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Analysis of Input Control with Control Delay

AkirA Fukupa*, Ken-ici1 KoMamizu** and Kouicul Utsumiya***

Many studies have been carried out on input regulation control in queueing models, which is a basic conges-
tion control. Most of the studies assumed that there is no control delay, which means the time from when the
control message starts to be sent until the effect of the control appears. However, in real systems, the control
delay time cannot be neglected. This paper analyzes a two-level input control queueing model with control delay
based on sampling monitoring. The model can deal with cases where the monitoring interval distribution is ar-
bitrary.

Steady state probabilities are analyzed using piecewise Markov process theory and some performance
measures are shown. Through several numerical results, the influences of control parameters such as the control
delay, threshold values for control, and the monitoring interval distribution on the system performance, are in-
vestigated. In particular, we get the remarkable result that there is a mean control delay which gives a minimum
loss probability for uncontrolled calls in some cases. Furthermore, from the numerical results, we conjecture
that periodically monitoring gives a minimum loss probability for uncontrolled calls under the condition that

the system and the control parameters are fixed.

1. Introduction

In computer networks and telecommunication
systems such as telephone networks and packet switch-
ed networks, if demands to the system exceed the
system capacity, congestion will occur. Once the system
is in a congested state, system resources are ineffectively
used, and throughput degradation occurs. To prevent
congestion, it is effective to regulate excess traffic at the
entrance of the system [1]. Thus, the input control
scheme is a basic congestion control. Therefore, it is im-
portant to analyze and investigate input control
schemes.

Many studies have been carried out on input regula-
tion control in queueing models [2-8]. Most of the
studies assumed that there is no control delay, which
means the time from when the control message starts to
be sent until the effect of the control appears. However,
in real systems, the control delay time cannot be
neglected. It consists of some time components. One of
the major components is the time to deliver the control
message sent at the congested node to the congestion
control node. The other is the time elapsed until the in-
fluence of the traffic volume already within the network
has disappeared, or until the traffic again appears at the
network node [7]. There are a few studies of input con-
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trol with control delay [7, 8]. These studies assumed
that the state of the system is continuously monitored.
However, in some real system cases input regulation
control is usually activated by the information obtained
by monitoring factors such as resource utilization at
sampled time points. Thus, it is important to analyze
and investigate an input control queueing model with
control delay based on sampling monitoring.

The control described above should be finally

evaluated in networks. When we analyze a network
with the control, we should employ a medium/large
size of network because:
*In a network, it seems that one of the most essential
characteristics of the control is the congestion propaga-
tion. However, in a small network such as a two-nodes
network, we cannot get the enough observation of the
congestion propagation.

Employing a medium/large size of network, we have
the following problems:

(1) It is difficult to exactly analyze a medium/large
size of queueing network with the control.

(2) Network behavior is complicatedly influenced
by many parameters such as network parameters (a net-
work topology, source-destination pairs, traffic pat-
terns, and so on), node parameters (the number of proc-
essors and waiting room capacity), and control
parameters (threshold values, monitoring interval
distributions, mean monitoring interval, and basic con-
trol delay times). This indicates that it is very hard work
to clarify the control characteristics in the networks.

As the first step to clarify the control characteristics,
we exactly analyze a single node (a single queueing
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model) with the control, rather than a queueing net-
work, and investigate basic characteristics of the con-
trol. We believe that this gives us a prospect of the con-
trol characteristics in the networks.

From the viewpoint of the networks, analyzing a
single queueing model is based on the following assump-
tion:

*For nodes each of which receives control signals from
the particular node, loads are very light, almost negligi-
ble.

This paper analyzes exactly a two-level input control
queueing model with control delay based on sampling
monitoring, and investigates the influences of the con-
trol delay times on the system performance. The model
can deal with cases where the monitoring interval
distribution is arbitrary. By setting the control delay
times to zero, the model becomes one proposed in [6].

