Regular Paper

Implementation and Evaluation of ASN.1 Compiler

Toru HasEGawA*, SHINGO NoMURA* and TosHIHIKO KaTo*

ASN.1 (Abstract Syntax Notation One) is a formal specification language which provides a means to define
the structures of transferred data and their external representation in the OSI application protocols. In im-
plementing OSI application protocol software, implementors have to write encoder and decoder programs
which convert data in an internal data representation into an external data representation, and vice versa. The
size of encoders and decoders is generally large since the application protocols use complicated data structures
in order to provide various communication services. In order to reduce the implementation costs of the encoder
and decoder, it is a promising subject to develop a software tool generating those programs automatically. We,
therefore, have developed an ASN.1 compiler which generates encoders, decoders and internal data types for in-
dividual data types in an ASN.1 specification. We have applied the compiler to generate encoders and decoders
of several OSI protocols, such as FTAM and MHS protocols. The size of these programs is almost the same as
the manually written encoders and decoders. The performance of generated encoders and decoders is more than
800 K bytes per second on 4 MIPS workstation. It ensures that the compiler can be applied to practical software

implementation.

1. Introduction

In the progress of OSI (Open Systems Interconnec-
tion) standardization, a number of application layer
protocols have been standardized. OSI application
layer protocols provide various computer communica-
tion services, such as electronic mail and file transfer, in
a heterogeneous computing environment. In such an en-
vironment, computer systems use different ways to
represent data internally. The ASCII and EBCDIC
character codes and the variety of the length of integers
are typical examples. Data transfer among different
kinds of computer systems, therefore, requires the in-
troduction of an external data representation in which
the transferred data is expressed in order to be
understood commonly. The data in internal representa-
tions is converted to and from the external data
representation at the transmitting and receiving sides re-
spectively.

ISO and CCITT have standardized a specification
language, called ASN.1 (Abstract Syntax Notation
One) [1, 2], which is currently used to specify the data
types of PDUs (protocol data units) of the OSI and
ISDN application layer protocols, in order to provide a
means to define abstract data structures of transferred
data and their external representation in the OSI en-
vironment. ASN.1 provides the syntax rules which
define abstract data types, and also defines the encoding
rules which determine the standard external data

*KDD R & D Labs. 2-1-15, Ohara, Kamifukuoka-shi, Saitama,
356, Japan.

Journal of Information Processing, Vol. 15, No. 2, 1992

representation for the defined data types. For example,
an integer is represented by the INTEGER type which
does not specify either a value range or a cardinal, but
only specifies that its value is an integer. A communica-
tion machine, therefore, implements such an abstract
INTEGER as its own integer internal representation.
Such an integer internal value is converted to a standard
external representation according to the ASN.1 encod-
ing rules for it to be transferred to another machine.

In the development of application layer protocol soft-
ware, it is required to deal skillfully with abstract data
types of PDUs specified by ASN.1 and their external
representation. First of all, implementors need to
design internal data representations corresponding to
the ASN.1 defined abstract data types. For example,
ASN.1 SEQUENCE type, which specifies an ordered se-
quence of data values, has to be skillfully represented in
a machine because few programming languages provide
such kinds of data types. Secondly, they have to imple-
ment the encoder and decoder which convert data in an
internal data representation into the external data
representation, and vice versa. These conversions are
called encoding and decoding respectively. Finally, they
write an application program which implements an ap-
plication protocol behavior. The program refers to and
modifies the internal representations of ASN.1 to for-
mat PDUs and analyze decoded PDUs.

The implementation of an encoder and decoder has a
great influence on the productivity of application pro-
tocol software. The size of encoders and decoders is
generally large because the application protocols use
complicated data structures in order to provide various

158

communication services. For example, the size of
manually implemented encoders and decoders for P1
and P2 protocols of MHS (3] is about 13 K lines in the
C language [13]. In order to reduce the implementation
cost of the encoder and decoder, it is a promising sub-
ject to develop a software tool generating these pro-
grams automatically. Since the encoding rules of ASN.1
are rigorously defined, it is considered that automatic
program generation is suitable for ASN.1 encoder and
decoder implementation.

There are two serious requirements for encoders and
decoders which are integrated into practical communica-
tion systems. The most important one, which can be
easily guessed, is high performance. Another one,
which has not been explicitly discussed in the literature
[6-8], is productivity and readability of application pro-
grams. Programs which format PDUs and analyze
decoded PDUs heavily refer to and modify internal
representations of ASN.1 abstract data types. The
design of the internal representations, therefore, has a
great influence on their productivity and readability.

There are two approaches for developing such tools.
One is to introduce a tool which generates encoders,
decoders and internal data types for individual data
types in an ASN.1 specification, called an ASN.1 com-
piler approach [4-6]. The internal data types retain the
structures of original ASN.1 data types. The other is a
pre-implemented encoder and decoder approach (7, 8],
in which a single, pre-implemented encoder and
decoder are used for any data types defined by ASN.1.
A pre-defined internal data type is used for any ASN.1
data types. The data types used in an application pro-
tocol are described by combining pre-defined types.

We have adopted an ASN.1 compiler approach
because a pre-implemented encoder and decoder ap-
proach can satisfy neither of the above requirements.
First of all, pre-implemented encoder and decoder in-
clude so many overheads for interpreting data struc-
tures which are specific to each application protocol
that they are not able to attain high performance. Sec-
ondly, it decreases the readability and productivity of
application protocol programs because the identical in-
ternal data type cannot preserve the structures of
original ASN.1 data types.

