objects, then we adopt all these
objects as the resolution.

There is flexibility of representation of descriptive
names. Hence, we focus on the problems how the in-
dicated objects change according to the generality levels
of description, or under what conditions the different
descriptions, such as ellipsis or different order of
descriptive elements, denote the same objects.
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2.3 Forms for Descriptive Names

The expressional forms of attribute description are
usually presented as a relation between a type and its
value, and represented by {attribute type, operator, at-
tribute value}. For example, Profile uses the combina-
tion of the form ‘tag=value’. X.500 has the form, such
as {C=GB, L=Winslow, O=Graphic services,
CN=Laser Printer}. Yellow-pages service by L. L.
Peterson [10] has the form of ‘{type, operator, value).’
The operator is used not only ‘=’, but also ‘<’ and
‘>’, as for example ‘time>3 msec.” Such expressions
are also possible in X.500 by using the filter parameters.

Our concern is to investigate how to describe the pro-
per attributes for computer objects and how to resolve
them elegantly.

Here, we mainly consider basic forms of descriptive
names. We define these forms as a set of attribute tuples
of type and value with equality, denoting by {attribute
type=attribute value}, and having the description of
the relation between them. If the attribute tuples have
no relation among themselves, that is, they have an
‘‘and’’ relation, then they are put arbitrary and sequen-
tially. The order or ellipsis of elements are arbitrarily
selected. If attribute tuples have a relation of dependen-
cy or inclusion to each other, then their relation is de-
scribed explicitly, using some functions.

The extended forms of descriptive names have
predicate expressions in addition to the basic forms.
These can describe contingent expressions. These forms
are beyond the scope of this paper.

An example of a descriptive name is as follows:
{file_type=command, functional_description=print,
input=data_file, output=print_device, class=user,
capability=access_mode, access_check (class, file),
function (description, input, output), etc.}

One of them is described such as:
{file_type=built_in_command, functional_descrip-
tion=lzrprint, access_check (class:subject, file:object),
function (description:print, input:data_file, out-
put:laprl), etc.}

2.4 Determination of Resolving Method for Descrip-
tive Names

A name-resolution method is a mechanism which
makes a link to an object from a given name. It uses a
management table, which is in generally called a direc-
tory and which works as an information base. We think
that constructing a directory and a name-resolution
method influence each other and it is expected that a
name-resolution depends on strategies how to make the
directory table.

From the consideration of requirements of descrip-
tive names, we have found out that the following condi-
tions are necessary as a directory for resolving descrip-
tive names: the directory must treat both various levels
of generalization degree of attributes, and relations
among descriptive elements; it must recover the
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elements which are omitted; and it must be independent
of descriptive sequence.

Some of the name-resolution methods are referred to
briefly in the following paragraphs, before determining
the design.

A name resolution method for distinguished
(distinct) names usually uses conversion mappings, con-
text mappings or tree-structured directoires. Any of
them maps from a distinguished name to another one.
If necessary, intermediate names are used for the con-
version, and this finally reaches an object. Objects are
found by tracing conversion of names.

For example, i-node in the UNIX operating system
has a mapping table which is composed of a tuple {ad-
dress, identifier}. The context mapping proposed by R.
W. Watson [16] uses levels of identifiers. A level of an
identifier is mapped to the next by using context and
mapping functions. The last level indicates the desired
object.

Comer [3] showed a name-resolution mechanism on
the basis of his model of distributed processing which is
composed of environments and links. Names have
several levels. In the name-resolution, not only names
but also their related environments change. Name con-
version uses the qualified name which comprises a name
and context. The context shows a mapping between
names. A primitive name is reduced by using naming
networks which indicates the relation between contexts.

Attribute-used naming requires interpreting at-
tributes on the way of resolution so that it is insufficient
to convert identifiers as described above. A facility of in-
terpreting attributes is necessary.

For example, X.500 uses as a directory a tree-struc-
tured DIB (Directory Information Base) which is com-
posed of a set of DIT (Directory Information Tree).
DIT comprises a set of nodes, each of which consists of
a tuple of attribute type and attribute values. DIB tree
shows different categories in each node. Name resolu-
tion in X.500 starts from the root of DIB, and checking
the category in each node, goes down the tree.
Distinguished names used for X.500 reflect these tree
structures.

Terry [14] treats structure-free name-management by
separating the activities of choosing names, selecting
storage sites and resolving object names. Names are
resolved through a name resolution-tree. Its algorithm
searches authority attributes, by checking clustering
conditions within contexts. That is, resolving a name is
a matter of binding names within contexts until the
authoritative name servers for the named objects are
discovered.

