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On Some lterative Formulas
for Solving Nonlinear Scalar Equations

TAKAHIKO MURAKAMI™®

First, we show fourth order multipoint iterative formulas which find better approximations to a zero of a func-
tion f(x). These formulas require one evaluation of f(x), f’(x) and f”(x) respectively per iteration. Next, we
show some third order one-point itrative formulas containing two parameters, and consider the monotonic

global convergence of them.

1. Introduction

We will study numerical iterative formulas for the
computation of the solution of the nonlinear scalar
equation

f(x)=0 0]

where f(x) is a real function of the real variable x. In
[1, 2], various types of iterative formulas have been
shown. Traub [1, PP. 192-197, PP. 200-204] showed
two types of fourth order multipoint iteration func-
tions. Both of them contain two parameters. One of
them requires three evaluations of f’(x) and one of
f(x) per iteration, the other one evaluation of f(x) and
three of f’(x) per iteration. Jarratt [3] showed fourth
order multipoint iterative formulas containing one
parameter and requiring one evaluation of f(x) and
two of f’(x) per iteration. Furthermore, in [6], we
showed two types of fourth order multipoint iterative
formulas. One of them requires one evaluation of f(x)
and two of f(x) per iteration. The other requires one
evaluation of f(x) and two of f’(x) per iteration.

The following one-point iteration functions are well-
known [1, p. 90], [2, P. 111}

¢2‘0(X)=X—h—Azh2

D (x)=x—

h
1= Auh (Hally’s iteration function)

h
P(x)=x——F———
( v1—24,h
(Ostrowski’s iteration function)

S(x) S (%)
where hA=————, and A4,= .

[/ 20
All of them have cubic convergence for all the simple
zeros of Eq. (1), and require one evaluation of f(x),
f’(x) and f"(x) respectively per iteration.

*Department of Mathematics, Kobe University of Mercantile
Marine.

Journal of Information Processing, Vol. 15, No. 2, 1992

In this paper, we will study a class of iterative for-
mulas of the type

n=0,1,2,--- )
[ (x+ah)
S'(x)
parameter, and R(¢) is a function of ¢. In 2, we will
show that for the class of iterative formulas (2), fourth
order formulas can be obtained by suitable choices of
the parameter o and the function R(¢). In 3, 4and 5, we
will show some third order one-point iterative methods
and consider the monotonic global convergence of
them to the zeros of f(x) in Eq. (1). In 6, we will give
some numerical examples.

Xn+1=S(Xn),

where ¢(x)=x—hR(X), and X=h

,oaisa

2. Derivation of Formulas

We assume that { is the simple zero of f(x) in Eq. (1)
and that f(x) and R(#) are as smooth as necessary in x
and ¢ respectively. Developing X and R(X ), we obtain

X=2A:h+6aA: R+ 126° A0+ O (h*) 3)

and

1 1
R(X)=R(O)+R’(0)X+5R"(O)X2+§ R0 X3

+0(h*) C))
o f® L f"(x+ak)
where h=h(x)_f—'(x) , X=X(x)———f'(x) h, and
~ _f‘”(x) .
A1=AJ(X)—j!f,(x), J=2,3,4.

It then follows from (3) and (4) that we obtain
—hR(X)=—R(0)h—2R’'(0)A,h*—2R" (0)A3 1

4
—6aR’(0)4;h° -3 RO0)A3h*

—12aR"(0)A4:Ah* — 120°R* (0) A1
+0(n). O)
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Since the basic sequence [1, PP. 78-88] is given by
Es(x)=x—h—A:* =24} + A, —5A3H*
+5A4:A;h— Ah°,
it follows from Eq. (2) and (5) that we obtain
#(x)—Es(x)=[1-R(0)]h+[1-2R"(0))A4:H’
+[2-2R"(0)]A3H
+[—1—6aR’'(0)]A;4*

+ [5—;R‘3’(O)]A§h‘
+{—5—12aR"(0)]

X A Ask*+ [1 — 1202R" (0)] Ao
+0(K).