Steady state probabilities are analyzed using
piecewise Markov process theory and some perfor-
mance measures are shown. Through several numerical
results, the effectiveness of the proposed input control
method is demonstrated. Furthermore, the influences
of control parameters such as the control delay times,
threshold values for control, and the monitoring inter-
val distribution on the system performance, are in-
vestigated.

The model comes from a out-of-chain routing
scheme in telephone networks [9]. The scheme permits
calls which overflow from the final in-chain route under
the existing routing scheme (far-to-near rotation
scheme) to be offered to out-of-chain routes. With the
scheme, out-of-chain routed calls are regulated based
on the number of vacant facilities in a node. Fur-
thremore, we can adapt the model to a congestion con-
trol scheme in telephone networks [10]. With the
scheme, calls routed to a particular area are regulated.

2. Model Description

The proposed queueing model is shown in Fig. 1. The
system has S processors and K-S waiting room size.
Two streams of Poisson calls, which are named Call[1]}
and Call[2], respectively, are offered to the system.
Their arrival rates are A, and A,. The service times for
both classes of calls are negative exponentially
distributed with mean 1/u. Calls are processed by
means of a first-in first-out rule. If a call arrives when
the waiting room is full, that call can not enter the
system and is lost.

Call[2] is regulated to enter the system and is lost by
the following two-level on/off control. Let w, be the -
th monitoring epoch, and &, be the number of calls in
the system at the epoch w,. Here, time intervals
(w;+1—w,) are assumed to be generally and in-
dependently distributed in accordance with a general
distribution F(¢) with mean 1/0. A control message,
that is a switch-on message, M-on, or a switch off
message, M-off, is sent at the monitoring epoch w, by
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Fig. 1 Queueing model for input control with control delay.

the following control scheme:
If 0=< ¢, <L, the control message M-on in sent,
If L+1<¢,<H—1, any control message is not sent,
If H=<¢, <K, the control message M-off is sent,

where L and H are thresholds for control.

When the control message arrives at the switch, the
switch is set in the on- or off-position determined by the
contents of the arriving message. Namely, if the arriv-
ing message is M-on (M-off ), the switch is set in the on-
position (the off-position).

The control delay times, (which means the times from
when the control message starts to be sent until it ar-
rives at the switch), are assumed to be negative exponen-
tially distributed with mean 1/v. If the previous control
message is sending when the control message starts to
be sent at the monitoring time point, the previous one is
replaced with the current one. By setting the control
delay times to zero, this model becomes one proposed
in [6].

A two-level control mechanism is necessary to pre-
vent control oscillation. This control type is called
hysteresis control.

3. Model Analysis

Let £(f) be the number of calls in the system and
C (t) be the indicator variable of the state of the switch
defined as follows at the instant #:

0 if the switch is in the on-position,
c()= 0Y]

1 if the switch is in the off-position.

And, let {(¢) be the indicator variable of the state of the
control massage currently underway defined by
0 if any control message is not being sent,
L(t)= 11 if the control message M-on is being sent, (2)
2 if the control message M-off is being sent.
The stochastic process {n(t)}={(£(1), C(¢), {(1))}
forms a piecewise Markov process [11] with the r-th
monitoring epoch @, as a regeneration point.

Therefore, the model can be analyzed in a manner
similar to that reported by Kuczura [11].
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3.1 State Probability at a Time Point Immediately
before Monitoring Time Point
Let {6, ;(!, m, n)} be the regeneration matrix defined
by
0:jx(l, m, n)= Prob(n(w,+0)=(, m, n)
I1(c-—=0)=(i, j, k). 3)

By considering the control scheme described in Section
2, for j=0, 1, k=0, 1, 2, we have

040, J, D=1, 0=isL,

6ix(i, j, k)=1, L+1=i<sH-1, @
0.0, j,2)=1, Hsi=<K,

0:,,x(l, m, n)=0, otherwise.

