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Efficient Execution of Fine-Grain Parallelism
on a Tightly-Coupled Multiprocessor

TAKASHI MaTsumoTo*

In multiprocessor systems, the overheads caused by inter-processor synchronization and communication con-
tinue to be impediments to the efficient execution of parallel programs. Reduction of these types of overhead is
necessary in systems that focus on large-scale and fine-grain parallelism. This paper proposes a Fine-Grain
Multi-Processor (FGMP) based on a shared-memory/shared-bus architecture, which can efficiently handle fine-
grain concurrency in parallel. New strategies for management of hardware resources in the system are discussed,
and two innovative hardware mechanisms are proposed that work well for fine-grain parallelism with the above
strategies: Elastic Barrier (a light synchronization mechanism), which is derived from a generalization of a bar-
rier-type mechanism, and an Inter-Cache Snoop Control Mechanism that switches snoop-protocols dynamically
to reduce the overhead associated with shared data handling. After introducing the FGMP system, which incor-
porates the above strategies and mechanisms, the paper closes with a discussion of the FGMP’s characteristics

and efficiency.

1. Introduction

Methods of extracting parallelism from programs ac-
cording to the operations executed can be classified as
follows. One approach is to leave the extraction of
parallelism to the discretion of the programmers.
Another is to automate this decision by using paralleliz-
ing compilers [1, 2] or parallelizers [3-5]. In the first ap-
proach, the programmer is also called upon to level and
average the load—including synchronization and com-
munication overheads—on each processor. Efficient ex-
ecution in this approach hinges on the competence with
which averaging is carried out. Additionally, in this
method, parallelism can be extracted only by having
programmers rewrite the massive software resources
created in the past for uniprocessors. The second ap-
proach hold out the possibility of extracting parallelism
by using software created in the past, as well as manu-
ally coded programs with explicit entries for
parallelism. Furthermore, it is possible in this approach
to consider interprocessor load averaging within a range
that permits static analysis. All these factors indicate
the advantages of the automatic approach, and the
discussions in this paper will be based on these con-
siderations. In other words, this paper will consider op-
timization of multiprocessor architecture by the use of
parallelising compilers (or parallelizers).
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Parallelism is most useful when a loop is encountered
in a time-consuming control flow. Unless they involve
inter-iteration data dependency or branching of con-
trol, iterations of loops can be uniformly assigned to
processors and executed without processor synchroniza-
tion. In general, however, loops involve inter-iteration
dependency of data as well as branching. As a result,
when iterations are distributed by assigning them to
several processors, room has to be made within the flow
for a number of synchronizations to maintain dependen-
cies and communications so that data can be transmit-
ted from one processor to another. The increase in
overheads due to synchronizations and data transmis-
sions tends to prolong the execution time when the load
is distributed among processors. The greatest task con-
fronting system architects, therefore, is to minimize
such overheads. On the other hand, if the overheads are
reasonably low, parallel operations also become possi-
ble in loops that do not normally permit parallel execu-
tion of iterations. In other words, fine-grain parallelism
can be extracted in single iterations as in VLIW
machines [6, 7], superscalars [8-11], or data flow
machines [12], and these iterations may be handled in
parallel. This will be explained with some examples in
Section 6.

The multiprocessor system assumed in this paper con-
sists of several connected uniprocessor chips, since a
multiprocessor of this type is easy to build. The syn-
chronization and data communication in VLIW
machines or data flow machines could take place for
each instruction or arithmetic operation. This,
however, limits the efficiency of our approach. The
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multiprocessor system proposed here prevents over-
heads from becoming externally manifest even if proces-
sors are synchronized for data transactions for every
couple of instructions.

Section 2 details basic strategies for the management
of hardware resources in the system, and Section 3
discusses Elastic Barrier, a synchronization mechanism
with negligible overheads. Section 4 introduces the int-
er-cache snoop control mechanism, which reduces bus
contention in a shared-bus type multiprocessor through
improved bus traffic. The fine-grain multiprocessor
(FGMP) discussed in Section 5 is based on the above
strategies and mechanisms. Section 6 evaluates the
FGMP system on the basis of several examples, and Sec-
tion 7 sums up the discussion.

2. Basic Strategies of the System

Most existing uniprocessor systems have been devel-
oped on the assumption that hardware resources should
be operated indirectly by users, and so appear virtual.
However, to execute fine-grain concurrency efficiently,
consideration of only a virtual processor is not enough
and may even be harmful, since the use of virtual inter-
processor synchronization through an operating system
(OS) imposes too heavy a burden on the system. The
overhead of crossing the user-kernel boundary alone
costs 50-5000 steps. Even if we used synchronization
through shared memory, it would be accompanied by
procedures that include costly accesses to shared
memory. Therefore, there is a need for hardware
mechanisms to synchronize processors, which should
be controlled or managed directly by users. Moreover,
the processor scheduling methods of existing OSs do
not provide efficient fine-grain execution when syn-
chronization among tasks takes places frequently. If
tasks are not allocated to processors at the same time,
synchronization is not completed until all of the tasks
have been allocated, and this creates a substantial
overhead. Such inefficiency cannot be avoided in cur-
rent OSs, which do not have the capability to direct that
relevant tasks be allocated to processors simultaneo-
usly. Such reasoning leads us to a reconsideration of
systems on a virtual level and of OSs’ facilities before
we can implement efficient execution of fine-grain con-
currency in multiprocessor systems.