Hence it follows from Theorem 5-2 [1, PP. 86-87] that
for Eq. (2) to be fourth order, the following system of
equations must be satisfied:

1-R(0)=0
1—-2R’(0)=0
2—2R"(0)=0
—1—6aR’(0)=0

From the system (6), we obtain

6

RO)=1, R'<0)=%, R"O)=1, a=—%. )

In the case of (7), it follows from Theorem 5-2 [1, PP.
86-87] that the asymptotic error constant of ¢(x) C is
given by

S0 —Es(x)
C=lim =
4 I
= 5—;R‘”(O) AZ_A2A3+?A4 (8)

where A;=A4,(0), j=2, 3, 4.

Next, we give some forms of R(X ) and the asymp-
totic error constant C which satisfies (7) and (8) respec-
tively.

1 1 T I
(1 R(X)=EX2+——X+1, C=5A§—A2A3+§A4

2
i R(X)—i(wi),w1 2 l)+——1——
T2 6 2 8*) " 20%6x+1)’
R S
C=(40+5)A§—A2A3+§A4 9)

where 0 is a parameter, and 0.
3. One-point Iterative Formulas

If «a=0 in Eq. (2), then we obtain the following
iterative formulas
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x,,+.=¢(x,,), n=0, ],2,' . (]0)

where ¢(x)=x—hR(X), and X=h'ﬂc—)
’ S’
Then, the order of convergence for Eq. (10) is equal to 3
for all simple zeros of Eq. (1), iff R(0)=1 and R’(0)
=1/2. Furthermore, since the basic sequence [1, PP.
78-88] is given by
Efx)=x—h—A =240+ A: 1,
the asymptotic error constant of ¢(x) C is given by
x)—Es(x - -
C=Iin‘1 th“(—)= {2—2R"(0)} A3 - A4;.

Next, we give some examples of R(X) and the asymp-
totic error constant C.
O+1/2)x+1

Example 1. R(X)= X +OX+1 "

C=(2+20+4R)A3— A,
(B, 6: parameters).

Especially, if =60=0, then

S(x)=Dy0(x), C=243—A,.
Next, if =0 and = —1/2, then

d(x)=&,,(x), C=A}—A,.

a+ b

a+ vb— Vb(a+ Vb)X

c= [1 L]A-z_,s
2 26 2 3

Example 2. R(X)=

(a, b: parameters).
If b=1, then

d(x)=4(x)
a+1

T A i@+t hx

Furthermore, if a=0, then
d(x)=D(x).

h. [Eq. (2.13) in [5]]

4. Monotonicity of Convergence

Let f(x) be a polynomial of exact degree r>1 with
only real zeros given by the form

f(X)=kI;I] (x—20) an

where §k§Ck+l (k=1, e, r= 1)
Then, it has been shown that both Ostrowski’s method
[2, PP. 110-115] and Laguerre’s method [2, PP. 353-
362] converge globally and monotonically to the zeros
of f(x).

Let f(x) be given by the form
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f(x)=x™exp (a+bx—cx?) ﬁ (1 ——)

[e73

x
X exp (a_) (12)

where m is non-negative integer, a, b, c are real, and
cz0, o are real, and Za;i< 0. Then, it has been
shown that both Ostrowski’s method [2, PP. 124-126]
and Halley’s method [4] converge globally and
monotonically to the zeros of f(x).

Hansen and Patrick [5] have introduced the methods
that form the sequence x, by the iteration rule:

n=0,1,2,---,

and have shown that if f(x) is a polynomial with real
coefficients or if f(x) is given by the form (12), then
these methods converge globally and monotnically to
the real zeros of f(x) under some assumptions.

Next, we consider the iterative methods for R(X') of
Ex 1in 3 that form the sequence x, by the iteration rule:

xn-H:A-(xn)y

Xpt1=X,—K(x,), n=0,1,2,--- (13)
1
(0+—>X+1
where K (x)=h ~———t— .
BX+6X+1

At first, let f(x) be given by the form (11).

Then, it follows from Rolle’s theorem that f’ (x) has
r—1 real zeros (i such that (=i <l (K=1,- -,
r—1).