Let hi;«(l, m, n) be the Markovian transition pro-
babilities defined by

hijx(I, m, n)=Prob (n(w,—0)=(/, m, n)
ImMew,-1+0)=(, j, k). (5

By considering the control scheme described in Section
2, hi j«(1, m, n) are obtained as follows: For 0<i, /<K,
j=09 1’

. K .
hijull §, K)=pi" P+ Y CP G, HP(v-
r=1

. K . X X
hijjei(h g, O=p " {(1=¥M}+ 3 CG™, D{¥(= Yy - (v —y)},
r=1

Ko
hija-i(4, 1=, 0)=k2 pp! (- P ()

+ (-3
M=
M=

C 7k, DY
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hosull,d, k>=j Putt, A)e"dF (1), k=1,2,
0

0

Pii(t, 4,)(1—e")dF (1),
o K

hija-i(l, 1=, O)=So {kgo S;

X Py(t—1, Al_j)d‘r} dF (1),

by, 0)=S

0

Piy(z, 4;)ve™™) )

00

hisol j, 0)=S Pu(t, A)dF (1),
0

h[,j.k(l’ m, n)=09

where Ao=4,+ 4., and P;,(t, 4,) are the transition pro-
babilities for the M/M/S/K queueing model with ar-
rival rate A;. They are given [12] by

otherwise,

. K . .
Pilt, 2)=p"+ 3, C G, lyexp (¥ 1). ™
k=1

See Appendix A for calculating p§”’, C{(i, ), and .
Substituting Eq. (7) into Eq. (6), for 0=<i, /<K, j=0, 1,

), k=1,2,

P(—p' )= P

k=0r=1 y gy (
& y 1=¥e=y! > 8)
+3> 3¢, kyp!! ”v—(m"—)
k=0r=1 v—yps ‘ '
K K K 0oL . W(V—yﬁ"))—‘[’(—yi,l—“)
+2 21 3, € kC T (k, 1y D 0=N_ ,
k=0r=1n=1 Yr VYn v
N ,
hiso(l, J, 0)=p’+ 3 CY(i, DY (—y),
r=1
hij«(l, m, n)=0, otherwise,
P Hv=0, v=y=0, y -yl —vs0,

where ¥(s) is the Laplace-Stieltjes transform of F(¢):

0

”SFS e~'dF (t). ©)

(1]

Let ri;«(l, m, n) be the one-step transition pro-
babilities of the preregeneration chain defined by

rijx(l, m, n)=Prob{n(w.—0)=(, m, n)

From Eqs. (3) and (5), 7,;«(/, m, n) defined by Eq. (10)
is rewritten as follows:

2 1
r,‘_j,k(l, m, n)= E E

L
>3 0iiulny, nay n3)

n=0 n=0 n=0

X A nyn, (1, m, n).

an

Substituting Eq. (4) into Eq. (11), for 0</< K, j, m=0,
1, and k£, n=0, 1, 2

rijk(l,myn)=h;;,(I, m,n), O0sisL,
r;,j,k(l,m, n)=h,-‘,-,k(1, m,n), L+1§I§H—l, (12)
riji(l, m,n)y=h; ;,(l, m,n), H=<isK.
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rij«(l, m, n) can be evaluated using Eqs. (8) and (12).

Let m; ;« be the steady state probabilities of the chain
imbedded at points immediately before the monitoring
time point:

ni = lim Prob(n(w.~0)=(i, j, k). (13)

The distribution {=;,} can be found using the follow-
ing equations.