We aim to optimize multiprocessor architecture by us-
ing parallelizing compilers. Our basic strategy is
therefore that compilers should allocate and manage
the critical hardware resources that can be decided
statically. Stated another way, the idea here is to restrict
the range of decisions required of the operating system
and to widen the range of decisions required of users, in-
cluding compilers. The highest efficiency is obviously
achieved when codes can be fully optimized over the
bare hardware without any OS. This, however, affects
usability and does not allow for the development of
multiuser and multijob functions.

Before describing FGMP’s strategies, we will explain
our terminology to avoid confusion. A task expresses a
fine-grain processing unit, which is a fundamental proc-
essing unit. Groups of tasks form shreds [13, 14], which
in turn form processes and finally jobs. A process is a
basic unit of processor scheduling by an OS. This paper
assumes that a process can have multiple real processor
allocations at the same time; a set of tasks in a process
corresponding to an instruction flow of a real processor
is called a shred, and thus each allocated shred always
has a real processor. Stated another way, prior to execu-
tion, tasks are assigned statically to the shreds and
scheduled accordingly. In a process, we are allowed to
use and control hardware support mechanisms directly
for synchronization or communication among tasks of
different shreds. Among the processes in a job, we can
synchronize or communicate through shared memory
or the OS. The execution order of processes in a job can
be directed by a user. A job expresses an independent
processing unit. Among jobs, we can synchronize or
communicate, but only through the OS. Figure 1 pro-
vides a view of job-process-shred interrelation.

We adopt the following strategies for FGMP
systems:

Basic strategies

(1) The OS allocates the specified number (the number
of shreds in a process) of real processors to a process at
the processor scheduling time. A shred corresponds to a
real processor. All shreds in a process are allocated at
the same time.

(2) If a multiprocessor system consists of
homogeneous processors, the OS has to make up the
number of processors, but need not allocate specific
ones to a particular process. In this sense the processors
are virtual.

(3) The OS and bare hardware have a facility for detec-
ting and removing illegal interferences among processes
or jobs. That is to say, we provide protection
mechanisms at process and job levels, but not among
shreds in a process.
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Fig. 1 Job-process-shred Interrelation.
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(4) The OS has a facility for pre-empting all allocated
processors in a process when a time-slice interrupt or ex-
ternal interrupt occurs, and for rescheduling the proces-
sors to other processes according to an appropriate
scheduling algorithm.

(5) parallelizing compilers and/or programmers are
responsible for dispersion and load-balancing of tasks
in a process. That is, they group all of the tasks in a
process into several shreds, taking account of the load-
balances of processors (shreds).

(6) If a multiprocessor system has mechanisms to sup-
port inter-processor synchronization and/or com-
munication, compilers and programmers are allowed to
control them directly, provided they are allocated to the
same process.

3. Elastic Barrier: A Generalized Barrier-Type Syn-
chronization Mechanism

3.1 Barrier-Type Mechanism

We invented Elastic Barrier, a generalized barrier-
type synchronization mechanism [15-17], to allow the
efficient execution of fine-grain concurrency. It is de-
scribed briefly in this section. Under the strategies de-
scribed in Section 2, it is easy to design a barrier-type
light synchronization mechanism to rendezvous all the
shreds in a process at a point. We first describe this bar-
rier-type mechanism and then expand it to cover general
light synchronization.

Figure 2 shows a diagram of the whole system, in-
cluding a synchronization mechanism. Here we opt for
a shared-bus method as an inter-processor connection
for communication. To reduce contentions for data
communication we provide another communication
bus for synchronization information, called the syn-
chronization bus. The number of lines in this syn-
chronization bus is equal to the number of processors,
with each line corresponding to a specific processor.
Each processor has its own synchronization controller,
which detects the completion of inter-processor syn-
chronization by using the synchronization bus. When
each processor reaches a barrier synchronization point,
the processor activates the corresponding line of the syn-
chronization bus through its own controller. Each con-
troller has a group register to enroll processors that syn-
chronize; all the allocated processors in a process are
enrolled there. Each controller constantly monitors the
synchronization bus by referring to the register, to
check whether the lines corresponding to all of the proc-
essors in a process are active; that is, to check for the
completion of barrier synchronization. Processors do
not execute further instructions until the completion of
the preceding synchronization has been detected.

Information on inter-processor (inter-shred) syn-

'A patent application for the basic mechanism of Elastic Barrier
was filed in March 1989.
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Fig. 2 System Incorporating Synchronization Mechanism.

chronization is put into instruction streams (shreds) in
such a way that a new field or tag is established in a proc-
essor’s instruction code or new prefix instructions for
synchronization are provided. Barrier synchronization
information requires only 1 bit in order to express a syn-
chronization request for rendezvous just before (or
after) execution of the instruction to which this bit is at-
tached. To eliminate the overhead of the procedure that
checks flags or variables for rendezvous, we stop proces-
sors temporarily with hardware mechanisms (just like
the wait-state in slow memory accesses) until the syn-
chronization is complete. To make ensure that the OS’s
pre-emption of processor resources is always possible,
processors must have interrupt facilities that are valid
during the wait-state.