Profile treats attribute-based naming services. It uses
a database as a mapping facility from attributes to prin-
cipals, which are the basic objects for the architecture.
The database and a suit of interpret functions are used
to resolve the attribute-based names to principals.
Debray [4] discusses a theoretical framework for reason-
ing about naming systems related to Profile.
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These are resolutions for attribute-based naming. In
the case of Terry attributes are regarded as character str-
ings. Therefore it resembles the case of ordinary distinct
name resolution. X.500 tree has a different category at
each node of the tree. As the result of this structure
shows, the resolution of a descriptive name is influenc-
ed by the order of elements. And since the relation be-
tween nodes has different meanings, there is some
difficulty to determine the place to add new elements or
modify these. Furthermore, there is no way to show the
inheritance relation of attributes within a node. Using a
database for the resolution in Profile is free from the
order or ellipsis of elements in descriptive names.
However, it does not show abstraction level of at-
tributes clearly and the relations between descriptive
elements are ambiguous. Therefore it needs functions
to interpret them.

An inheritance relation is observed in a class of at-
tribute descriptions each with the same type. It is con-
structed based on the abstraction levels of attributes.
Since inheritance is important among the set of descrip-
tive names, we consider that the resolution method
should be able to deal with inheritance relation. The
resolution method must have mapping facility as well.
From this consideration, we choose a semantic network
as the resolution method in order to resolve descriptive
names. Our requirements for the semantic network are
to have the same category in all nodes, to be able to
represent inheritance between functions of nodes and
relations between the functions, to have the facility of
tree-structure, and to work as a database.

Semantic networks were first defined by Ross Quillian
in 1968. A semantic network is a graph containing a set
of nodes connected by links and it shows concepts,
properties or relations among them, by corresponding a
node to a concept, and a branch to a link. The higher
one goes up the network, the more the concepts are
generalized. A leaf node indicates an individual con-
cept.

The graph may have the inheritance property among
subsuming concepts. It may be a multiple inheritance.

A semantic network can be used as a classifier from
its structure.

In the early days, semantic networks had disadvan-
tages of representation of both exception and default.
Even today, various approaches are tried for both of
them, such as Shastri [12] and Touretzky {15]. Among
them, KL-ONE [2] [5] has a well-formed conceptual
structure with inheritance and is considered to have no
exception nor default value in the structure.

KL-ONE is divided into two different formalisms:
one for assertion and one for description. The descrip-
tional part of KL-ONE comprises mainly concepts as
nodes, and links among concepts, and provides sub-
sumption and inheritance facilities. The components of
a concept are its subsuming concepts (superConcepts)
and its local internal structure expressed in roles and
structural descriptions, which express the interrelations

among the roles. A role acts like a type and it has its
filler concept to express the role more precisely.

Generic concepts are distinguished from individual
ones. In general, a generic concept is regarded as a class
and an individual concept as an instance, in the sense of
an object-oriented language. A local structure of a con-
cept is inherited via subsuming links, which is called
superClink, from its super concept (superConcept) to
its subconcepts (subConcept). KL-ONE does not allow
cancellation of inherited description. KL-ONE is based
on the idea of structured inheritance networks. We
think that the description part of KL-ONE has well
depicted this structure. Therefore we shall call the part
SINet in this paper.

The assertional part of KL-ONE deals with co-
reference, existence, etc. It uses the notion of Nexus,
Description Wire and Context to express a description.
This part can depict the notion, such that ‘a Vulcan
named Spock is the First Officer of the Enterprise.’

2.5 Correspondence of Descriptive Names to the In-
formation Base(SINet)

The concepts in the description part of KL-ONE have
a structure which represent the composition of roles,
fillers and the relations among them. Since roles in this
structure are regarded as showing types of the related
fillers, roles can be mapped to attribute types, and their
related fillers to attribute values. Then, a pair of at-
tribute tuples from a given descriptive name can map to
the role-filler pairs, and the relation between attribute
types is represented by the relation between roles, such
as structural description in SINet.

The correspondence above determines the place of
the attributes in a descriptive name in SINet. Then, the
concepts which satisfy the given descriptive name will
be derived from a set of role-filler pairs corresponding
to these attributes in SINet. Details will be discussed in
section 4.

3. Structure of a Semantic Network and a Way to Use
It

3.1 Structure of SINet in KL-ONE

In this section, we review briefly the facilities of the
description part of KL-ONE and try to interpret its
structure for the usage of our resolution method. We
use the notation of the concept in attention, the super-
concept of it, and the subconcept of it by pcon, supcon
and subcon, respectively. And when we denote a set of
subconcepts and superconcepts of the concept in atten-
tion, we begin with a capital letter as in Subcon and Sup-
con, respectively.

(1) In KL-ONE, as described in the previous sec-
tion, a set of concepts is divided in two classes: generic
concepts and individual concepts. There is no more de-
tailed classification. We observe that the category of the
generic concepts in KL-ONE mixes two different no-
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tions of entity and of abstraction uniformly. Our pur-
pose is to make up descriptive names for computer
resources. To perform this, the concepts which indicate
entities are important. Therefore we shall classify the
generic concepts into two: entity concepts and abstract
concepts. Hereafter, we shall mainly consider entity con-
cepts. We call the links which connect entity concepts
on some condition a trunk and focus the consideration
on the trunks. We use a file-trunk as an example (see
Fig. 1).

