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Real Fast Fourier Transform on
Quasi-Equidistant Sample Points

HIROSHI SUGIURA* and TaTsuo Torn*

Trigonometric polynomial interpolation of periodic functions with period 27 on equidistant points in the in-
terval [0, 27) is a well-known and effective approximation tool. A standard numerical procedure for implemen-
ting this method is based on doubling the number of interpolation points at each step, so that the ordinary Fast
Fourier Transform (FFT) technique is applicable. In this paper, a set is called a quasi-equidistant point set when
it is the union of equidistant point sets with the same size but with mutually different phases. A fast algorithm is
proposed for trigonometric polynomial interpolation on quasi-equidistant sample points for real periodic func-
tions. The proposed algorithm is a generalization of the real FFT, but still requires »nlog, n+ O(n) real
arithmetic operations, where n is the number of interpolation points. With the quasi-equidistant point set and
the algorithm for the interpolation on them, it is possible to construct an efficient scheme for automatic func-
tion approximation in which the rate at which the number of sample points increases is less than 2 and can be

arbitrarily close to 1.

1. Introduction

The Fast Fourier Transform (FFT) [1] is a fast and
stable algorithm for evaluating the coefficients of the
trigonometric polynomial interpolation of a periodic
function with period 27 on n equidistant points,
E.:={2nk/nl0<k=<n}. Usually n is taken as a power
of two and the FFT with base two is used for efficiency.
For real periodic functions, it is common to use the real
FFT algorithm [2], which takes advantage of the reality
of sample values and halves the number of arithmetic
operations.

In this paper, we call the operation for evaluating the
coefficients of the trigonometric polynomial interpola-
tion of a real periodic function on given sample points
the real discrete Fourier transform.

Our purpose is to generalize the real FFT algorithm
and construct a fast algorithm for the real discrete
Fourier transform on non-equidistant sample points of
some kind. )

A sequence of sample point sets of the FFT with base
2,

Ely EZ’ E41 T EZ") Y (l)

satisfies £ C Ex+, 0<k; hence, all sample values can be
reused when the number of samples is increased in
order to obtain better accuracy. On the other hand,
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however, the number of sample points is doubled.

Torii, Hasegawa, and Sugiura [3, 4] showed that an
efficient algorithm for the interpolation on finite trunca-
tions of the Van der Corput sequence can be con-
structed by using the FFT. In their method, re-usability
of sample values is naturally realized when the number
of sample points is increased. We introduce their
method to construct a sequence of sample point sets for
which the rate of increase in the number of sample
points is less than 2. It is easy to verify that

n 3 in
Exn=ExJ (Ezk+—k> =y (Ezk»: +—k)
2 1=0 2
! in
:U (E21>2+7>:"‘, (2)
=0 2

where A+x={a+xlac A} for every set A of real
numbers and every real number x. Eq. (2) allowed Torii
and his colleagues to insert the new sample point sets

n 2 In
Ex (EZA-.+?> =U (Ez"""—k),

=0 2
and

3
Ezk U (Ezk—z+§n;) =U (Ezk—l+%) U (Ezk—z‘f‘zk),
1=0 2 2

between Ex and Ex+ in the sequence (1) and made it
possible to increase the number of sample points
geometrically at an average rate of v2 or ¥ 2. This
kind of sequence of sample points was used for
numerical integration in papers by Torii and his col-
leagues, and its efficiency was proved [5, 6, 7].
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We generalize their sample point sets as the quasi-
equidistant point set
k

Ru(T)=U (EM+55), M=1, ®)
k=1 M
with kernel T={;}5=,C[0, 27), kx=1. The set Ru(T)
is a union of several equidistant point sets with the same
number of points but with different phases. The equidis-
tant point set is a special case when T={0}.

In Sections 2 and 3, we give a fast algorithm for
trigonometric polynomial interpolation on quasi-
equidistant sample points. Our algorithm is a generaliza-
tion of the FFT and requires Nlog, N+ O(N) real
multiplications, where N=x M is the number of sample
points. In Section 4, we construct a sequence of quasi-
equidistant sample point sets for which the rate of in-
crease in the number of sample points can be made
arbitrarily close to 1 by keeping the reusability of sam-
ple values. In Section 5, we show the performance of
our algorithm and check the accuracy of the Fourier
coefficients.

Our interpolation process also retains other valuable
features of interpolation on equidistant points. In our
method, the uniform norm of the corresponding inter-
polation operator, which is called the Lebesgue con-
stant, has a logarithmic rate of growth, and the calcula-
tion of the discrete Fourier coefficients is numerically
stable [8].