Our ASN.1 compiler generates encoders and
decoders in the C language which is widely used in the
communication software implementations. We have ap-
plied the compiler to genrate encoders and decoders of
several OSI protocols, such as FTAM [9] and MHS pro-
tocols. The size of those programs is almost the same as
that of manually written encoders and decoders. The
performance of generated encoders and decoders is
more than 800 K bytes per second on 4 MIPS worksta-
tions. It ensures that the compiler can be applied to
developing practical software implementation which is
supposed to be executed under local area network
(LAN) environments.

In this paper, we describe the design and implementa-

T. HASEGAWA, S. NoMURA and T. KaToO

Table 1 Built-in types.

type value
BOOLEAN boolean
INTEGER integer
sl;'ppe': REAL real
BIT STRING bit string
OCTETSTRING Joctet string
IASSTRING kcharacter string
SEQUENCE fixed list of ordered component values
structured SET fixed list of unordered component values
types SEQUENCE OF [list of zero or more ordered component values
SET OF Ilist of zero or more unordered component values
CHOICE Jgne of the component values

PersonalRecord :: = SEQUENCE {
name IASSTRING,

age Age,
job IA5STRING OPTIONAL }
Age ::= INTEGER

Fig. I An example ASN.1 specification.

tion of the ASN.1 compiler and the evaluation of
generated encoders and decoders. In chapter 2 the
design strategies of the compiler are presented, and in
chapter 3 the structure of the programs generated by the
compiler is described. In chapter 4, we describe the im-
plementation of the compiler and the evaluation of
generated programs.

2. Design Strategies

2.1 Outlines of ASN.1

ASN.1 is a formal specification language for defining
data structures of PDUs in OSI application layer pro-
tocols. ASN.1 provides built-in types from which new
data types are constructed. Table 1 shows the main
built-in types. Built-in types are categorized into simple
types and structured types. A simple type is defined by
specifying a set of its values, and a structured type is de-
fined by a reference to one or more other types. Figure 1
illustrates an example of an ASN.1 specification which
defines the data type of a personal record with three
components: a name, an age and a job name.

ASN.1 also has the encoding rules which determine
the external data representation, i.e. the data representa-
tion used in the communication, of the data types de-
fined by ASN.1. The external data representation con-
sists of three kinds of octets: identifier octets, length
octets and contents octets.

Identifier octets are determined by either a tag, a kind
of identifier, or several tags. First of all, each ASN.1
built-in type, such as JASSTRING and SEQUENCE

Implementation and Evaluation of ASN.1 Compiler

PersonalRecord ::= SEQUENCE {
name [APPLICATION 0] IMPLICIT IASSTRING,

age Age,
job [APPLICATION 1] IMPLICIT IASSTRING
OPTIONAL }

Age ::= INTEGER

Fig. 2 A data type defined by using tags.

types, has a tag which identifies its type. For example,
IASSTRING has tag [UNIVERSAL 22], and its iden-
tifier octets are 16 in hexadecimal notation. Secondly,
additional tags can be assigned to a newly defined
ASN.1 type as well as an originally assigned tag. For ex-
ample, if a structured type has the same data type com-
ponents, each component must have different identifier
octets, which is achieved by adding a different tag to the
component. This additional tag is added to a data type
which is newly defined and a component of a structured
type. For example, the new type definition

“Name:: =[APPLICATION 0] IASSTRING”’

adds tag [APPLICATION 0] to IASSTRING.
Although the identifier octets of IASSTRING value are
16 in hexadecimal notation, those of ‘‘Name’’ value are
60 and 16. Figure 2 gives another example of adding
tags to components of the structured type defined in
Fig. 1. In Fig. 2, tags ‘“‘[APPLICATION 0] IM-
PLICIT” and ‘“[APPLICATION 1j IMPLICIT” are
added to the components ‘‘name’’ and ‘‘job’’ whose
types are IASSTRING, respectively. The identifier
octets of the values ‘‘hasegawa’’ and ‘‘researcher’’ in a
value {‘‘hasegawa’’, 29, ‘“‘researcher”’} of the ‘‘Per-
sonalRecord’’ type are 80 and 81 in hexadecimal nota-
tion, respectively. Although these two values have the
same type, the identifier octets are different. It is,
therefore, very important to skillfully deal with tags
which are assigned to a type definition for efficient
ASN.1 encoding and decoding.

The length octets hold the length of contents octets.
Two forms of length octets are provided by ASN.1 en-
coding rules: the definite form and the indefinite form.
In the definite form, the length octets specify the length
explicitly. Length octets in the indefinite form do not
specify the length of contents octets, but a delimiter is
used to detect the end of contents octets. The delimiter
is called end-of-contents octets, which consist of two
octets (00 00 in hexadecimal notation).

The contents octets include a data value. For exam-
ple, in Fig. 2, the contents octets of the value ‘‘Per-
sonalRecord’’ are composed from the encoded octets of
component values, ‘‘hasegawa’’, 29 and ‘‘researcher’’.

2.2 Design Principles

The following requirements must be satisfied by a
software tool which automatically implements ASN.1
encoder and decoder programs.

—High performance encoding and decoding

—Productivity and readability of application pro-
grams

159

—Abundant error check facilities of decoders

—Supporting of all the ASN.1 data types, including
those defined recursively

—Supporting of all the encoding rules

—Portability of generated programs for various
operating systems

Of the above requirements, the first two are the most
important for realizing an effective encoder and decoder
which is used for practical communication system
development. In order to satisfy these two re-
quirements, we have taken the ASN.1 compiler ap-
proach. We will discuss the reasons for which we have
taken the compiler approach and the design principles
for fulfilling the requirements after briefly explaining
both approaches.