(2) An inclusion relation is shown between the con-
cepts connected by a link. Two different relations are
offered from the KL-ONE.

a) restriction: When a concept (pcon) connects to its
several subconcepts, the filler-value corresponding to
some role in pcon becomes more concrete in its each sub-
concept. This means that a restriction makes some pro-
perty of the concept classified by describing its filler’s
value more specificly and disjointly in its each sub-
concept.

b) conjunction: When a concept or several concepts con-
nect to a subconcept, the subconcept inherits all the
role-fillers which all its superconcepts have.

(3) A role-filler pair of a concept shows an attribute
which the entity corresponding to the concept has.

Let us consider a trunk which includes the concepts
with a single role value. And let us restrict the considera-
tion to the concepts on the trunk and a set of fillers
related to the role on these concepts. If a concept
(pcon) is placed at the upper part of the trunk in SINet,
the value of the filler which pcon has via the role ap-
pears more abstract than the filler value for every sub-
concept of pcon which resides in the lower part of the
trunk. Hence, we shall introduce a partial ordering for
a role based on the ordering of ‘abstractness’ of filler
values. Partial ordering is determined by the connective
relations among concepts; if a concept is connected to
its subconcepts by the links, then we define the partial
ordering as the order that the role-filler pair for the
former concept comes before the role-filier pairs for the
latter subconcepts. We shall denote this ordering by <
or < or =, and denote a role and a filler by r; and fix, re-
spectively. In these notations, i shows sort of a role, j an
ordering position, and ¥ number of the sort in the posi-
tion j. If attention is on the concept pcon and its role-
filler pair is denoted by (7, fi), then the role-filler pairs
for the subconcepts Subcon are denoted by (7, fij+1 k+m)s
(m=1, .., n), where n is the number of the sub-
concepts.

The properties of this partial ordering are observed as

follows:
a) This partial ordering consists of a set of role-filler
pairs, where there is a single role value and multiple
filler values related to the role. The beginning of this
ordering is the place where a role occurs newly. The last
element is the pair on some individual concept. The
ordering may have several last elements because of bran-
ches.

b) If the link between two concepts is a conjunction,
then the corresponding fillers keep the same value. In
this case the partial ordering is

i, Si) =iy fijrra+1)

¢) If the relation between the two concepts is a restric-
tion and there are n branches there, then case (i) if the
fillers of the r; are explained more concretely, the partial
ordering is

(riy fisi) <(Tis fij+1k4m)

where m is from 1 to n, or case (ii) if the role r; is not
related to the restriction, that is, the restriction comes
from the other role in the concept, then the fillers for r;
remain unchanged. That is,

(ris i) =iy Jije1k+m)

holds, where m is from 1 to n. It means that each
branch has the same role-filler pair.

d) In the case of multiple inheritance, different fillers
with the same role may be inherited from the different
superconcepts. Since multiple inheritance allows a sub-
concept to have these attributes, the subconcept may
have these fillers for a role. That is, when two role-filler
pairs are (7, fix) and (i, fimn) the role-filler pair for the
subconcept is (7i, fijx U fimn)-

We re-interpret the structure of SINet as follows:
since each role has own partial ordering, that is a trunk,
SINet is composed of different partial orderings. The
complexity of this structure stems from the facts that
each of the partial ordering begins with different point
in SINet and each partial ordering has different bran-
ches. These facts produce a phenomenon that ordering
structure for the partial ordering for a role may have
different forms from linking connections among con-
cepts.

(4) Individual concepts have relation to the asser-
tion part of KL-ONE. It is possible to use the identifier
of an individual concept as a distinguished name. From
this fact, we consider that the identifiers of individual
concepts relate to the naming in the ordinary name
management facilities.

Note: We have not yet considered the identifiers for
generic concepts. So, we regard the distinct name given
to a generic concept as a genmeric name (defined in
1S7498-3) for it.

3.2 Partitioned Expression of the SINet

In general, the role-filler structure for some concept
always passed on to its subconcepts in SINet. Attributes
for a concept are increased by a new role or modified by
a restriction of a role in order to explain it more detail.
In this way concepts in the lower part of SINet have
more descriptions than those in the upper parts.

In this subsection we propose a way to diminish these
repetitious descriptions by analyzing the connective rela-
tions between a concept and its subconcepts or between
a concept and its superconcepts. This is not the main
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part of our paper, though. But this structure is expected
to make an information base for resolving descriptive
names.

Our way is to divide a trunk of SINet into a set of
components. Each component corresponds to a con-
cept in the trunk of SINet, and has modified descrip-
tions about roles and fillers on the concept and link rela-
tions between the concept and its super/sub concepts.
Every component is expected to work as a unit of the
information base for our name-resolution method. That
is, in the case of a generic concept a unit of the concept
in attention (pcon) consists of: 1) the links between its
superconcepts or its subconcepts; if a link connects
several superconcepts to pcon, this shows multiple in-
heritance; otherwise, if a link connects between a super-
concept and pcon then this shows conjunction. 2) the
description of modified property; if it is the case of
restriction, then there is a set of descriptions on which
role is restricted (we denote it restrole.), what are the
concreted fillers for the restrole, and how these are
reflected in the subconcepts; if the first element of the
partial ordering of a role newly appears in pcon, then,
the new role-filler pair is described. We denote it
newrole.