Especially, if {,<{+1 for some k, we obtain
<Lk <li+1. For any real x # (i, we can define the asso-
ciated zero {(x) of f(x) to be {(x)={ if x<{, {(x)
=¢ if x>, ((x)=C if Le<x<k, and {(x)={k+, if
{k<x<Clk+1. Onthe other hand, if (= (k=2,---,r),
we can define the associated zero {(x) of f(x) to be
{(x)=¢ if x#{. Furthermore, f(x)/f’(x) and
x—{(x) have the same sign.

Next, taking the logarithmic derivative of (11) and
differentiating it, we obtain

Sx) 1
AL » DL 14
o Ex—l 19
_ (f’(x))'z{f’ WP =S X)L
S(x) {f()¥ So=ayr
(15)
From (15), it follows that
r 1
—_ =h? —_—=>0U. l
1-X=h :Z:n(x—(k)zzo (16)

Next, rearranging r—1 zeros except {(x) such that
Lig-- = -1, we obtain
2 ) r—1 1
————=h —.
Ix=¢0))? Z}n (x=&»
Therefore it follows from (17) that

1-X- a7
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Ix={(x)I > il 18
—L(xX) >——.
% (18)
The following lemma is needed below.
1y 1 1
Lamma 1. If—— 0+ =f8= ) 0+-2- , then
o+ !
1 3 X+1 1

< (X<1). (@19

1Ly Bx X 246X +1 = 1=
27X

Proof. It now follows from the assumption that we

3 1 1 1
btain ~—=<f=<—-—. = =- -
obtain 2_0_ 3 Hence(6+2)X+l (9+2>

3
(1=X)+6+=>0. Now, putting g(X)=pX*+6X+1,
1
we obtain ¢'(X)=28X+60<28+0< -5 On the

1 3\
other hand, since g(1)=ﬂ+0+l;3 (0+E) =0, we

obtain g(X )>0. Therefore, we obtain

1 1
(0+E)X+l> <0+5)X+1
BX*+6X+1 —% (0+%)X2+0X+1

1
= l .
I_EX

In addition, using elementary inequality ab=<— (a2 +b%),
we obtain

o) o oo

r1-x)
Thus
1 1
{(a+5)x+1}¢1 X=— (9+2) Xi+6Xx+1.

1 1\?
Since — (0+ ) =/, we obtain

1
(0+E)+l . 1
BX*+0X+1- V1-X~

Lemma 1 is completely proved.
It now follows from (18) and Lemma 1 that

Ix—=¢(x) > 1 K(x)!. (20)

Then, on the monotonic convergence of the rule (13) to
{ we obtain:
Theorem 1.
if

Let f(x) be given by the form (11). Then,
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1(0 1)2 - 1(9+1
ezt (o+d)

and if we take the real starting value in (13) x, such that
f(x0)f'(x)#0, the sequence x, in (13) converges
monotonically to {(x).

Proof. Assume that we take x> {(xo) such that

S(x0)/f'(x)>0, K(x0)>0.
Then, using (13) and (20), we obtain
Xo>x1> L (xo),

and by the definition of {(x), {(x)={(x:). Further-
more, by repetition of the same argument, we obtain

> (Xo).

Therefore, it follows that the sequence x, converges
monotonically to a limit

Xl 2 {(x0).
It now follows from (13) that lirr} K (x,)=0. On the
Xn—*
other hand, it follows from (14) and (17) that

Xo>X1>X2>

=1
1+ n 0 2
= xym e gy

- 2°
1+ {x,—¢

Therefore, — o <lm}X(x,,)<l Hence, it follows from
(19) that hm R(X (x,))>0. Thus, hmf(x,,)/f (x,)=0

and hencef(C) 0, that is {= C(xo) In the same way, if
we take xo < {(xo) such that f(x0)/f’(x0) <0, K (x)<0,
we can show that the sequence x, converges
monotonically to {(xo). Theorem 1 is proved.