An ASN.1 compiler [4-6} is a software tool which
generates encoders and decoders for individual data
types in an ASN.1 specification. It also translates each
ASN.1 type into a data type of a target programming
language. For example, INTEGER of ASN.1 may be
translated into int in the C language. On the other
hand, pre-implemented encoder and decoder programs
perform encoding and decoding for any ASN.1 data
types [7, 8]. Generally, all the ASN.1 data types are
translated into an identical data type which defines a
node of a tree representing the structure of an ASN.1
data type {7, 8]. They refer to trees which consist of
these nodes while encoding and decoding. The tree
structures are generated from an ASN.1 specification by
an ASN.1 pre-compiler.

2.2.1 High Performance of Encoding and Decoding

Since high performance is the most important require-
ment for an ASN.1 encoder and decoder, the ASN.1
compiler approach is more hopeful. A pre-implemented
encoder and decoder is considered not to be able to at-
tain as high performance as an individually generated
encoder and decoder because it includes overheads
caused by its interpreting the trees in the encoding and
decoding. As for the program size of encoder and
decoder, however, that of the pre-implemented ones is
considered to be smaller than the total size of these
generated by an ASN.1 compiler, which was also de-
scribed in {8].

We concluded that the program size in the ASN.1
compiler approach is not a disadvantage because the
generated encoders and decoders may be as large as
manually written encoders and decoders, even though
they are larger than pre-implemented ones. We also de-
cided that the throughput of encoding and decoding is
more important than the size of encoders and decoders.

In addition to adopting the compiler approach, we
have adopted the following design principles to imple-
ment as effiicient encoder and decoder programs as
possible.

(1) Skiliful Processing of Tags

It is very important for encoders and decoders to deal
with assigned tags for efficient encoding and decoding,

160

which has not been explicitly stated in the literature [6-
8], because encoding and decoding of identifier octets
might be heavier than those of length and contents
octets which are easily computed. For example, in
decoding, all identifier octets must be analyzed so as to
check whether they are conforming to the assigned tags.
We, therefore, have adopted the following design prin-
ciples for efficient processing of tags:

—An ASN.I compiler translates the assigned tags so
that generated programs maintain all the possible com-
binations of assigned tags. Concretely, all the combina-
tions of the assigned tags are converted into identifier
octets, which are maintained as constants in a generated
program. It releases generated encoders and decoders
from computation about assigned tags.

—Tags are implemented compactly. Since the above
generated constants are frequently referred to in both
encoding and decoding, they are generated as an array
of computed identifier octets which makes it easy for en-
coders and decoders to access them.

(2) 2 Phase Encoding

The structure and length of length octets cannot be de-
termined for structured types until the length of all the
components are determined. For example, the length
octets whose contents are 32 and 256 octets long are 1
octet and 2 octets long, respectively. It is impossible for
an encoder to pack serially all the encoded octets into a
result octet string, which means that an 1 phase encoder
might require wasteful octet data copy if a length
octets’ length is longer than expected. 2 phase encoding,
therefore, has been adopted for efficient encoding,
which has also been adopted by another ASN.1 com-
piler [6). In order to pack serially an encoded octet into
a result octet string, encoders compute lengths of all the
length octets in the first phase, and pack the encoded
octets in the second phase.

2.2.2 Readability and Productivity of Application
Programs

Readability and productivity of application programs
are another important requirement which has not been
explicitly stated in the literature [6-8). Translation of
ASN.1 data types into target programming language
data types has a great influence on readability and pro-
ductivity. Despite the importance, ASN.1 pre-compilers
[7, 8], used in the pre-implemented encoder and
decoder approach, cannot translate ASN.1 data types
so that application programs are made easy to read.
The fact that ASN.1 pre-compilers translate all the
ASN.1 data types into an identical data type of a pro-
gramming language generally has grave disadvantages.

First of all, this clearly degrades the readability of the
program. For example, variables in an application pro-
gram have the same data type even though they corres-
pond to different ASN.1 types. A reader cannot under-
stand what ASN.1 type the variable is corresponding to.
Secondly, a programmer must manipulate variables cor-
responding to different ASN.1 types in the same way,

T. HASEGAWA, S. NOMURA and T. KaTo

[ASN.1 Specification

¥ L]

Internal Data Type Encoder and Decoder
H Representations Routines
réifer to | T

l C Compiler/ Linker J

LEx«utable; Program |

Fig. 3 Implementation procedure.

which may reduce the productivity of application pro-
grams. Furthermore, some errors of application pro-
grams may not be detected by a target programming
language compiler but only detected at the time of ex-
ecution. For example, suppose a programmer writes
codes which assign an integer value to the first compo-
nent of a variable corresponding to the ‘Per-
sonalRecord’’ type in Fig. 2. A target language com-
piler may not detect this error because there is no way
for the compiler to know that the first component is not
an INTEGER type but a IASSTRING type.

On the other hand, an ASN.1 compiler, which
translates all the ASN.1 types individually, can easily
avoid the above disadvantages. This one-to-one transla-
tion has also been adopted by another ASN.1 compiler
[6]. In order to make translated types as readable as
possible, our ASN.1 compiler tries to retain the struc-
tures and literal names of original ASN.1 types as much
as possible in translating ASN.1 types. This makes ap-
plication programs easy to write and read.

2.3 Implementation Procedures

We have chosen the C language as a target programm-
ing language because it is widely used for communica-
tion software implementation. The implementation pro-
cedure of application protocol software using our
ASN.1 compiler is illustrated in Fig. 3. First of all, from
an ASN.1 specification, the ASN.1 compiler translates
ASN.1 defined data types into C data types, and
generates encoders and decoders in the C language. Sec-
ondly, implementors write a protocol behavior part of
an application protocol program, which is using and
referring to the generated C data types. Finally, all the
programs, both automatically generated and manually
written, are compiled and linked to executable pro-
grams by C language compilers and linkers.