(14)
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The linear system of equations can be solved by means
of an ordinary numerical calculation method.
3.2 State Probability at an Arbitrary Time Point

Let {g;«} be the stationary distribution at arbitrary
time points defined by

gijx=lim Prob(n(t)=(i, j, k)). 15
Using the rate conservation principle [11]} in the piece-

wise Markov process, the following state equations can
be obtained for j=0, 1, k=0, 1, 2,

{4+ st iea+8c2)v3 g s+ B0+ 0k 2)OTi j k= A;qiz 1, jic F it 1Gix 1, i+ 81.00k0V(Qi00 + it 1)

+0,10k0V(@i02tF G 2) + 0k 10(Ti jo+ T j2),

O=i=<L,

(A it Ga + k2 i jk = AGim 1 s+ Bis1 Givr, sk 600k 0V(Gion + i) (16)

+0,,10k0V(gi02t+Gin2), L+1=isH-1,

{Q =804+ Ui+ (Fua + 0 2)V i ju+ (Ot Ok1 )R ju=Aiqim1 pic i1 Givr jk+ 97.00x0V(Gi00 + i)

+ 010k 0(Gio2t Gin2) + 0k 20(Ti o+ 7 ),

where
min(i, S)u 0=izgK,
= 17
H {0 i=K+1, an
0 i#j,
5:‘.1:{ . j (18)
1 i=j.

From the state diagram, which is not shown in this
paper for lack of space, g« are divided into two
groups. One group is for 0=i<K and (J, k)=(0, 0),
(0, 1), (1, 1). The other is for 0 <i=< K and (j, k)=(0, 2),
(1, 0), (1, 2). The number of independent equations in
Eq. (16) are variables g, ;« for each group is 3(K+1)—1
and 3(K+1), respectively. Therefore, g, can not be
obtained from only Eq. (16). Another equation for
each group is needed. Since the state which consists of
0=<isK and (j, k)=(,0), (0,1), (1,1), does not
change for consecutive monitoring time points, we have

K K
> @ivotF ioa i =D, oo+ Mioa+ i (19)
=0 =0

Similarly
X K
> Gioat Ginot i 2=, Mo+ Minot Mina. (20)
fr) =

g, j« can be evaluated using Eqs. (16), (19) and (20).

3.3 Performance Measures
(1) Loss probability for Call[2] at the switch, B, sw:

K 2
Basw=Y, >, Qirj 1)

i=0j=0

Hs<isK,

(2) Loss probability for Call[2] at the system, B, sys:

Bz,sys=§]0 9k, (22)
(3) Loss probability for Call[l], B, for Call[2], B,:
B =§}g qx.iis (23)
By=B; sw+ By sys. 24)
(4) Mean waiting time for Call{l], W,, for Call{2],

Wz:

] K- 1 2
_S— Z (i—S+ l)(z Zq,',j.k)/(]_Bl), (25)
J=0 k=0

2}

=
)

1 2
Wz=S— (i—S+ 1)(2 qi,o,j)/(l —By). (26)
Jj=0
(5) Regulation control probability, R:
R is the probability that the system is in the regula-
tion state, that is the switch is in the off-position. R is
given as

||M

R= Bz‘sw‘ (27)

(6) Regulation control frequency, F:

F is the average number of transitions from off-posi-
tion to on-position or from on-position to off-position
of the switch per unit time. F is given as

K K
F=V(Z (]i,l,l'*'quzo.z)- (28)
i=o i=o

Under the steady state, the first term is equal to the sec-
ond term in the right-hand side of Eq. (28).
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4. Numerical Results and Discussions

Through all numerical results, the parameters used
are K=10, S=5, #=1.0, and 4,=1.0. Through Figs. 2-
6, the monitoring interval distribution is the unit
distribution (D).

(1) Effectiveness of the input control

Figure 2 shows the loss probabilities as a function of
A, for Calis[1], B,, and for Calls[2], B,, both at the
switch, B, sw, and at the entrance of the system, B, sys.
The parameters used in Fig. 2 are (L, H)=(3,7),
o=1.0, and v=2.0. For comparison, the loss probabil-
ity without the control is shown, where B;=B,. The loss
probability for Calls[1], B,, with the control is smaller
than that without the control. A high percentage of the
lost Calls[2] are rejected at the switch. Therefore, the
control is effective.