3.2 Dummy Synchronization Requests

In general synchronization, the combination of proc-
essors that need to be synchronized varies according to
the synchronization point, even if the processors
(shreds) in the same process are considered. If a system
holds information on the combination at each syn-
chronization point, it synchronizes only the shreds that
need synchronization at each rendezvous point.
However, this method requires a rather large amount of
hardware, because each processor must have data on all
of the others’ combinations or synchronization points.
If it is adopted, the number of lines in the synchroniza-
tion bus must be at least the square of the number of
processors. Making a trade-off, we adopt a dummy syn-
chronization request and insert it at a point in a shred
where synchronization is not needed, but near which
other shreds in the same process will be synchronized.
In this approach, all shreds in a process rendezvous at
each synchronization point, and no additional hard-
ware is needed.

3.3 Extending Synchronization Information and Con-
troller

Calculating the points at which to insert dummy re-
quests is time-consuming and difficult. Moreover, if
they are calculated as precisely as possible, an overhead
may occur as a result of causes that are impossible to
predict before execution, such as latencies of bus conten-
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tion or cache miss. So far we have discussed only the
type of synchronization in which processors wait until
all of them have reached a certain point. However, in
practice, most synchronization among fine-grain tasks
is for producer-consumer relationships, and keeps the
execution order of tasks intact. Since producer tasks do
not need to wait for consumer tasks to begin, an un-
necessary overhead is created if they wait. With only
slight modifications of the mechanism, we avoid such
overheads.

In the following pages, we use a new term, ‘CompS-
Cond’. ‘CompSCond’ (Completion of Synchronization
Condition) occurs when all lines on the synchronization
bus according to processors enrolled in the group
register become active.

Since our mechanism is based on barrier synchroniza-
tion, one CompSCond is required at each synchroniza-
tion point. However, we have circuits for synchroniza-
tion that are separate from the processors; namely,
synchronization controllers. We can eliminate un-
necessary processor waits by running the controllers as
independently as possible. For this purpose, we extend
the synchronization information from 1 bit to 2 bits
(thereby giving four directions for synchronization),
and provide the synchronization controller with three
new counters. Each processor outputs the information
to the corresponding synchronization controller just
before execution of the instruction to which it is attach-
ed.

Figure 3 shows a block diagram of the controller that
is connected to the corresponding processor through
data lines and three control lines: SSIGO (Synchroniza-
tion SIGnal 0) and SSIG1 are inputs for synchroniza-
tion information, and SACK (Synchronization
ACKnowledge) gives the processor permission to leave
the wait-state.

The rough meanings of the four types of synchroniza-
tion information are as follows:

NONE The processor does nothing for synchroniza-
tion.

After outputting this to the controller, the
processor stays in the wait-state until it
receives a SACK signal from the controller
(Real REQuest).

After outputting this, the processor continues
execution of instructions without waiting for
any signals from the controller. This indicates
that the processor need not wait for the end of
execution of a task on another processor.
APRY relates to dummy synchronization re-
quests or the producer in the producer-con-
sumer pair. This enables the controller to ap-
prove the completion of later synchronization
(APpRoVal).

After outputting this, the processor continues
execution without waiting for any signals.
PREQ is placed before RREQ to give advance

RREQ

APRV
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Fig. 3 Configuration of Synchronization Controller.

Fig. 4 A Sample Task Graph.

notice of its arrival. It is used to check for com-

pletion of synchronization in advance of the

actual synchronization point (PreREQuest).
Note: RREQ and NONE correspond to 1 bit of syn-
chronization information before expansion.

Of the three counters, one is for APRVs before their
CompSConds. We call it CAP. The second (CPR) is for
PREQs before their CompSConds. The third (CCP) is
for CompSConds before their RREQs.

3.4 Tllustration of Elastic Barrier Functions

Figure 4 is a sample task graph to clarify the use and
operations of the synchronization mechanism. The
nodes in the graph correspond to fine-grain tasks and
the directed edges between tasks their interdependen-
cies. Figure 5 illustrates a task allocation in which the
sample procedure is divided into four shreds (instruc-
tion streams). The length of a task indicates the number
of instructions, and also the task process time with no
processor waiting. In the figure, the combination of a
cross and a circle that have the same index number cor-
responds to an edge in Fig. 4, and the instruction at the
cross must not be processed earlier than the instruction
at the circle, because of interdependency. In more con-
crete terms, interdependency involves the use of an in-
struction immediately preceding a circled instruction to
assign the results of calculation to variables and a
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Fig. 5 Shreds (Instruction Streams) of the Sample.

crossed instruction to refer to the results.

To clarify the idea further, let us first take an example
of synchronization where a simple two-word (RREQ,
NONE) message is used. In this case, all the shreds are
involved in barrier synchronization, and four syn-
chronization requests (RREQ) must be inserted into
each shred for four occurrences of synchronization.
Figure 6 shows the estimated execution time, inclusive
of synchronization, used to determine the positions of
insertion. The dotted line shows the suspension of
operations in a processor waiting for synchronization.
The solid dots indicate the positions at which ‘‘dum-
my’’ synchronization requests must be inserted. Double
crosses are used instead of ordinary crosses to indicate
the positions that seem best suited for insertion of syn-
chronization requests. Synchronization requests are
also inserted where circles and crosses occur without
any corresponding double crosses.