3. Translation and Generation

In this chapter, we describe the details of translation
techniques of ASN.1 data types and generation tech-
niques of encoders and decoders. We have designed the
generated data types and programs so as to achieve the

Implementation and Evaluation of ASN.1 Compiler

Table 2 Translation of simple types.

type data structures in Clanguage
BOOLEAN int
INTEGER int
REAL double
BIT STRING defined by struct “STRING”
OCTET STRING defined by struct “STRING”
IASSTRING defined by struct “STRING”

requirements, such as portability and readability, de-
scribed in section 2.2.

3.1 Data Type Translations

3.1.1 Simple Types

All simple types are translated into C data types.
Main translations are listed in Table 2.

These translations, except for the STRING type, are
achieved by direct mapping. For example, INTEGER
and BOOLEAN of ASN.1 are translated into in¢ in the
C language. REAL is translated into double in C.

A string of octets or characters, such as OCTET STR-
ING and IA5SSTRING, is not directly mapped into a
pointer type of char in the C language, but is translated
into a C struct STRING as illustrated in Fig. 4 because a
string of octets does not have a delimiter which in-
dicates the end of a string. This struct has the two
members: ‘‘size’’ indicating the length of octets or
characters, and ‘‘st7’’ pointing to octets or characters.

The ASN.1 compiler generates a C data type defini-
tion from an ASN.1 simple type definition using a
typedef statement (see Fig. 4).

3.1.2 Structured Types

(1) SEQUENCE and SET

Each new data type defined by SEQUENCE and
SET, which has a similar structure to record type, is
translated directly into a C struct whose members corres-
pond to its components. Figure 5 illustrates an example
translation of SEQUENCE type. The struct retains a
structure and literal names of an original SEQUENCE
type. The literal name of a struct type is that of an
original ASN.1 type, and the name of each member is
also a reference name of an original component. This
retention also makes it easy for a programmer to
declare and manipulate a variable corresponding to a
structured type. An optional component, however,
whose value’s existence is not mandatory, cannot be
mapped directly into a component of a translated
struct. Even if this optional component were mapped to
a single component of the translated struct, the compo-
nent could not hold both pieces of information: a con-
tent value and an indicator which indicates whether its
value exists or not. An optional component, therefore,
is mapped into two components for holding a value and
the indicator. ‘‘job_flag”’ in Fig. 5 is an example of the
indicator.

161

(1) Data type definitions in ASN.1
Age ::= INTEGER
Float ::= REAL
Name :: = IASSTRING
(2) C data types
typedef int INTEGER;
typedef double REAL;
typedef struct string {
int size; /* the length of octets */
unsigned char *str; /* the pointer to octets */
} STRING;

Fig. 4 C data types for ASN.1 simple types.

(1) Data type definition in ASN.1
PersonalRecord :: = SEQUENCE {

name IASSTRING,
age Age,
job IASSTRING OPTIONAL }

(2) Generated codes by the ASN.1 compiler
typedef struct seq__PersonalRecord {
IASSTRING *name;

Age age;

IASSTRING *job;

int job__flag;

int esize; /* used by encoder routines */

} PersonalRecord;

Fig. 5 Translation of SEQUENCE type.

(1) C types for SEQUENCE OF and SET OF types
typedef struct Ist { /* the node */

LST next; /*the pointer to the next node*/
char *elem; /*the pointer to the component */
}LST;

typedef struct seqof {
LST *first; /*the pointer to the head of singly-linked list*/
LST *last; /* the pointer to the tail of singly-linked list*/
int size ; /* the number of components */
int esize ; /* used by encoder routines */} SEQOF ;
(2) Data type definition in ASN.1
PersonalRecordList :: = SEQUENCE OF PersonalRecord
(3) Generated codes by the ASN.1 compiler
typedef SEQOF PersonalRecordList;

Fig. 6 Translation of SEQUENCE OF and SET OF types.

(2) SEQUENCE OF and SET OF

It is reasonable for SEQUENCE OF and SET OF,
which are ordered and unordered component values, to
be represented as either a sequential list or an array;
however, an array is not appropriate because the
number of components is indefinite. These types are
represented as a singly linked sequential list of their
components. They are implemented by use of the two
data structures in the C language: struct ‘“‘SEQOF”’
and struct ““‘LST”’ in Fig. 6, because the C language has
no type which directly represents a list. Struct “‘LST”’
represents a node of the list. It has two pointers:
‘‘elem’’to a component, and “‘next’’ to the next node.
Struct ““SEQOF”’ is a header of the list. It has three
members: ‘‘first’> and ‘‘last”’ indicating the head and
tail of the list, and ‘‘size’’ indicating the number of com-
ponents. The ASN.1 compiler translates SEQUENCE
OF and SET OF types into the type “SEQOF’’ (see Fig. 6).

(3) CHOICE

The CHOICE value holds one of the values out of

162

(1) Data type definition in ASN.1
PDU ::= CHOICE {
req ReqPDU, ind IndPDU,
conf ConfPDU, resp RespPDU }
(2) Generated C type by the compiler
typedef struct C_ PDU {
int nth; /*theindicator of the selected component */
int esize; /* used by encoder routines */
union {
ReqPDU *req; IndPDU *ind;
ConfPDU *conf; RespPDU *resp; } elem;
} PDU;

Fig. 7 Translation of a CHOICE type.

possible components. For example, the value of
“PDU”’ type in Fig. 7 holds one of the values whose
types are ‘“‘ReqPDU”’, “IndPDU”’, “ConfPDU’’ and
““RespPDU”’. This type, which is quite similar to union
in the C language, cannot be directly translated into
union because of the similar reason that an optional
component is not directly tanslated into a single compo-
nent of the translated struct. If it were translated into a
union, a programmer could not know to which compo-
nent type a value is corresponding. It is translated into a
C struct consisting of both a component which holds a
value and an indicator. Concretely, the struct has the
following members: ‘“nth’’ as the indicator for the
selected component, and ‘‘elem’’ which is a union of all
the components. Figure 7 illustrates an example transla-
tion of the CHOICE type. The ASN.l1 compiler
generates the struct from a data type defined by the
CHOICE type.