(2) Influence of mean control delays on system perfor-
mance

Figures 3(a), 3(b), and 3(c) show loss probability for
Calls[1], regulation control probability, and mean
waiting time for Calls[1], respectively, in the case where
(L, H)=(4,)5).

Figure 3(a) implies that the optimum mean control
delay, which gives a minimum B,, exists when the mean
monitoring interval is not too short and the traffic is
heavy. This phenomenon is confirmed by additional ex-
amples, which are not shown for lack of space. We
show a possibility that the phenomenon occurs as
follows.

Let us consider what happens in the cases where the
traffic of Call[2] is heavy and the mean control delay,
1/v, is (a) short, (b) medium, or (c) long by typical ex-
amples in Figs. 4(a)-(c), where H=L + 1 for simplicity.

In case (a), shown in Fig. 4(a), the control message
M-off is sent to the switch at the monitoring time point
71, because the number of calls in the system at T, ex-
ceeds the threshold L. The message M-off arrives at the
switch after the control delay 1/v, and the switch turns

10 -

Loss probability

Arrival rate of Call[2], A2

Fig. 2 Loss probability vs. arrival rate of Call[2].

A. Fukupa, K. KoMamizu and K. UTsuMIYA

into the off-position at the time ¢,. The message M-on is
sent to the switch at 7,, because the control delay is
short and the time interval 7,—1¢, is long enough for the
number of calls in the system to become lower than L at
7. Next, the switch turns into the on-position at #,.
These phenomena are repeated. That is, the switch
turns into the off/on/off/on/off-positions at #,, t, 3,
14, ts, respectively. In this case, each cycle of control con-
sists of two states of the switch, one on and one off.
Therefore, the regulation control probability
R=1/(1+1)=1/2 in Fig. 4(a).

Let us consider case (b), shown in Fig. 4(b), where the
control delay is medium. The message M-off is sent to
the switch at 7;, because the time interval r,—¢, is not
long enough for the number of calls in the system to
become lower than L at 7,. In this case, the switch is in
the off/off/on/off/off-positions during the time
periods (4, t2), (%, t3), (&, ta), (ta, ts), (Is, ts), respec-
tively. There are one on-state and two off-states of the
switch in each cycle. Therefore, R=2/(1+2)=2/3 in
Fig. 4(b).

In case (c), shown in Fig. 4(c), the switch has the
same on-off position pattern as case (b) during a time
period from ¢, to #,. However, the message M-on is sent
to the switch at 7,4, because the time interval 7,—t; is not
long enough for the number of calls in the system to ex-
ceed L at 7,. In this case, the switch is in the
off/off/on/on/off-positions during the time periods
(11, 12), (fz, f;), (t;, 14), (t4, ts), (ts, ’6): respectively.
There are two on-states and two off-states in each cycle.
Therefore, R=2/(2+2)=1/2 in Fig. 4(c).

As shown above, the value of R is greatest for case
(b), which is confirmed by Fig. 3(b). The example in
Fig. (4) is one in case where the system behavior is not
stochastic. However, the similar discussion described
above seems to be applied in a case where it is
stochastic. It is likely that a large number of Calls[1]
can enter the system at the neighborhood of point
where the number of Calls[2] rejected by the control is
greatest, namely where the value of R is greatest. Above
discussion means that the optimum mean control delay,
which gives a minimum B,, exists when the mean
monitoring interval is not too short and traffic is heavy.

The discussion described by using Fig. 4 suggests that
R has a local maximum value in the case where the
mean control delay time is greater than the mean
monitoring interval. However, Figure 3(b) shows that
it is not, which is confirmed by additional examples.

Although the minimum control delay time may be
fixed after building a network, the control delay time to
be implemented into a real system can be modified in
the case where the optimum control delay is grater than
the minimum one. In this case, the control delay is set
to be the optimum one.