Next, let us examine synchronization for extended
operations (Elastic Barrier operations). When several
shreds approving synchronization occur, as at the dum-
my synchronization request positions (solid dots) or syn-
chronization position 4 in Fig. 6, APRV and CAP (the
counter for APRVs) are used in order to simplify the
determination of the position at which to insert requests
and to minimize the synchronization overhead. Instruc-
tions can now be executed without interruption, since
shreds issuing dummy synchronization requests or
those approving synchronization (circles) need not wait
for CompSConds. Thus, for each dummy request (solid
dot), an ““APRV”’ is inserted into the shred as far ahead
as possible without disturbing the sequence of Com-
pSConds. For each approving synchronization, an
APRY instead of a RREQ is inserted at the position of
the circle. CAP counts the number of times that APRV
has been issued without reaching its CompSCond. The
synchronization controller uses this value to control the
synchronization signal bus independently of the proces-
sor. In Fig. 6, the crossed positions are those that have
received approval for continuation of execution from
another shred. For this reason, as long as the sequence
of CompSConds remains unchanged, theoretically a
CompSCond can be satisfied at any position preceding
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across. Accordingly, a PREQ is inserted before a cross-
ed-RREQ, and the stretch between PREQ and RREQ is
made a potential range for the CompSCond to be
detected. Moreover, to increase the range, the position
for insertion of PREQ is made transferable past other
crosses to a position as far ahead as possible in the
shred. CPR (the counter for PREQs) counts the
number of occurrences of PREQs corresponding to
undetected CompSConds. When a CompSCond is
detected by the controller, this counter counts down by
intervals of 1, while CCP (the counter for Com-
pSConds) counts up by intervals of 1. As soon as a proc-
essor reaches RREQ, CCP is reduced by 1 if it is 1 or
above, and the processor continues its execution. If the
counter reads 0, the processor is suspended until
another CompSCond is detected. These extensions
widen the range of insertion positions to which solid
dots and/or double crosses in Fig. 6 are attached
without increasing synchronization overheads and in-
creasing the number of instances of covered-up delays,
such as are caused by contentions for data communica-
tion. In this example, the insertion positions of the four
types of synchronization information turn out to be as
shown in Fig. 7, where circles indicate insertion posi-
tions for APRV, small triangles insertion positions for
PREQ, and crosses insertion positions for RREQ. Posi-
tions with no marks indicate where NONE is inserted.

3.5 Detailed Description of the Controller

Figure 8 shows the algorithm for synchronization con-
troller operations. For simplicity, it is assumed that the
synchronization controllers are provided with a com-
mon clock. They follow the clock for reception of syn-
chronization infomation and checks on CompSConds.
Also, each synchronization controller executes a series
of operations, as shown in the figure. To simplify mat-
ters, reception of synchronization information and
checks of CompSConds are treated separately. In ac-
tuality, however, these two operations are treated as oc-
curring together at the same clock signals. Activate (SL)
is a procedure for activating the synchronization signal
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line. It executes no operation if the synchronization
signal line is already active. Similarly, the Negate(SL)
procedure makes the synchronization signal line inac-
tive. Output (SACK) is for output of SACK to a proces-
sor. Waiting (SACK) is a logical function that is true if
the processor is waiting for a SACK.

The synchronization controller also follows another
condition to ensure correct synchronization in keeping
data dependencies. Thus, it does not activate its syn-
chronization signal bus line from the inactive state until
the end of a data communication occurring in response
to instructions executed earlier. In other words, this
restriction prevents crossing over of the signal for syn-
chronization of a previous data communication.

3.6 Summary of the Elastic Barrier

Before using this Elastic barrier mechanism, com-
pilers arrange the order of synchronization in each basic
block of a process. The mechanism then performs the
lightest synchronization while keeping the predeter-
mined order intact. The overhead of each synchroniza-
tion point is at most an electric signal delay (1-2
clocks) from one processor’s SSIG to the others’
SACK. For details on the Elastic Barrier (such as com-
parison with other synchronization mechanisms, capaci-
ty extensions based on FIFO rather the use of counters,
and the pattern characteristics of insertion of syn-
chronization information), refer to a paper by the
author [17].

Let us now briefly compare the Elastic Barrier with
the ‘Fuzzy Barrier’ [18]. While our Elastic Barrier has
aspects that are similar to the ‘Fuzzy Barrier’, it was
designed quite independently in 1988. Owing to the
adoption of APRV information and counters, ours is
more general for producer-consumer type synchroniza-
tion, more convenient for the insertion of dummy re-
quests, and superior in terms of the elimination of
overheads. Our mechanism can also realize ‘fuzzy bar-
riers’ easily [16].