Next, let f(x) be given by the form (12). Then if the
real xo is neither less nor greater than all ay, by repeti-
tion of the same argument as the above, we can
establish the monotonic convergence of the rule (13)
(see [4]). More precisely:

Theorem 2. Let f(x) be given by the form (12). Then,

if

Ly 2 gyt

Tl il -

2 2 =h= 2 2
and if we take the real x, such that f(xo) f’(x0) #0 and
Xo is neither less nor greater than all ax, the sequence x,
in (13) converges monotonically to {(x,).

We have established the monotonic global con-
vergence of the rule (13) under the same assumptions as
those on Ostrowski’s method for the starting values xo.
Remarks. (a) Let f(x) be a polynomial of exact
degree r>1 with real coefficients, let { be an arbitrary
real zero of f(x), and let r—1 zeros of f(x) except { be
L (k=1,2,---, r—1). Then, in the case where f(x) has

r=1 h?
complex zeros, if Z v

is positive, it follows from

T. MURAKAMI

'

(15) that S

is monotonically decreasing and from

S(x)
(17) that (18) holds. Therefore, also in the case where
r=1 2
S (x) has complex zeros, if ), ——— is positive, then
=1 (x— )

it can be seen that Theorem 1 holds.

(b) Before long, we will present the results on the
global convergence of iterative formulas for R(X) of
Ex 2in 3.

5. Modification for Multiple Zeros

In the case where { is a zero of f(x) of multiplicity
m>1, we consider the order of convergence for Eq.
(10).

Then, we obtain
JSx)=(x—={)"g(x), g({)#0,
S1)=m(x—={)""'g(x)+(x—{)"g’ (x),
Srx)=m(m—1)(x—{)" g (x)+2m(x—{)""'g"(x)

+(x={)"g" (x).

From these formulas, we obtain

PPACO N Gl 9
S'(x) mg+(x—0)yg’
S

=

=m(m— Dg*+2m(x—{)gg’ +(x—{)gg”
{mg+(x—0)g’}
where g=g(x), g'=g'(x), g" =g"(x).

h 1 1
Since ————, X—=1——(x—{), we obtain
x m m

—{
. o(x)—¢ x—hR(X)—{
lim =li
=~ x—( x~¢ x={
1 1
=1——R|[1——].
m m

1
Therefore, if R ( 1 —;) #m, then the convergence of x,

to { is only linear. Also in this case, we can still obtain
cubic convergence of x, to { by the iterative formulas
Xn+1=Om(Xn), n=0,1,--- @n

where ¢, (xX)=x—mhR(1—m+mX).
Then, the asymptotic error constant of ¢,(x) C is
given by

$(x)—¢

IRy

————{3 MR o}
Tm¥m+12 2 2 "0

{f"”“’(C)} _ 1
0 T mm+1)0m+2)
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S0
7@

To prove that the above contents hold, it suffices to
prove that (22) holds. Here, it follows from (21) that

(22)

i dm(x)—(_r x—mhR(1—m+mX)—{
o0 (x=Qy e -0y
Then, since

R(1—m+mX)=R(0)+(1—m+mX)R'(0)
+% (A—m+mXyYR"(0)+ -,

1
R(0)=1 and R’(O)=E, we obtain

1
R(l—m+mX)=l+5(1—m+mX)

+%(l—m+mX)2R”(0)+'--. 23)

Furthermore, we obtain
2mgg'k+{(1—m)g’*+mgg” } kK
(mg+kg'y

l-m+mX= (24)

where k=x—(.
Hence, it follows from (23) and (24) that
x—mhR(1-m+mX)—{

2,27

_[m(m+3)gg"*—m’g’g
- 2(mg+kg’)

_ 2m393gr2
(mg+kg'y
Therefore
$u(0)—=L {g' (DY (3 m
pi _ngZ(c){ *

= (x=¢)
—2R”(0)}

R”(O)]k3+ O (k%).

272
_ 9"
2mg({)’

Finally, since

PAK(9)

m!

DAY
(m+1)°

()= » (0=

2f"(E)
(m+2)t "’

we obtain (22), and the above contents are proved.
Next, we consider the case of Ex 1 in 3.

and ¢”({)=

! 1\ 1 1\ |
Then, 1f3 <0+E) =p= -3 <0+3), it follows from

(19) that

R(l—%)<m—ll—-—§)=m<m.