It is difficult to derive a formula of the optimum con-
trol delay, because the system behavior is stochastic and
a large number of parameters such as the arrival rates
of Calls[l] and Calis[2], the thresholds, the mean
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(a) Loss probability of Call[1]
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(b) Regulation control probability
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(c) Mean waiting time of Call[1)

Fig. 3 System performance vs. mean control delay.
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Fig. 4 Examples in the cases where the control delay is (a) short,
(b) medium, or (c) long.

monitoring interval, etc., can affect the system perfor-
mance. It is one of further studies to derive an approx-
imate formula for the optimum control delay.

In Fig. 3(c), the slopes of W, are in opposite direc-
tions for light and heavy traffic. The reason is explained
by Fig. 5. Figure 5 shows W, on, Wi ofr, and a probability
Q in the case where 1/g=1 in Fig. 3. In the case of
A>»=35, Fig. 3(c) does not show the slope of W, under
1/a=1 for convenience of illustration. The values of
W, under 1/g=1 are between that under 1/¢=0.5 and
that under 1/0=3. The values of W, o, and W, s mean
the mean waiting time for Calls[1] entering the system
when the switch is in the on-position and in the off-posi-
tion, respectively. The value of Q means a ratio of the
number of Calls[1] entering the system when the switch
is in the off-position to the number of Calls[1] entering
the system. Wi, Wion, and Q are given in Appendix
B. A relationship between W, W), Wion, and Q is
given by Eq. (B-4) in Appendix B.
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Mean control delay, 1/v

Fig. 5 Two conditional mean waiting times for Call[l], W,
W, o, and a ratio, Q vs. mean control delay.

As shown in Fig. (5), Wion(Wior) is an increasing
(decreasing) function of the mean control delay,
because the system in the on-position (off-position) of
the switch is congested (is not congested) as the control
delay increases. The value of Q under A,=20 is greater
than that under A,=35, because the probability that the
switch is in the off-position under 1,=20, is greater
than that under A,=35. From the above discussion and
Eq. (B-4) in Appendix B, the line of W, slopes upwards
for light traffic and downwards for heavy traffic.

(3) Effectiveness of the hysteresis control

Figure 6 shows the regulation control frequency, F,
as a function of h. The values of a lower threshold, L,
and a higher threshold, H, are set to satisfy the equa-
tions L=S—h, H=S+ h, respectively. The parameters
used in Fig. 6 are 6=1.0 and v=2.0. Obviously, F
decreases as 4 increases. Thus, the hysteresis control is
effective to reduce the control switching frequnecy.
However, it does not mean that a control under which F
decreases is good. It should be considered from various
viewpoints of system performance.

(4) Influence of the monitoring interval distributions
on system performance

Figure 7 shows B, in the case where the monitoring in-
terval distributions are the unit distribution(D), ex-
ponential distribution(M'), and 2-stage hyperexponen-
tial distribution(#-). The parameters used in Fig. 7 are
(L, H)=(3,7) and 6=1.0. To determine the distribu-
tion H,, a symmetric condition [14] is used, and the
value of the coefficient of variation is set at 2.0. The
value of the coefficient of variation becomes smaller in
the order of the distributions H,, M, D [15], that is, it is
smallest in D. B, decreases as the value of the coefficient
of variation becomes smaller. The same phenomenon,
confirmed by additional examples, is shown through
numerical results with no control delay in [6].
Therefore, we conjecture that periodically monitor-
ing(D) gives a minimum loss probability for Calls[1]
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Fig. 6 Regulation control frequency vs. differences between two
thresholds.

under the condition that the system and the control
parameters (mean monitoring interval, mean control
delay, and threshold values for control) are fixed.