4. Inter-Cache Snoop Control Mechanism

When frequent inter-processor communication is
needed among conventional processors, communica-

0. Initialization of the synchronization controller
CCP = 0; CAP = 0; CPR = 0; negate(SL);

1. When synchronization information is received
switch (SSIG) {
case RREQ:
if (CCP > 0) {
ccp-~;
output (SACK) ;
} else activate(SL);
break:
case APRV:
CAP++;
activate(SL);
break;
case PREQ:
CBR++;
activate (SL);
break;
}

2, When a CompSCond is detected
if (cAP > 0) {
cap--;
if ((CAP == 0} && (CPR == 0))
negate (SL) ;
} else {
if (CPR > 0) {
CPR-~;
if (waiting(SACK)) output (SACK);
else CCP++;
if (CPR == 0) negate(SL);
} else {
output (SACK) ;
negate(SL);
}
}

CCP: counter for CompSConds

CAP: counter for APRVs

CPR: counter for PREQs

SL : controller synchronization signal line

Fig. 8 Algorithm for Operation of the Synchronization Con-
troller.

tion through shared memory is most appropriate. There
is a simple and economical shared bus method for con-
necting shared memory and processors. If the conten-
tion of data communication on the bus can be avoided,
the cost of access to the shared memory is rather low.
The snoop cache method [19] was therefore invented
and adopted in many systems to reduce the frequency
of contention to a considerably lower level. Because
data communication takes place very frequently in the
execution of fine-grain concurrency, it is necessary to
minimize the traffic on a shared bus and to reduce bus
contention and data communication overheads even fur-
ther. We therefore propose an inter-cache snoop con-
trol mechanism [15].!

In shared-bus/shared-memory type multiprocessor
systems with snoop caches, the protocol of shared data
among processors—that is, the way of handling the
shared data—keeps the data consistent, determines the
frequency of traffic on shared bus, and significantly
affects the performance of the system. Here, we briefly
compare two commonly used protocols (update-type
and invalidate-type). For fine-grain parallel execution,
the update-type protocol is more convenient, because
frequent inter-processor communication is attained by
having caches put data into other caches automatically.
However, when processor-local variables become
shared variables, owing to the arrangements of page

'A patent application for this mechanism was filed in March 1989.
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management, the update-type protocol causes extra
traffic on the shared bus. Moreover, in medium- and/or
coarse-grain parallelism there are many reported ap-
plications [20] for which the invalidate-type protocol is
convenient because of the locality of the programs.
Thus we cannot state which of the protocols is better
for general purposes, since their usefulness depends on
the variables or work areas to which they are applied.
Switching protocols dynamically according to memory
areas is an important means of reducing traffic on the
shared bus and of improving performance.

An example of protocol switching in conventional
multiprocessors with shared bus architecture is provid-
ed by TOP-1 [21]. Here, however, the processor has
help from the software and sets only one fixed protocol
at the same time in each cache. The system does not
take into account the possibility of dynamic and fine
protocol switching within the same application. The
mechanism considered in this paper differs from that of
TOP-1 in that it dynamically specifies protocols for all
snooping caches at the respective bus accesses.

For ease of implementation, we pay attention to the
page management mechanism (memory management
system), which has been implemented in existing proces-
sors and/or memory management units. To each page,
we attach additional information describing the type of
protocol. The example of the page entry (and TLB) of
this mechanism is illustrated in Fig. 9. P1 and PO ex-
press the right to access each page of the memory. A, D,
and E manage virtual memory. T2, T1, and TO are
original bits for this mechanism and express the type of
protocol. To access a page of the shared memory, proc-
essors output these bits to show what type of protocol
should be chosen in a page. Caches also output these
bits on the sharéd bus when they need to use it (see Fig.
10). Snooping caches select a proper protocol
dynamically, using the protocol type signal on the bus
as determined by the bits. We can also use the most
significant bits of the physical address to express the
types of protocols for conventional processors, which
might not have output pins corresponding to a non-
used field in the page entry.

As a result of compilers’ analysis of access patterns
and/or programmers’ management of protocol types,
each variable or work area is allocated to a page with
the appropriate protocol type.

Since we are able to switch protocols dynamically,
protocols that are good for limited types of data are ap-
plicable to the system. As an example of such protocols,
we introduce the ‘all-read’ type protocol.! With this,

31 121110 9 8 7 68 5 4 3 2 1 0
Page Frame Address 31..1z| NOT USED ‘T25T1§T0‘P1|POIA {D lEJ

Protocol
Type

Fig. 9 Extended Page Entry (Identical for TLB).
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snooping caches take in via the bus the data that some
cache (processor) reads from the shared memory.
However, they take in the data only when they do not
need to make extra bus accesses by write-backs to the
shared memory. When all processors need to reference
the same data at approximately the same time, and this
protocol is used, only one access is needed on the bus
for each data item. Without this protocol, accesses
would cause traffic in proportion to the number of proc-
essors, and thus increasingly demonstrate the efficiency
of the protocol in such a situation.

In protocols such as all-read type, it is desirable that
the group of caches that take in a specific data item
simultaneously should be selectable to make it possible
for the OS (and users) to group processors. To realize
this facility, the lines on the bus that inform caches of
the group number (that is, the identifier, such as, the
process number) of the data, and a register for each
cache that holds the identifier to be output at bus ac-
cesses are required. In addition, each snooping cache
monitors these lines, but only takes in the data on the
bus when the access is all-read type and when the cache
is included in the group. The Processor Group Select
Circuit (PGSC) and Processor Group Select Bus
(PGSB) in Fig. 10 are the corresponding parts of this
facility. In the figure, signal A between a cache and a
processor-group-specifying circuit indicates the timing
for the output of IDs on the bus specifying the proces-
sor group. Signal E indicates the result of monitoring
IDs; it is activated if its processor has been selected.