3.2 Generation of Encoders and Decoders

3.2.1 Generation Scheme

In order to achieve the criteria described in section
2.2, the ASN.1 compiler generates the encoder and
decoder routines in the C language according to the
following schemes.

T. HASEGAWA, S. NoMURA and T. KATo

(1) Program Structures

Encoder and decoder routines for simple types are im-
plemented in the encoder/decoder library beforehand.
The library also includes primitive routines commonly
used by the encoder and decoder routines. Table 3 lists
the main routines in the library.

The encoder and decoder routines for structured
ASN.1 types, on the contrary, are composed of those
for the component types. For example, an encoder
routine for the PersonalRecord type calls the encoder
routines for the IASSTRING and INTEGER types. The
ASN.1 compiler generates encoder and decoder
routines for structured types. These routines use the
routines in the encoder/decoder library.

(2) Processing of Tags

The ASN.1 compiler translates the tags that are as-
signed to either a newly defined type or a component
type of a structured type into encoded identifier octets.
These identifier octets are implemented as an array of
octets, named id_array (see Fig. 8), which is an argu-
ment of encoder and decoder routines. Encoder and
decoder routines can easily manipulate identifier octets
by directly accessing the id_array. For example, a
decoder routine only has to compare identifier octets of
the target decoding octets with a corresponding id_ar-
ray for decoding of identifier octets. This simple struc-
ture also makes it easy for encoders and decoders to ac-
cess the array.

(3) Portability

In order to increase portability, we have designed all
the codes of generated and library routines. First, all
the routines in the library call only the routines malloc
and free which are popularly provided by the C stand-
ard libraries. All the generated routines call only the
routines in the encoder/decoder library. This makes all
the routines free from the differences among various C
standard libraries. Secondly, the generated routines and

Table 3 Primitive routines in the library.

name task
enc__idlen converting tags into identifier and length octets
skip__idlen checking the identifier and length octets
checkeoc checking the end-of-contents octets
e_int lencoding of ainteger value
e__string lencoding of STRING value, such as OCTET STRING and IASSTRING value
z_int lcalculating the length of a integer value
z__string calculating of the length of a STRING value, such as OCTET STRING and IA5STRING value
d_int decoding of a integer value
d__string decoding of a STRING value, such as OCTET STRING and IASSTRING value
asn__alloc allocating of memory pool (buffer space)
asn__free Ideallocating of memory pool (butfer space)
asn__get allocating of memory space from memory pool (buffer space)

S

b

Implementation and Evaluation of ASN.I Compiler

/* Structure of each tag */
typedef struct cell {
intidsize ; /* the length of encoded octets */
unsigned char idelem[4) ; /* identifier octets of tags */
}id_cell;
/* Structure of id__array */
typedef struct idarray {
int idlevel ; /* the number of tags*/
id_cell id[maxtag]; /*an array of tags */} id_ array ;

Fig. 8 Structure of id_array.

the library also encapsulate the machine dependency of
the data representation such as the variety of the byte
order of integers and the real representation. For exam-
ple, in order to ignore the difference of the byte order-
ing, the routines extract the least significant byte of in-
teger I by calculating 1%256. The difference of the
representation of double is encapsulated in the encoder
and decoder routines for double type.

(4) Simple Memory Management Policy

Since an internal representation of a structured type
has pointers to its components, it is necessary to
allocate the memory space for the components in the en-
coding and decoding of PDUs including structured
types. The allocated memory spaces need to be
deallocated after the encoding and decoding. In order
to implement those memory allocations and dealloca-
tions efficiently, we have adopted a simple memory
management policy according to the following pro-
cedures which is also proposed in [6].

—Before the encoding and decoding, a user program
allocates a memory space, called buffer space, which is
large enough for all the components. The buffer space is
allocated by the C standard library routine malloc.

—When a decoder routine and a user program need
to allocate a space for a component, they take the
necessary space from the buffer space by calling the en-
coder/decoder library routine asn_get.

~—When all the allocated spaces become unnecessary,
the buffer space is deallocated by the C standard library
routine free.

Because the time consuming routines malloc and free
are called only once respectively in the encoding and
decoding of a PDU, and the routine asn_get is much
faster than the routine malloc, the efficient memory
management is achieved.

3.2.2 Encoder
The ASN.1 compiler generates two kinds of C
routines corresponding to the two phases for a struc-

tured type, which are z_typename and e_typename for_

the structured type typename. Routine z_typename ex-
amines the length of a value of the type typename and
saves it in the member esize of the translated struct (see
Figs. 5, 6 and 7). Routine e_typename converts a value
into an octet string. The routine deals with identifier
octets using an id_array, and determines the length
octets from the saved length. After that, it calls
e_routines of the component types in order to encode

163

e_PersonalRecord (var, edata, index, ida)
char *var; /* the variable for encoding : PersonalRecord type */
STRING *edata; /* encoded octets */
int *index; /* the starting position of the encoded octets */
id__array *ida; /*id__array */

PersonalRecord *p_ var;

p__var = (PersonalRecord *) var;
enc__idlen{edata, index, ("p__var).esize, ida);
/* encoding of the identifier and length octets */
e_ string((*p__var).name, edata, index,
“id_info + 26); /* encoding of name */
e_int((*p_ var).age, edata, index,
_id_info_+ 1); /* encoding of age */
if ((*p__var).job__flag = = TRUE)
e_ string((*p__var) job, edata, index,
id__info + 27); /* encoding of job */
(*edata).size = *index;

Fig. 9 Encoder routine for PersonalRecord.

the components. Figure 9 illustrates routine e_Per-
sonalRecord which encodes the PersonalRecord type.
The type of encoded octets is the STRING type which
represents the ASN.1 OCTET STRING type.