On the other hand, in the case of an individual con-
cept, there are no subconcepts of it. Let us consider a
set of individual concepts derived from the same super-
concept. These concepts have at least one role with the
same sort. And the difference among them is the filler
values related to the role. This shows a restriction.
From the standpoint of an individual concept, each
superconcept connected to it has the same structure.
Hence, the unit consists of: 1) the links to its super-
concepts and 2) (different sort (corresponding super-
concepts) of) restricted filler descriptions and a pointer
to the identifier which denote the individual object.

We shall call the unit for a generic concept a generic
conceptual functional unit (abbreviated G-CFU), one
for an individual concept an individual conceptual func-
tional unit, I-CFU, and a conceptual functional unit in
general simply CFU.

4. Resolution Method of Descriptive Names

4.1 Interpretation of the Relation between Descriptive
Names and SINet

4.1.1 Role Filler Pair in SINet and Pivot Concepts

Let us consider the relation between the role-filler
pairs in the partial ordering for role i and related con-
cepts in SINet.

If a concept C in the trunk of role i has a role-filler
pair (r;, fix), then this role-filler pair shows the most
generalized notions among the (7, fij+m«+s) (Where m
and s are integers) pairs which occur equal to or after it
in the partial ordering. From this viewpoint, the con-
cept C having the role-filler pair (r;, fj;) can be regarded
as the representative of the concepts in the trunk which
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have role-filler pairs occurring equal to or after (r;, fix)
in the partial ordering for the role i. We shall call this
concept C a pivot concept. If the same role-filler pair
continues in the several points in the partial ordering,
then several concepts in the trunk have the same role-
filler pair. In this case, the pivot concept is selected as a
concept where direct subconcepts of it are forked in
several in the partial ordering. Thus, a pivot concept is
always determined corresponding to each role-filler pair
in the partial ordering.

Let the pivot concept having (r;, fix) be P. We can con-
sider a set of (pivot) concepts which have the attribute
tuple (7;, fix), or which have more specific ones than
(ri, fix) in the partial ordering. We shall call it an at-
tribute solution set and denote it by sol (P) (See Fig. 2).

4.1.2 Partial Ordering and Pivot Concepts

From the definition in 4.1.1, a pivot concept is a con-
cept of which a role-filler pair is either at the beginning
of a partial ordering, at the place of occurring of a
branch by restriction, or in the last elements in the par-
tial ordering.

Let us consider the branch case. Assume that its par-

tial ordering is represented by role-filler pairs in the
following:
(ris fiw)<(riy fij+14+5), where (1=s<m) and m is a
branch number. The pivot concept for (r;, fiix) is the last
concept which has this attribute tuple from the defini-
tion. After it a branch occurs and the following con-
cepts have m different attribute tuples (r;, fij+1x+s)
(1=s=<m).

Since a concept can possess different role-filler pairs it
can be a common pivot concept for each of them. In-
dividual concepts in SINet are always pivot concepts
because their role-filler pairs are the last elements in the
partial ordering.

A CFU in 3.2 is to be a pivot concept when it has
either newrole or restrole or both. If there is no newrole
nor restrole in a CFU, then it cannot be a pivot concept.

4.1.3 The Relation between Descriptive Names and
the Set of Concepts in SINet

A tuple of an attribute type and value, as an element

of a given descriptive name, is mapped to the pair of a

role-filler in SINet from 2.5. This mapping determines a
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pivot concept P for the attribute tuple in SINet and at
the same time, so does the attribute solution set sol(P).
Each pivot concept is determined in the above way.
There remains the problem how to determine the pivot
concept for all the attributes and their relations of a
given descriptive name. As described in 2.3, our defini-
tion of a form of a descriptive name is composed of a
set of attribute tuples and the relation among them. A
sequence of attribute-tuples which are separated by
commas shows an ‘‘and’’ relation. From these facts,
the pivot concept for satisfying the given descriptive na-
me will be derived from considering their relations of
““and”’, inclusion and dependency. An attribute solu-
tion set is determined from a pivot concept. Therefore,
the main issue of a resolution method of descriptive
names is how to obtain pivot concepts.

If the pivot concept for the given descriptive name is
determined, the last attribute solution set is obtained
from it. Especially, since individual concepts are includ-
ed in the last attribute solution set, their identifiers are
regarded as showing objects in the sense of 3.1.
Therefore we consider these individual concepts as
resolved objects for a given descriptive name. So, we
shall call this set a descriptive solution set and denote it
by dsol (P), where P is the last derived pivot concept.

From the above, the process of name resolution for a
given descriptive name is summarized as follows: to get
attribute tuples from the given descriptive name, to
map them to role-filler pairs in SINet, to determine the
pivot concept for all the attribute tuples, and the corre-
sponding attribute-solution set, to obtain the descrip-
tive solution set from the attribute solution set and to
take out the resolved objects.