5. The FGMP System

In this section, we describe the FGMP system, which
is based on the strategies explained in Section 2 and in-
cludes the Elastic Barrier mechanism described in Sec-
tion 3 and the inter-cache snoop control mechanism de-
scribed in Section 4. We characterize it in relation to
VLIW machines, which are noted for their architecture
based on parallelizing compilers.

'This protocol was suggested by N. Suzuki, Director of IBM Tokyo
Research Laboratory, through private communications in August
1988.
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Figure 11 shows a cluster of the FGMP system. Since
we adopt the shared-bus method as a basis, we cannot
avoid the problem of contentions on the bus when we
expand FGMP to a large-scale parallel system. We over-
come this impediment by clustering [22]. In this system,
the facility of the distributed shared memory [23] is im-
plemented with a memory directory at each cluster, so
as to realize a single memory space, which simplifies the
0OS’s management and programming models. Multiple
shreds in a process for fine-grain concurrency would be
allocated to the same cluster, while processes in a job of
medium- or coarse-grain parallelism might be scheduled
in more than one cluster. The cluster in Fig. 11 has a
Cluster Synchronization Controller (CSC) for inter-
cluster synchronization, which utilizes the data com-
munication network for exchanges of synchronization
information. It allows Synchronization Controllers
(SCs) to perform inter-cluster light synchronization.
This CSC is only for inter-process synchronization [24],
which is not described in this paper. Some new pro-
tocols for the cache control mechanism are convenient
for efficient management of the distributed shared
memory. For example, a protocol in which a write ac-
cess through the network invalidates all clusters’
caches, but not the writer’s cluster, is useful when inter-
cluster shared data have locality in the cluster.

In comparison with VLIW machines that have
repetitive function units, the first advantage of the
FGMP system is the ease with which processors are im-
plemented. This results from a trade-off in which
several instructions are lumped together as the finest-
grain task, sacrificing the fineness of separate instruc-
tions. In return, we are able to use existing processors as
elements of the FGMP system with little or no modifica-
tion. In VLIW machines, multiple function units and a
multi-port register file have to be integrated in a chip to
achieve high performance. This is no easy task with pre-
sent technology, and even if it were, it would still be
difficult to make multiple memory interfaces in a chip,
owing to the limited number of pins. Moreover, to at-
tain pipeline processing in a unit, additional hardware
items, such as by-passes to interconnect the stages of
the pipelines, are required. Even if future technology
makes it feasible to incorporate a number of function
units in a VLIW chip, there will redundant units in jobs
that do not have enough inherent parallelism. In the
FGMP system, surplus processors are freely allocated
to other jobs, and when a job has a lot of coarse-grain
parallelism, the FGMP system can handle it as a conven-
tional multiprocessor would. Moreover, in a VLIW
machine, because of its clock-synchronize-executions of
all units, unpredictable irregularities of instruction ex-
ecutions (such as memory contentions or cache misses)
cause considerable overheads. However, in the FGMP
system, the Elastic Barrier mechanism keeps processors
as independent as possible, thus reducing the overheads
if such irregularities take place, though the amount of

sync. bus

|

protocol
type bus

netvork
lcontroller

shared bus
j semory
Pk : P"OCESSOr CSC dlrec{ury

SCk= Synchronization Controlier

Ck : snoop Cache (including PGSC)
CSC: Cluster Synchronization Controltler

Fig. 11 A Cluster of the FGMP System.

reduction varies according to the situation. Undoubted-
ly, with regard to the fineness of the target grain of con-
currency, VLIW machines are superior to the FGMP
system. Accordingly, when a VLIW-type processor
with a couple of function units in a chip has finally been
developed, the FGMP sysem will adopt it as an element
processor. VLIW is an architecture to be implemented
in a chip; in contrast, FGMP is an architecture that is
appropriate for the construction of multiprocessor
systems beyond physical packaging limitations.

6. Early Evaluations of the FGMP System

6.1 Example Programs used for FGMP Evaluations

As we mentiond before, our research on multiproces-
sor architectures took account of their parallelizing com-
pilers. Methods for extracting parallelism from pro-
grams or jobs are very important, and research on ways
of developing such methods has been continuing for a
considerable time. Many methods have been developed,
but most are not fine-grain-oriented, since there were no
systems for fine-grain parallelism at the time of their
development. In this section, we use some existing ex-
traction methods related to fine-grain parallelism and
evaluate the performance of the FGMP system by using
simple loop examples. Note that the FGMP system in-
disputably executes coarse-grain parallel programs,
which are compiled and/or written for present
multiprocessors, at least as fast as the latter.

First, we consider three examples that do not have
parallel execution, because of the overhead of fine-grain
concurrent executions. Example 1 in Fig. 12(a) is taken
from a paper by Polychronopoulos [25], and is
transformed into the form shown in Fig. 12(b) by using
his ‘cycle shrinking’ method to enable it to be executed
concurrently. Since only the inner loop can be executed
in parallel, barrier synchronization is required at each
outer iteration. The example is executed in parallel
among four shreds (processors). Example 2 in Fig. 13(a)
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D0I=1,N
X(I) = Y(I)+2(I)
Y(I+4) = X(I-5)*W(I)
ENDO
(a)
DOJ=1, N, 4
DOALL I = J, J+3
X(I) = Y(I)+2{I)
Y(I+4) = X(I-5)*W(I)
ENDOALL
ENDO
(b)

Fig. 12 Cycle Shrinking (Example 1).