3.2.3 Decoder

A decoder routine performs decoding according to
the following procedures.

—It checks identifier octets using the id_array of the
expected ASN.1 data type.

—It analyzes the length octets. If the length octets are
encoded in the definite form, it calculates the length of
contents octets. If the length octets are in the indefinite
form, the decoder remembers it.

—It allocates a memory space holding the decoded
result value.

—If it is decoding a simple type value, it saves the con-
tents octets in the allocated space. In the case of a struc-
tured type value, it calls the decoder routines for the
components.

—Finally, it checks the existence of the end-of-con-
tents octets if the length octets are in the indefinite
form.

If any encoding errors are detected, the decoder
routine quits decoding and returns with error informa-
tion including the error type and the position at which
the error is detected.

The error checking facility, whose importance has
not been explicitly described in the literature {6-8], is
very important because an application program must
deal with protocol errors obeying a standard protocol
specification. It is desirable for decoders to detect error
information as precisely as possible. We decided to
make decoder routines perform the following error
checks after looking into protocol error manipulation
parts of various OSI application protocol specifica-
tions. These checks may enable them to write a program
so that they implement all kinds of protocol error
manipulations. The error checks are the following:

164

d__PersonalRecordList (var, edata, buf, index, error, ida)
PersonalRecordList **var; /* the decode result*/
STRING *edata; /* the decoded octets */
Buffer *buf; /* the buffer space*/
int *index; /* a starting point of decoded octets */
ERROR *error; /* the error information */

id__array *ida; /* theid__array */

{ LST *wkp; /* the node for a component */
int nextobj; /* the length of contests octets */
int cnt; /* the number of the length octets

according to the indefinite form */

PersonalRecordList *q__var; /* temporary variable */

skip__idlen(edata, index, &nextobj, ida, error);
/* checking the identifier octets and length octets.
nextobj returns the length of contents octets */
if (*error).errlevel<2) {
/* No error has been occurred in skip__idlen routine ? */
if ((*var = asn__get(buf, sizeof(PersonalRecordList)))
= = FALSE) { ERRSET (FATAL, 6, ida, *index) }
else {
q__var = (PersonalRecordList *) (*var);
for (wkp = (*q__var).first;
((ent = =0) && (*index < next__obj) ll (cnt! =0)) ;
wkp = (*wkp).next)

{
if ((*wkp) = (LST *) asn__get(buf, sizeof(LST)))

= = FALSE)
{ ERRSET (FATAL, 6, ida, *index) }
else
{

(*wkp).next = NILL;
d__PersonalRecord (&((*wkp).elem), edata,
index, error, id_info + 28);
if ((*error).errlevel > =2) { break; }
else {(*q_var)size+ +;}}}
if{((*error).errlevel <2) &&
({(cnt = = 0)&& (*index ! = next__obj)) I
((cnt! = 0) && checkeoc(edata,index,cnt)))) {
/* the length of contents octets are correct ? */
ERRSET (FATAL, 2, ida, *index) }
13}

Fig. 10 Decoder routine for PersonalRecordList.

—check for whether identifier octets are correctly en-
coded or not;

—check for whether contents octets specified by
length octets are included or not;

—check for whether mandatory components of SE-
QUENCE and SET types are included or not; and

—check for whether a memory space for a result
value can be successfully allocated or not.

Figure 10 illustrates the decoder routine for Per-
sonalRecordList type defined by the SEQUENCE OF

type.
4. Implementation and Evaluation

In this chapter, we describe the implementation
details of the ASN.1 compiler and the evaluation of the
generated encoders and decoders.

4.1 Implementation

The ASN.1 compiler reads module definitions, which
consist of ASN.1 data type definitions, for a target ap-
plication layer protocol. After the reading, it generates
the following files from each module definition: a

T. HASEGAWA, S. NOMURA and T. KATo

Module definitions in ASN.1

Ilmc:dule) l

A(module) |
1

| C(modum
T

ASN.1 compiler

library program

asnllib.h asnilib.c

module A module B module C

Fig. 11 Structures of the ASN.1 compiler.

source file including encoder and decoder routines, and
a header file including data type definitions in the C
language. It also generates the following files: a source
file commdi.c including the id_arrays, and a header file
asnltoc.h which is included by an application program.
Figure 11 illustrates the structure of the compiler. The
primitive routines listed in Table 3 and the C data type
definitions for ASN.1 simple types are implemented in
the encoder/decoder library program: a source file
asnllib.c and a header file asnllib.h.

The compiler consists of a parser and a generator.
The sizes of both parts are about 1.0 k lines and 6.3 k
lines long. The parser has been implemented using
yacc/lex for a rapid implementation. The parser
generates parsing trees from ASN.1 specifications, and
also reports error information for ASN.1 specification
errors, such as double type definitions and undefined
types, and the line number in which the error is
detected. The generator generates programs from the
parsing tree.

The compiler is implemented in the C language on
UNIX and VAX/VMS operating systems. It can
generate encoder and decoder routines which can be ex-
ecuted under the UNIX, VAX/VMS and MS-DOS
operating systems. Currently, the generated encoder
and decoder routines are executed on the following com-
puters: SUN-3, SUN-4, Sony News workstation
(UNIX), VAXen (VMS) and PC-9800 personal com-
puters (MS-DOS). The generated programs can be ex-
ecuted on the various computers because of the develop-
ment described in section 3.2.1.

The compiler does not deal with macro definitions, in
which a user can define new syntax rules for ASN.1 type
definitions, because macro definitions define only the
syntax rules, and not the semantics of the definition.