4.1.4 Descriptive Names and Pivot Concepts

We investigate the relations among pivot concepts P,
(n=1,...,i,...,J, ..., m)in this subsection. We
use the same notations during the following theorems.
Theorem 1 The relation between the two pivot concepts
P; and P; is one of the followings:
a) P;and P; are the same,
b) P;and P; are linked. They are super/sub concepts

each other,
c¢) P;and P; have the same subconcept Cy,
or

d) P, and P; have no common subconcepts.
Proof

Let (ri, fi) and (7}, fima) be the role-filler pairs for the
pivot concepts P; and P;, respectively. And let us denote
the partial ordering for them by L, and L,, respectively.
case a): If L, and L, are for the same role (that is, r,=r)),
then P; and P; are in the same partial ordering of a
trunk and they have ordering relation each other. This
occurs when a given descriptive name has two different
attribute values for an attribute type.
case b): If L, is a different partial ordering from L, and
if they have an intersection at a concept C,, then P; and
P; have ordering relations by means of C,. This case oc-

curs when there is multiple inheritance for the role, or
when the partial ordering of ; and that of r; are on the
same link. We shall denote the ordering relation by «
or ==, where P,« P denotes that generic concept P,
comes before specific one P;. Then, the ordering rela-
tion between P; and C, and between P; and C, are
represented as follows. Since P; and P; are symmetric,
we may assume that P; does not come after P;, if there is
an ordering relation between them.

Group A): P==P;«(C,, or P==P==(C,, or

Ci«< Pi==P;
Group B): P==C«P;, or P«C==P, or
P,'« Cl « Pj, or Ci« P« Pj, or P« Pj« C)
Group C): P;«C; and P;« C; and there is no relation
between P; and P;.

Group D): Ci« P;and C,« P;

When the focus of attention is restricted to P; and P,
group A) is P;= =P}, group B) shows P;« P;, group C)
indicates that there exists some concept which follows
both P; and P;. P; and P; have no relation each other.
Group D) is interpreted as having no common concepts
between them.
case ¢): If L, and L, are different partial orderings and if
there are no intersections between them, then there is no
relation between P; and P;.

There is no other relation than the above between the
partial ordering L; and L,. This leads to the result that
the relation between P; and P; is one of the cases a)
through d). o
Theorem 2 Let us consider the common subconcepts of
P; and P;. Then the first pivot concept (denoted by Py
and called the latter pivot concept) among them by the
relation « is as follows:

a) If Pi and P; are the same concept, then the latter
pivot concept is the same one. That is, P/==
Pj= =P1¢ holds.

b) If P;is linked to P;, then the latter pivot concept is
P,. That is, P;« P;==Py holds.

c) If thereis no relation between P;and P; and if both
are connected to the common subconcepts, then
the latter pivot concept is the first concept P, which
satisfies the condition of pivot concepts and which
is the subconcept of both P;and P;. Note that P, is
not necessarily the pivot concept from the given
descriptive name, but it is regarded as a pivot con-
cept of the descriptive name. We shall call it the
derived pivot concept.

d) If P, and P; have no common subconcept, then the
latter pivot concept cannot be determined.

Proof

a), b) and d) directly follow from theorem 1.

Case ¢): If C, from theorem 1 satisfies the condition of

the pivot concept, then P,= =C, holds. Else if C; isnot a

pivot concept, then because C, has neither newrole nor

restrole there exists only a single concept for its sub-
concepts. Let it be C,. If C; satisfies the condition of the
pivot concept, then P,= =C; holds. Otherwise, repeat
this comparison. Since individual concepts are pivot
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concepts, this process certainly finishes. In this way, the
first latter pivot concept is always determined. o

Theorem 3 The intersection of two attribute solution
sets for the two pivot concepts, P; and P;, is the same as
the attribute solution set for the latter pivot concept of
both of them.

Proof

Let the attribute solution set for P; be sol(P;). From
the definition of the attribute solution set,
C.€ sol(P) & P;«< C, or P;==C,(*) holds.
case a) and case b) If P, and P, is the same concept, or of
P;«< P; holds, then each attribute solution set has its
attributes and an element concept of the intersec-
tion of both sets has both attributes. That is,
sol(P;) Nsol(P)) C sol( Px) holds. On the other hand, P
has both attributes so that any element concept has
either attributes. That is, sol( P,) Csol(P;) and sol(P;)
Csol(P)) hold. Hence, sol(Px) Csol(P)Nsol( P;) holds.
case c) It is clear that sol( P«) C sol(P;) Nsol( P;) holds so,
we show here the converse inclusion relation. If we take
an element P, from sol(P;)Nsol(P)), then from (*),
P« P, and P;« P, hold. Assume that P,<« P; holds.
Then this contradicts the fact that P, is the first
common latter pivot concept for both P; and P;.
Hence P,esol(P:) holds. That is, Py« P, and
sol(P;)) Nsol(P;) Csol(Py) holds. Therefore,
sol(P)) Nsol( P))=sol(P,) holds.
case d) If there is no common subconcept between P;
and P, then there is no common set for their attribute
sets. sol(P;)) Nsol(P;)=¢ holds. a
Theorem 4 A necessary and sufficient condition that a
given descriptive name indicates some object(s) is that
the relation among pivot concepts corresponding to the
attributes in the given descriptive name is one of the
case a), b) or ¢) in theorem 1.