DO i=1, N
S1: A(1)
S2: B(i)

B(i-1)*C(1)+37
A(i)*C(i-1)
83: C(i) B(i)*D(i-1)
S4: D(i) = C(I)*E(i-1)
§5: E(i) = D(1)+77
ENDDO

(a)

wononon

S1(1)
52(1)
$3(1) S1(2)
S4(1) S2(2)
S5(1) S3(2) s1(3)
$4(2) s82(3)
S1(4) S5(2) 83(3)
(b)

A e WN PO

Fig. 13 Pipeline Execution (Example 2).

is taken from papers by Cytron [26] and Midkiff [27],
and like Fig. 13(b), has potential parallel execution
among three shreds. A lot of synchronization is re-
quired to ensure that parallel execution is carried out
and to preserve the dependency of variables. Example 3
in Fig. 14(a) is an image processing procedure whose
loop is almost perfectly sequential on the iteration level;
there is no parallelism that is syntactically extractable
on that level. We divided the procedure of one iteration
of the loop into many fine-grain tasks, and restructure
them into three shreds (see Fig. 14(b)) by using a task
scheduling method based on one given by Kruatrachue
[28]. Further parallelism can be extracted by a loop un-
winding (unrolling) technique [29] in which the loop is
unrolled several times and then acted upon by the above
procedures.

Next, we deal with Example 4 in Fig. 15(a). If we
divide the loop into independent loops that have only
one statement each, we can extract parallelism on the
iteration level or even vectorize each loop. However, if
we attach importance to reducing the traffic on the bus
by means of snoop caches, then dividing the loop is not
the best way when the number of iterations is significant-
ly large. Here, the iterations of the loop are executed in
parallel without it being divided, but the dependency of
the variables is preserved by synchronization (see Fig.
15(b)). It is assumed here that the program is executed
in four shreds.

For reference, each row in Table 1 indicates the grain
size (the number of instructions and the cost from one
synchronization to the next).

T. MATSUMOTO

for (i=0:i<=Nsiv+)(
5 (i & 0x3ff)+1;
(?D;e[J—l]*nlae[.i]*azte[.i*llrn3tt-»'utd[i1) » 5
tivls
f (1= 1)

elj-1] = tup;

3
v
P
i

ise

e[1024] = twp:
tap = w-pi
elil = ps

(a)

i=0:i<=Riiee) ( for (i=0:i<=N;i++){[{for (i=0:ic=N:iis+)(
(i & 0x3ff)+1: v4 = e3%tap; v5 = ad4sd[i);
= a2zelj+1]); v2 = alzelj]s vl = a0%e[j-11;
= w3+wdew5;
(s2+vl+w2) >> 5; if (3 1= 1)
tlvls eli-1) = tup;
else
e[1024] = tmp;
tap = w-p; eli] = p;
|} } 1
i shred 1 shred 2 shred 3
(b)

Fig. 14 Parallelism in a Sequential Loop (Example 3).

DO i=1,N
L AGE) = V(i) *ACE)
§2: B(i) = W(i)sB(i)+A(i-1)
S$3: C(i) = W(i)*C(i)+*B(i-1)
S4: D(i) = W(i)&D(i)+C(i-1)
$5: E() = VO #H(i-1)
ENDDO
(a)

0 SE(IIN S1(2)\ S1(3)\ S1(4)
1 52(1)§52(2)§52(3)§52(4)
2 53(1)\53(2)\33(3)\53(4)
3 S4(1) Ys4(2) ¥s4(3) Vs4(4)
{2 R T

[ S1(7 S1(8)
8 sz(s)\(ﬁﬁz(o)\'szm\'sz(s)

Fig. 15 Example 4.

Table 1 Program Grain Sizes in the Examples.

Smallest Average Largest

11 11 11
Example 1 62 62 32
2 3.7 6
Example 2 (3 (12.8) (20)
3 6.4 9
Example 3 (5 (9.2) (15)
Example 4 4 7.7 15
(15) (25.0) (45)

Note: The upper part of the cell shows the number of instructions,
and the lower part the cost.

6.2 Assumptions on the Simulation

Conditions and assumptions of the simulation are as
follows: Each example is written in C language and the
compiled assembler source is used as the basic data. The
cost of an instruction with only register operations is 1
(unit cost) but for multiplication or division the cost is
4. An instruction with a memory-read operation costs 2
when the cache hits the data, and 6 (pre-process
2+ shared-bus access 3 + post-process 1) when it misses.
An instruction with a memory-write operation always
costs 2, because of buffered-write for the shared
memory, but in the case of a write for a shared variable




Efficient Execution of Fine-Grain Parallelism on a Tightly-Coupled Multiprocessor 483

Table 2 Speed-Up Ratio.