5. Conclusions

A two-level input control model with control delay
based on sampling monitoring has been analyzed and
discussed. Performance measurements have been
calculated from the steady state probabilities. This
model can deal with cases where the monitoring interval
distribution is arbitrary. Through several numerical
results, the effectiveness of the proposed input control
method is demonstrated. Furtheremore, the influence
of the control parameters such as the control delay, the
threshold values for control, and the monitoring inter-
val distribution on the system performance, are in-
vestigated numerically. In particular, we get the
remarkable result that there is a mean control delay
which gives a minimum loss probability for uncontroll-
ed calls, Calls[1], under heavy traffic conditions. Fur-
thermore from the numerical results, we conjecture that
periodical monitoring(D) gives a minimum loss
probability for Calls[1] under the condition that the
system and the control parameters are fixed.

This paper mainly focuses on the characteristics for
uncontrolled calls. In case where the control is im-
plemented into real systems, the values of the control
parameters should be decided after general considera-
tion of total characteristics of the system.

Further studies in progress are:

i) to analyze a model where the control delay times are
deterministically distributed,

ii) to prove the conjecture that periodical monitoring
gives a minimum loss probability for uncontrolled calls
under the condition that the system and the control
parameters are fixed,

iii) to derive an approximate formula for the optimum
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Fig. 7 Loss probability of Call{1] vs. mean control delay.

control delay giving a minimum loss probability for un-
controlled calls under heavy traffic conditions, and
iv) to extend the model to a network model.
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Appendix A

Transition probabilities for the M/M/S/K queueing
model [13].

Let A and u be the arrival rate and the service rate in
the M/M/S/K queueing model, respectively. In par-
ticular, for convenience, we use A and P;,(¢) rather than
A; and P;(t, A;), respectively, which are used in section
3. Let P;(t) be the probability that the system is in state
[ at time ¢, given that it was in state / at time zero, where
the state is defined as the number of calls in the system.

P;,(t) are given by

K
Pu()=p+ Y, Ci(i, Iy exp (nt), 0=i, I=K, (A1)
k=1

where p, are steady state probabilities for the
M/M/S/K queueing model;

@ /1) po, 1=I=sS,
= )
P {(aS/S!)p"Spo, S+1=/=K, A2
N K-S -1
Po=(§(tf’/n!)+(as/S!)le") , (A-3)

where a=A/u and p=a/S.
Ci(i, 1) is given by

K
Ck(i,1)=(Di(}’k)Dl(yk)/DK(yk)Dl’(+l(yk))'lk_i H Mny

n=I+1
A4

where g;=min (i, S)u for 1=i=K and y; are eigen-
values of the following infinitesimal generator A4;

(—ao Ui 0 7
A —a M2
A= o (A-5)
O A —oak-r Mk
. A — Q.

where ap=A4, a;=A+u; for 1 =i<K—1, and ax=px.
The eigenvalues y, are calculated with ordinary
numerical methods. A effective numerical calculation
method of the eigenvalues is shown in [13].
The D,(s) in Eq. (A-4) is an eigenpolynominal for
the matrix A, given by
Dy(s)=1,
D| (S) =S+O!o,
Do (8)=(s+ o) Da(s)— AttnDp-1(s), 1=nz=K,
(A-6)
and D,(s) is its derivative;
Di(s5)=0,
Di(s)=1,
D;+1(8)=Dn(s)+(s+a,)Di(s)— AunDj-1(s),

1=sn=K.

A7)



176

A. Fukupa, K. KoMAMizU and K. UTsuMiva

Appendix B

Expression of W, o, W, and Q. I K1y, 2 3 B-3
Wions Wior, and Q are given by 2 = kgo ; Z qu"""' ®-3)

- -1 2
Wy on=— 1 KZ (,_S.H)(Z q,Ok)/ by Z Giok, (B-1) A relationship between Wy, W, o, W, oq, and Q is given

on S,‘ P =) 5 5 by

2 K-1 2
Wia=s 3, <"S+“<Z ‘“)/ % % qun B2 Wi=Wian(l = Q)+ Wi on Q. (B-4)

Sy i=s k=0 =0 k=0