Proof

If the relation to the case d) in theorem 1 occurs, then
there is no common attribute solution set among the
pivot concepts from the case d) in theorem 3.

From the case a), b) and c) in theorem 2, there is
always a latter pivot concept between different two
pivot concepts. By the repetitions of this process among
the pivot concepts, one can reach the last derived pivot
concept (let us denote it P,). Since P, is the last derived
concept, the relation is obtained that for all i such that
P;« P, holds (**). u}
Theorem 5 If a given descriptive name satisfies the con-
dition described in theorem 4, then the last derived
pivot concept for it is determined uniquely. Moreover,
the comparison order among its intermediate pivot con-
cepts does not affect determination of P.,,.

Proof

There always exists a last derived pivot concept from
(*#) in theorem 4. Let us call it P.,s and call the resolv-
ing comparison Cl.

If another comparison, say C2, results in the last
derived pivot concept different from P, (let it be
denoted by Pi,n), then P.,; cannot be the last derived
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pivot concept in this comparison C2, that is, Pe,g<< Pyon
holds. On the other hand, if the comparison Cl is ap-
plied to Pyon, then Py,p<< Pe,q holds. From these facts,
P.ng==Pyo, holds. Therefore, the last derived pivot
concept is determined uniquely and is independent
of the comparison of pivot concepts during a resolving
process.

The desired object(s) are given from the set dsol( P.,g). O
Theorem 6 The condition that the different descriptive
names indicate the same objeci(s) is to have the same
last derived pivot concepts between them.

Proof

Let the expression to represent the two different given
descriptive names be A and B, respectively. Let the last
derived pivot concepts be P, and Ps, corresponding to
A and B, respectively.
=> Assume that 4 and B show the same objects. Let us
consider the relation between P,. and P,,.

If the relation between P, and Py, occurs as in case b)
in theorem 1, say P« Py, then sol(Pp)C sol(P..)
holds. That is, A and B may show different object(s).

If the relation between P,. and Py, occurs as in case ¢)
in theorem 1, then from theorem 2, there exists a com-
mon latter pivot concepts so that each expression can
show different objects.

If the relation between P, and Py, occurs as in case d)
in theorem 1, then A shows the different object(s) from
B.

From theorem 1, the relation between P,. and P,. can
be only as in case a), that is, P,.= =P, must hold.
«=If 4 and B have the same last derived pivot concept,
say P., then dsol(P.) shows the objects. O

4.2 Standpoint and Method of Descriptive Name-
Resolution

The resolution method for a set of descriptive names
is to investigate the place of a pivot concept in SINet cor-
responding to each attribute tuple in a given descriptive
name, to compare with pivot concepts for these at-
tributes by means of theorems in the previous subsec-
tion and to determine the last derived pivot concept on
the relation «.

It is expected that one may look for a pivot concept
by mapping separately each attribute tuple in a descrip-
tive name to a pivot concept in SINet. This takes time
because several attributes may map to a concept.

Hence, considering the fact that the comparison
order among the intermediate pivot concepts does not
effect the last derived pivot concept from theorem 5,
and considering that a concept usually has several
different role-filler pairs, we take the standpoint
whether each pair of role and filler in a concept is equal
to some attribute tuple in a given descriptive name; first
selecting a concept, then by exhibiting the pairs of role
and filler which a concept has, comparing them with the
attribute tuple which a given descriptive name has, and
finally determine whether it is a pivot concept or not.

In the processing, two tables are used: one is called
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CAN_List, which is used as a holder of candidate con-
cepts; the other is called SI_Tab and used as a notebook
to check the comparison has finished or not. CAN_List
also checks double accesses and prevents loops in the
search.

a) if a concept, say P,, has a role-filler pair which is the
same as some attribute tuple in the given descriptive
name, then it becomes a pivot concept. Thus, this pivot
concept P, is compared with the latter pivot concept,
which has already determined by the previous com-
parison. Its initial value is a pivot concept with an
‘abstract_property.’

If the relation between them is as in case d) in
theorem 1, then the comparison is finished because of
the descriptive name having no objects.

Otherwise, the new latter pivot concept is determined
according to theorem 2. It is the first pivot concept
which appears after both of P, and the latter pivot con-
cept on the relation of «. The next candidate concepts
to be compared are restricted to the subconcepts of the
new latter pivot concept.

b) in the comparison, if only some type (let us denote it
by i) from a descriptive name matches a role in a con-
cept P, then the filler for this role is on the partial
ordering of role / and both the superconcepts and the
subconcepts of P, are examined;

(b-1) the comparison search starts from P, along with
the partial ordering of the role i, goes upward to the con-
cept link by comparing its fillers with the attribute
values of a given descriptive name until appears a con-
cept with the newrole for i. If some filler matches a
value on the way, the concept with the filler is deter-
mined to be a pivot concept, and we continue the same
process as in a).