FGMP FGMP il idea FGMP
(sync) (all) us (unwind)
Examole 1 267 320 096  4.00
ample [1.60]  [2.00]  [0.76]
Example2 165 2.13 123 220
ple (1.38]  [1.83]  [1.05})
1.67 1.08 2.81
Example 3\ 67y [0.96] [2.41]
Exampled 273 3.0 215 4.00

[1.71] [2.33] [1.35]

Note: The upper part of the cell relates to double shared-bus use and
the lower part of the cell, in parentheses, to single shared-bus
use.

or in that of a cache-miss, the cache uses the bus for a
time corresponding to a cost of 3 after the execution of
the instruction. The processor is free to execute suc-
ceeding instructions during the bus write-access by the
cache. The buffer of this facility has only one slot for
each cache, and the order of bus access by a processor is
maintained. The system has two shared buses, which
are implemented by using memory interleaving or some
other technique (for comparison, the lower part of each
cell in the Table 2 provides data on one shared bus). No
traffic on the bus is caused by other jobs, but conten-
tions are taken into account in the example. Owing to
the evaluation of the loops, all the instructions are in
the cache and fetching them costs nothing. Additional-
ly, the cache contains the variables that are used in the
continuous iterations within the same processor. In the
cache snoop protocol, write operations always corres-
pond to ‘‘update,”’ and “‘all-read”’ to read operations
of array variables in the case where the ‘‘all-read’’ pro-
tocol is used. In the FGMP system, the synchronization
cost involving synchronization signal transmission is
assumed to be 1. In other words, APRV and PREQ cost
0, whereas if the synchronization controller has
detected synchronization conditions in advance, RREQ
is assumed to cost 0, and if not, it will include the cost,
1, of transmission referred to above and will also raise
the cost if execution is suspended until synchronization
is complete. In the non-FGMP case, barrier syn-
chronization (using a shared counter, a shared flag, and
a local flag in each shred) takes place in the program in
Example 1. In the other examples where there are pro-
ducer-consumer type synchronizations, producers
signal that they have finished assigning values to shared
variables by writing the loop count value in the shared
variables provided at synchronization positions in the
respective iterations. At the same time, consumers syn-
chronize by comparing the value with their own loop
counts.

As mentioned earlier, the cost in this simulation of
the execution of a basic register operation instruction

and that resulting from execution of an instruction in-
volving a read operation using the shared bus are assum-
ed to be in the ratio 1:6. The ratio varies between 1:2
and 1:3 in CISC-based conventional multiprocessors,
but the above value is set on the assumption that speed-
up resulting from the improvement of technology is
more difficult to achieve in a shared bus than in a
uniprocessor. This setting is not advantageous to fine-
grain parallel processing. Although it has not been dis-
cussed in detail in this paper, the latency of the memory
accesses can be nullified by prefetching data and advanc-
ed (and/or speculative) execution of instructions.

6.3 Simulation Results

Table 2 lists the speed-up ratios achieved by
simulating the four examples above. Here, the speed of
execution achieved by a processor in the program
before parallelization is taken to be 1 (unit speed). The
first column, ‘‘sync,’’ relates to the use of FGMP’s syn-
chronization mechanism alone. In the second column,
‘“all,”’ the all-read protocol is used for arrays referenc-
ing the same array element in each shred by additionally
using the inter-cache snoop control mechanism. The
third column, ‘‘usual,”’ refers to a contrasting case,
that of parallel execution without the above
mechanisms. Here, synchronization is done by using
the shared memory. The fourth column relates to an
‘““ideal”’ case free from bus contention and free of syn-
chronization and shared variable updating costs. Exam-
ple 3 is omitted from this column because the paralleliza-
tion technique in it is based on cost considerations. As
for ‘‘unwind,”” this column shows the effects of
parallelizing after four iterations by applying the
aforementioned loop-unwinding technique to Example
3. The operation is executed by five shreds.

Table 2 leads us to the following considerations. Ex-
amples 1, 2, and 4 are of programs using many arrays as
data. They involve frequent use of the shared bus and
the overhead resulting from bus contention determines
the extent of their speed-up. In such examples, use of
the all-read protocol and duplication of the shared bus
by, say, interleaving, make a considerable speed-up
possible under the above conditions. More complex
calculations will increase the grain size, making room
for a further acceleration. The compilation technique is
rather complex in Example 3. This, however, is an exam-
ple in which parallelism may be extracted from the se-
quential loop without loss of speed. As in VLIW
machines, it shows the possibility of high-speed execu-
tion by sequential loops making use of fine-grain
parallelism in an FGMP system with conventional
Uniprocessors.

7. Conclusions

We have described the FGMP architecture, which
can efficiently execute fine-grain concurrency in
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parallel. It is based on a shared-memory/shared-bus
multiprocessor architecture, and even when existing
uniprocessors are used as element processors, can
efficiently support a fine-grain quantum, that has rela-
tively few machine instructions. To illustrate the FGMP
architecture, we discussed new strategies for managing
hardware resources, taking account of its OS and
parallelizing compilers, and proposed two hardware
mechanisms that work well on the strategies: Elastic
Barrier, a light synchronization mechanism; and an in-
ter-cache snoop control mechanism that reduces the
overhead associated with shared data handling. We also
described the FGMP’s potential for improving perfor-
mance in fine-grain parallel executions, with some
simulated examples. Future tasks in this context will in-
clude an investigation of the efficiency of program ex-
ecution amid disturbances such as these resulting from
other jobs using the bus or from preemption by the
operating system. Other areas that should be considered
include additional mechanisms for further increasing
efficiency and for extracting/achieving parallelism
among grains involving several instructions.
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