4.2 Evaluations

We have evaluated the performances and sizes of the
encoders and decoders generated by the implemented
compiler.

4.2.1 Performance of Encoders and Decoders

We measured the performances of the generated en-
coders and decoders. The following experiments were
carried out on a SUN-3 280 workstation (4 MIPS) with

Implementation and Evaluation of ASN.1 Compiler

= encoding

=== decoding(definite form)

% ----- decoding(indefinite form) ,-*

2" INTEGER

4——— N level ——+——>

SEQUENCE

D INTEGER

Fig. 13 Test data of the binary tree.

8 mega bytes of memory. Encoding performances using
the definite form and those of decoding using both the
definite and indefinite forms were measured.

(1) Measurement for structured types

At first, we measured the performances for the com-
plicated values which consist of a number of structured
types. Two types of data, sequential lists and binary
trees, have been adopted as examples.

The ASN.1 specification of the sequential lists is

“List::=SEQUENCE {
a [1] IMPLICIT INTEGER OPTIONAL,
b [2] IMPLICIT List OPTIONAL}”.

Figure 12 shows the results of the experiments for se-
quential lists, including the encoding performances by
the definite form and decoding ones by the definite and
indefinite forms. ‘N’ in Fig. 12 means the length of the
lists.

The structure of binary trees is illustrated in Fig. 13.
Fig. 14 shows the results of the experiments for binary
trees. ‘“N’’ means the level of a binary tree. If “N’
equals 8, the tree consists of 2° (256) INTEGERs and 25-
1(255) SEQUENCEs.

The experiments for structured types have shown the
following results.

—The generated encoders and decoders are con-
sidered to be faster than those of pre-implemented en-
coder and decoder [7]. It is not easy to compare our im-

165

© encoding
30 [A decoding(definite form) °
25 | 4
20
15

10r

> 0

oL o * v o 9 4

N o 1 2 8 4 5 6 7 8

Fig. 14 Encoding/decoding time (2).

plementation with others [7, 8] whose experiments are
conducted on different machines and operating systems;
however, we compared processing time of ours and pre-
implemented one [7] which were measured under
similar conditions such that 100 SEQUENCE values
were encoded and decoded on about 4 MIPS worksta-
tions. Those of our implementation were about 4.8 and
6.5 milliseconds, however, those of pre-implemented
one were over 17 and 25 milliseconds. The experiments
of another kinds of data, a binary tree, also show a
similar result.

—The encoding and decoding time of structured
types is in proportion to the number of component
structured values.

—Generally, the decoding time is a little larger than
the encoding time because decoders have to check iden-
tifier octets. Even if an optional component value does
not exist in a structured value, decoders have to check
the identifier octets in order to confirm that the compo-
nent value does not exist. The encoding and decoding
times of the second experiments are almost the same,
since the SEQUENCE type has no optional component.

—The decoding time of indefinite form values is
larger than that of definite form values because of the
overhead of the function calls which checks the end-of-
contents octets.

(2) Measurement for Actual PDUs used in OSI pro-
tocols

Secondly, we have measured the performances for
the PDUs which are transferred in the OSI protocols,
FTAM and MHS P2. Table 4 shows the encoding and
decoding time, and the structure and the size of the
PDUs. Generally, the PDUs defined in actual OSI pro-
tocols consist of less than scores of structured and sim-
ple type values, and therefore can be encoded and
decoded in a shorter time than the complicated values
defined in (1).

Among the values in Table 4, IM-UAPDU and File-
Contents-Data-Element are used in the data transfer
phase. Performances for these PDUs greatly affect the
throughput of the mail and file transfer. The encoding
time and the decoding time of an IM-UAPDU convey-

166

Table 4 Encoding/decoding time (3).

encoding | decoding | 18 MUmber |the number | opy; ;o
PDU (ms) (ms) of structured | of simple (bytes)
ms values values
F-INITIALIZE-Request 1.54 1.32 7 1Al 64
F-SELECT-Request 0.61 0.59 4 3 17
F-OPEN-Request 0.63 0.57 2 2 16
File-Contents-Data-Element 1.22 0.57 1 2 4,023
IM-UAPDU 2.46 2.59 19 17 2,184

Table 5 Generated programs.

protocol specification | source program |executable program
FTAM 410lines 11,560 lines 156Kbytes
MHS P1, P2 290 lines 11,170 lines 143Kbytes

ing a 2 K byte mail content are 2.46 milliseconds (ms)
and 2.59 ms respectively. The encoding time and the
decoding time of File-Contents-Data-Element convey-
ing a 4 K byte file content are 1.22 ms and 0.57 ms re-
spectively. These results show that the throughput of
the generated encoders and decoders for PDUs which
have 2 to 4 K byte data is more than 800 K bytes per sec-
ond on 4 MIPS workstations. This throughput value is
much larger than 8 K bytes per second (64 K bps) which
wide area network (WAN) provides, and is almost the
same as 1.25 Mega bytes per second (10 M bps) which
Ethernet provides. Moreover, the existing OSI FTAM
implementations [11, 12] on standard workstations,
which are about 4 to 6 MIPS, have achieved about ten
K bytes per second file transfer under local area net-
work (LAN) environments. This FTAM throughput
value is much less than 800 K bytes per second. These en-
sure that the throughput which the encoders and
decoders achieve is fast enough for those to be executed
under such environments as WAN and Ethernet. On the
other hand, all the PDUs of FTAM protocols, except
File-Contents-Data-Element, are used for the com-1
munication control. These PDUs can be encoded and
decoded within only 1.6 ms by the generated encoders
and decoders.