(b-2) otherwise, if no fillers are matched in the super-
concept of P,, we pick out the subconcepts of P, and
add to them in the candidate list.

¢) if there is no pivot concept in a trunk, then the latter
pivot concept is unchanged, that is, it indicates the in-
itial value. In this case, the search moves to the different
trunk.

From the viewpoint above, the resolution method for
a descriptive name determines a new latter pivot con-
cept from a given descriptive name, found by con-
sulting two tables and by tracing the partial ordering in
the SINet. This process is repeated until all the attribute
tuples in the given descriptive name are checked (by
consulting SI_Tab), or all the elements in CAN_List
are exhausted, or the case 4) of theorem 1 is revealed.
The first case indicates the last derived pivot concept,
while in the latter two cases there is no indicated object
corresponding to the given descriptive name.

5. Examination and Discussion

5.1 A Test of the Descriptive Name Resolution

5.1.1 Subjects of Examination

We examined the name-resolution algoithm proposed
in 4.2, by comparing the number of concepts accessed
in the resolution search and by tracing transition of the
pivot concepts during the search. In both cases, we took
into consideration the entries of the search and used
several different forms of descriptive names, which all
appeared to indicate the same object(s).

A set of proposed forms of descriptive names was
considered to show the different levels of abstraction,
different leaving _out of elements in the descriptive
names, different sequence of elements or wrong descrip-
tion for the descriptive names.

We took two types of entries; one was the entry on
the trunk where the desired objects resided (case I); the
other was that the entry was on the trunk where the
desired objects did not reside (case II). The former case
was divided into: 1) the entry was before the beginning
of some partial ordering, 2) the entry was just on the
beginning of some partial ordering, 3) the entry was in
the middle of some partial ordering, 4) the entry was at
the end of some partial ordering, and 5) the entry was
after some partial ordering.

Under these assumptions, we examined the following
two cases by using the example in Fig. 1.

First case: we made several different forms of descrip-
tive names which are to indicate the general concept
‘program_file’ and checked whether the sequence of
elements in a descriptive name influence the result or
not, and so did the ellipsis. To do this, we set the follow-
ing four different descriptive names. Let us denote the
descriptive name by UDNI/].

UDNI[1]: there were fifteen different attribute tuples and
there was no ellipsis of them. The element order was
from concrete attributes to more general ones.
UDNJ2]: there were fifteen different attribute tuples and
there was no ellipsis of them. The element order was ran-
dom.

UND]J3]: two third of the description in UDN[1]. At
least, one of the attributes in ‘program_file’ exists.
UDN][4]: two third of the description in UDN[2]. At
least, one of the attributes in ‘program_file’ exists.
Second case: we checked the relation between the
degree of abstraction in descriptive names and indicated
objects. We used the target objects as the ‘in_print’ in
Fig. 1 and made the following descriptive names.
UDNJ5]: description of seven different attribute tuples.
UDNI6]: all the attribute types were the same as in
UDN{5], but attribute values were more general than
UDNJS]. It was expected to indicate the general con-
cept ‘functional_file’ which was the superconcept of
‘in_print.’

UDN[7]: more concrete description than UDN[S], and
with the same attribute types in UDNI5].
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5.1.2 Results

From the comparison of UDN[1] with UDN|2], or of

UDN][3] with UDNJ[4] by means of the name-resolving
method, we find that the order of elements does not
affect the object indication. They all indicate the pivot
concept ‘program_file.’
If the entry of the search is on the trunk of case I in
5.1.1, then the number of concept accessed by the
search for any UDNJi] (1 =i<4) is the same: seventeen
concepts in these cases ().

The comparison of UDN[1] with UDN[3] or of
UDN]/2] with UDN{[4] shows no difference from omit-
ting of elements. In this case, the number of concepts
accessed by any search is the same as the result in the
previous comparison (*).

Figure 3 shows the tracing of paths in resolving proc-
ess of UDNIS] through UDN(7]. It results in the desired
object: UDN[5] and UDN([7] are resolved to the same
concept ‘in_print’; on the other hand, UDNI6] is re-
solved to ‘functional_file.” It shows wider objects than
the former. This is because UDN[6] has only generic
attributes, so that its last pivot concept is ‘func-
tional_file,” which is the superconcept of ‘in_print.’

The number of concepts accessed in the search is
different according to their entries; if the entries are case
Iin 5.1.1, then the number is the same for any UDNIi]
(1=<i<4); if the entries are case II, then the number
searched is increased by the number of accessed con-
cepts on the search necessary to find the first pivot con-
cept.