Therefore, the convergence of x, in (13) to { is only
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linear. Modifying (13) by (21), we obtain

Xn+1=Xn—mh,R(Ql—m+mX,), n=0,1,--- 25)
1
foe1 s

where h,=h(x,), X,=X (x,),and R(X)=—7""—".
(%) () X BX2+0X+1

Then, it follows from (22) that the asymptotic error con-

stant C,, is given by

3 1 i ﬂ f(m+l)(¢) 2

C'"_mz(m+l)2(2+ 2+20+4ﬂ){f""’(4) }
_ 1 NAR((Y)
m(m+1)(m+2) f)

On the monotonicity of convergence of the rule (25), we
obtain:
Theorem 3. Let f(x) be given by the form (11). Then,
under the assumptions of Theorem 1, the sequence x, in
(25) converges monotonically to {(x,). Furthermore,
we obtain:
Theorem 4. Let f(x) be given by the form (12). Then,
under the assumptions of Theorem 2, the sequence x, in
(25) converges monotonically to {(x).

In the case where { is a zero of multiplicity m>1 and
r>m, we can rearrange r—m zeros except { such that
(i< -+ £¢—-m. Then, (16) can be expressed in the form

mh* om R
+ (r>m)
Gk

(26)

(r=m). 27)

Therefore, it follows from (27) that
0l 2 Ym|hl

x={(x) =z .
R EaP. ¢

Furthermore, since 1 —m+mX< 1, using (19), we ob-
tain

(28)

Jm
m;mR(l -—m+mX). 29)
Hence, it follows from (28) and (29) that
Ix=¢(x)lzm|IhIR(1—m+mX). (30)

Consequently, these Theorems can be obtained in the
way similar to the proof of Theorem 1 and Theorem 2.

6. Numerical Examples

If 8= —1 in Eq. (9), then the iterative formula takes
the particularly simple form:

1 1 S (x4)
xn+1=Xn_E hn—E 1 s
f’ (xﬂ)_f” (xn_? hn) hn
n=0,1,2, - a3n
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where h,= h(x,). 3 1
Furthermore, if 6= 7 /3=1—6 in the formulas (13),
then we obtain the iterative formula:
1 ! X,
4 n
Xn+1=Xn— h’u
L X2 —i X, +1
167" 47"
n=0,1,2,--- (32)

where X,=X (x,).
Next, we give numerical examples by the following

five iterative methods:

Newton’s method: x,+1=x,—h(x,)

The method by (31): yas1=¢(¥»)

Ostrowski’s method: z,+,=®(z,)

Halley’s method: $,+,=®,,,(s,)

The method by (32): tu+1=¢(t.), n=0, 1, 2,---.
Here, we consider the polynomial

S(x)=x"—Tx®—499x°+2565x * + 64835x> — 20482 1x?
—992593x+1130519.

The exact zeros of f(x) are 1+£10+3, 1+£10v2,
1+£2V5, and 1.
Let ¢ be an arbitrary zero of f(x). Then, it follows
from Corollary 6-4K [7, P. 457] that we obtain
[¢1 <2 max (7, 49972, 2565'/3, 648354, 204821"/%,
992593'/6, 1130519'/7)=2-499'/2< 45,
Therefore, we take |xol = |yl = 20| = Isol = 1 16| =45.
In Table 1, we obtain {<z,<?,<s, (n=1). In Table

T. MURAKAMI

2, we obtain {>z,>t,>s, (n=1).

In general, let 2, be an arbitrary real number, and let
us take to=sp=20. Then, it follows from (19) that we ob-
tain { <z, <t <s: if h(2)>0, and {>z,> 1>, if h(z0)
< 0. But, theoretically it cannot be concluded that we
obtain (<z,<t,<s, (nz2) if h(z)>0, and
{>2,>t,>5, (n22) if h(20)<O0.

From Table 2, it can be seen that the monotonicity of
convergence for the method by (31) does not hold. All
calculations are made with quadruple precesion.
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