4.2.2 Size of Encoders and Decoders

In order to evaluate the size of generated programs,
we have applied the compiler to generate the encoders
and decoders for OSI FTAM and MHS P1 and P2 pro-
tocols. The results are shown in Table 5. The executable
programs are obtained by the VAX/VMS C compiler.
The generated programs are considered to be compact,
and the sizes are almost as the same as the those of the
programs implemented manually. For example, the size
of manually implemented MHS P1 and P2 protocol en-
coders and decoders is about 13K lines in the C
language [13]; however, ours is about 11.2K lines.
Although both programs may have different functions,
the similarity ensures that at least the ASN.1 compiler

T. HASEGAWA, S. NOMURA and T. KaTtO

#include "asnitoc.h”

main() {
Buffer *buf; /* the buffer space */
PersonalRecord *record; - ®

OCTETSTRING *encdata; /* the encoded octets */
asn__alloc (buf); /* allocation of the buffer space */
record = (PersonalRecord *) asn__get(

sizeof (PersonalRecord));
record->name =
(1ASSTRING *) asn__get (sizeof (IASSTRING));

record->name->size = 8; -+ @
record->name->str = "Hasegawa“;

encode (record, edata, ID__PersonalRecord);
/* User interface of the encoder routines */
asn__free(buf); /* deallocation of the buffer space */

}

Fig. 15 An example of application program.

does not generate larger programs than manually im-
plemented ones.

4.2.3 Readability of Application Programs

The one-to-one translation of a data type in ASN.1
into a C type increases the readability and productivity
of application programs. Figure 15 illustrates a part of
an application program which makes a value of the
‘‘PersonalRecord’’ type and encodes it. The advan-
tages are summarized as follows:

—Variables are declared using the literal names of
data types in ASN.1 (Fig. 15Q).

—In referring to the components of the structured
type variables, implementors can use the reference
names which are specified in the original ASN.1
specifications (Fig. 15Q2)).

—Since the compiler translates all the component
types, except for data types translated into C int, into
pointers to the component types, implementors only
use the-> operator in order to refer to the components.

5. Conclusion and Future Research

In this paper, we have described the implementaion
and evaluation of the ASN.1 compiler, which generates
the internal representation of ASN.1 data types and the
encoder and decoder routines in the C language. Since
the ASN.1 compiler generates the encoder and decoder
routines for each ASN.1 data type, the generated
routines can achieve encoding and decoding efficient
enough for practical application protocol software
development. The size of the generated programs is
almost the same as that of manually implemented pro-
grams. The one-to-one translation of an ASN.1 data
type into a C type increases the readbility and produc-
tivity of application protocol programs because the in-
ternal data types retain the structures of original ASN.1
data types. The compiler reduces the implementation
costs of the OSI application protocol software drastical-
ly.

Implementation and Evaluation of ASN.1 Compiler

In order to improve the compiler, the following
research is under consideration.

® Supports for macro notation in ASN.1
The compiler is not yet able to deal with macro nota-
tions, which are used by specifying OSI ROSE pro-
tocols [10]. We are going to be implementing the
facilities which deal with macro notations defined in
OSI ROSE protocols.

@ Integration of ASN.1 compiler and SDL compiler
We also have been developing the SDL-C compiler
for automatic communication software implementa-
tion, and we are planning to integrate an SDL com-
piler and the ASN.1 compiler.

Acknowledgement

We wish to thank, Dr. K. Ono, Director for his kind
support for this study, and also appreciations to Dr. Y.
Urano, Deputy director of KDD R & D Labs., Mr. K.
Konishi, Group Leader of Communication Software
Group and Dr. K. Suzuki, Group Leader of OSI
Systems Group, for their helpful suggestions.

167

References

1. CCITT, Recommendation X.208, Specification of Abstract Syn-
tax Notation One (ASN.1) (Nov. 1987).

2., CCITT, Recommendation X.209, Specification of Basic En-
coding Rules for Abstract Syntax Notation One (ASN.1) (Nov. 1987).
3. CCITT Recommendations X.400-X.430 (Oct. 1984),

4. HAsSeGawa, T. et al. Automatic Ada Program Generation from
Protocol Specifications based on Estelle and ASN.1, Proc. of the
Ninth Int. Conf. Comput. Comm. (Oct. 1988), 181-185.

§. HaseGawa, T. et al. Development of Software Tools for ASN.1-
Compiler and Editor, Technical Report DSP 39-4, IPSJ (Sept. 1988)
(in Japanese).

6. NEeureLp, G. W., YANG, Y. The Design and Implementation of
an ASN,1-C Compiler, /IEEE Trans. Softw. Eng., 16, 10 (Oct. 1990).
7. Nakakawali, T. et al. Development and Evaluation of Apricot
(Tools for Abstract Syntax Notation One), Proc. of The Second Inter-
national Symposium on Interoperable Information Systems (Nov.
1988), 55-62.

8. OHARA, Y. et al. ASN.1 tools for Semi-automatic Implementa-
tion of OSI Application Layer Protocols, Proc. of The Second Inter-
national Symposium on Interoperable Information Systems (Nov.
1988), 63-70.

9. IS0, 1S-8571, Information Processing Systems-File Transfer Ac-
cess and Management (1987).

10. CCITT Recommendations X.219, X.229 (1987).

11. OBANA, S. et al. Implementation of OSI Presentation, ACSE
and FTAM Protocol Software, and Its Evaluation, Trans. IPS Japan,
30, 7 (1989) (in Japanese), 895-907.

12. NAKAKAWAIL T. et al. Implementation and Evaluation of File
Transfer Protocol Based on Standard Specification, Trans. IPS
Japan, 29, 11 (1988) (in Japanese), 1071-1078.

13. Karto, T. et al. Interconnection of Center Type Electronic Mail
System ELMS and MHS, Technical Report DSP 33-7, IPSJ (May.
1987) (in Japanese).

(Received September 4, 1990; revised October 2, 1991)