A restriction (in terms of 3.1) produces several
different attribute values of the same type. These may
be inherited to the same subconcept because of multiple
inheritance. Thus, there may be several paths available
in the course of a name resolution. For example, the
concept ‘program_file’ inherits for the type ‘file_type’
two different attribute values, ‘data’ and ‘procedure’
from the concept ‘data_file’ and ‘functional_file’ respec-
tively. It does not matter which series of path is used
and this supports (3) d) in 3.1.

5.2 Discussion about Representation and Name
Resolution of Descriptive Names

5.2.1 Equivalence of Descriptions: Flexibility and
Restriction of Representation

Since descriptive names have flexibility of expression,
we have focussed the problem of finding the represen-
ting rule among a set of descriptive names to denoting
the same object(s) while they are expressed differently,
and of organizing a way of name-management to be
able to treat such expressions. Theorems in Chapter 4
lead us to the fact that different expressions of descrip-
tive names can indicate the same object(s). Theorem 6
concludes the condition that a set of descriptive names
indicates the same object(s); despite the different forms
of descriptions, as with different order of elements,
with different descriptive elements (=attributes) or with
different generalization degree of attributes, these

forms indicate the same object(s) if and only if they
have the same last pivot concept.

For example, let us consider the case of ellipsis of
description, such as the relation between UDN[1] and
UDN][3]. because they both include the attribute tuple
for ‘program_file’ they both indicate the concept ‘pro-
gram_file.” The next example is the case of description
with different generalization degrees. In the resolution
process, the transition of the latter pivot concepts for
UDNJ5] is different from that of UDN[7], as shown in
Fig. 3, but the last pivot concept is the same for both
UDN[5] and UDN[7]. This is because they both have at-
tributes for ‘in_print.’

5.2.2 Abstraction Degree and Indicated Objects

We observed that a set of indicated object(s) by a
descriptive name was determined by the position of the
last pivot concept in SI_Net. The degree of abstraction
in a description is shown in the position of correspond-
ing attribute tuples in the partial ordering. From this
fact, the last pivot concept for an abstractive descrip-
tion stays upper part of SI_Net. This case indicates
more objects than that of specific description. Because
the specific attribute tuple is placed on the latter of the
partial ordering, its last pivot concept is in the lower
part of the SI_Net and its indicated objects are
restricted.

For example, UDN[5] through UDN[7] in 5.1 shows
this fact.

5.2.3 Resolution of Descriptive Names based on a Par-
tial Ordering

From the algorithm a) through c) in 4.2, the sear-
ching path forms a reverse tree; this search is restricted
to the related concepts in SINet; the search determines
the latter pivot concept, which limits the range of the
search; it examines only subconcepts of the latter pivot
concept; the more the search goes down, the fewer sub-
concepts are related to the search.

This algorithm also considers the property of multi-
ple inheritance in b-1) in 4.2. If the SINet in attention
were tree-structured, this processing would not be
necessary.

The entry for the search is arbitrary; if the entry is a
point in some partial ordering, then the pivot concept is
easily found. Otherwise if the entry is on the trunk
where no related roles reside, then the latter pivot con-
cept keeps the initial value (Pus). This enables the
search to move to another unsearched trunk.

We observe that this algorithm resolves uniformly;
no distinction is made between the situations whether
some pivot concept is found or not.

The algorithm checks all the role-filler pairs in a con-
cept along with some partial ordering so that no matter
where the entry is in the case I in 5.1.1, the number of
searched concepts is the same.
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5.3 Further Study for Descriptive Names

We take into consideration the descriptive names
which explain proper attributes of objects. As described
in 2.3, descriptive names can represent contingent at-
tributes as in the descriptions of % .500. The resolution
of descriptions, which express contingent attributes for
objects, is one for further study. Since KL-ONE has
both a description part and an assertion part, it is ex-
pected for the resolution to use the assertion part of
KL-ONE. These descriptions are considered as a
marker transmission in an association memory [6] or as
a wave in a Connection Machine. We would like to also
consider these remarks as hints.

The notion of CFU in 3.2, is useful for resolution of
descriptive names, because it shows whether it is a pivot
concept or not directly. On the other hand, it is am-
biguous whether the partition is useful for scalability of
SINet. The evaluation of this remains for another
study.

6. Conclusion

We have concentrated on constructing a resolution
method of descriptive names to enable to use attributes
of objects as identifiers.

First, we reviewed representational forms of at-
tributes, their abstraction levels and ellipsis which are in-
evitable for defining the properties of computer
resources.

Then, we have clarified the relation between various
levels of semantic description and their indicated ob-
jects. These are detected by analyzing the set of partial
orderings which each attribute class has, borrowing the
notion of a semantic network, called KL-ONE, and
theorems are proved about this analysis. Based on these
theorems, we finally have introduced a new algorithm
for resolving of descriptive names.

We think that descriptive names are key elements for
constructing inevitable and effective information-
resource dictionary systems, which are expected to be
one of the important infrastructures in computer
systems. This paper has developed a basic notion for
the forms and a resolution algorithm of descriptive
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names as the first step to reach this goal. There remains
the work of constructing a concrete system design.
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