2. Real Discrete Fourier Transform

In this section, we investigate the Lagrangean form
of a trigonometric polynomial interpolation of a real
periodic function f with period 2n. We express a real
trigonometric polynomial g of degree » in the following
form:

g(t)=Re D" cxe™, cie R, )
k=0

where £” means the summation with the first and the
last terms halved. We restrict ourselves to the case in
which the number of sample points is even, which is im-
portant in an algorithm that we give later. Let U be a set
of sample points of size N=2n on the interval [0, 27).
In order to simplify the descriptions, we define two
trigonometric functions with period 4n as follows:

s(t):=sin %, c(t):=cos % )

We define the fundamental polynomial of a
trigonometric polynomial interpolation on U as
follows:

s(t—o)
o U=(0) S(8—9)

Since the function w(U, 9; t), 3 U, is the product of
an even number of trigonometric functions with the

w(U, & t):={ }c(t—ﬂ), de U. 6)
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period 4n in Eq. (5), it is a real trigonometric
polynomial of degree n. It is easy to verify that

w(U, 8; 9)=1, wU, 8; 9)=0, e U—-{8}. (1)

Hence we obtain the following Lagrangean form of
the n-th degree real trigonometric polynomial interpola-
tion of fon U:

LW ()= 2] w(U, & )f(9). (®)

de U
For each de U, it holds that

w(U, 9; 1)
ei(r—v))/2+e—i(r—.s)/z

eii—0/2_ g-iti=0)/2
2is(0—¢)
and its coefficient wy, of e™ is expressed as follows:

woa={ I 25(3—@)} (=)' [[ e "2

2 ge U— {9}

oe U— {9} peU
Thus
wone a(U)R, 9e U, a(U):=(=1y"*"i [[ e~ (9)
ecU

Because f(#)e R for all e U in Eq. (8), the
coefficient of e™ of the trigonometric polynomial L(U) f
belongs to a(U)R. Thus, we obtain

L) f (e I1(U)
1= {Re i" cce™lce R, cre a(U)R} . 310
k=0

Theorem 1

Let f be a periodic function with period 2n and
f.e II(U). If f, is an interpolation of f on U, then
SJr=LU)f.

(proof)

The linear space I7(U) is N-dimensional on R, and N
is equal to the number of sample points. From (7) and
9), w(U, ¢; t), de U, are N linear independent
elements of 7T(U). Hence, they are the basis of IT(U).
Therefore, f.e IT(U) can be expressed as a linear com-
bination of the basis w(U, ¢; t), 9 U. From the inter-
polatory condition of f,, it must be

fn(t)=02UW(U, & Of(9).7

To show that the definition (8) is some generalization
of the ordinary real discrete Fourier expansion, we con-
sider the case of U=Ey+t/N, where the sample points
are equidistant. In this case,

T i yml
o EN+W =(_1)n+liH e_l(;+;l)/2
1=0
=(_l)n+l ie—i(n—l/2)n—it/2=e—ir/2_ (ll)

The real FFT is a fast algorithm for obtaining the
trigonometric polynomial interpolation f, of a real
periodic function f on Ey with the form
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n—1
f,,(t)=i av+ ), (ax cos kt+ by sin kt) +i a, cos nt,
2 = 2

where a;, 0<k<n, b, 1<k<n—1 are real numbers.
We consider the case 0. At the first stage, we inter-
polate f(t+1/N) on Ey by using the real FFT and get
the Fourier coefficients a, p<k=<n, by, l<k<n—1 of
SAt+1/N). At the second stage, we shift the origin by
7/N and get

fn(l):% ro+nZ:]l (ak cos k(t-—%)

. T 1 T
+ by smk(t W))-%?a,. cos n(t W)

=RC " Cr eikl,
k=0
where  c=ao, c,=a,e "%, ci=(ar—iby)e *IN,
I<k=n—1. Then we obtain f,e IT(U), and f,=L(U)f
from Theorem 1.

3. Fast Algorithm on Quasi-Equidistant Sample
Points

In this section, we construct an algorithm for
trigonometric polynomial interpolation on the quasi-
equidistant set Ry (7') with a kernel 7= {7}, C [0, 27),
k=1, defined by Eq. (3).

Let M=2 be a number of integer powers of 2 and let
u=M]/2. We define

Tk
Eumu: =EM+H= {um.k}%’;a’

_mm

u,,,,k.-—+—A7,

Wik (8): =W (RM(T), Umus t),
O<m=<M-1, 1<k=<k.

We obtain the following expression from definition (6):

wm.k(t)= ) fI

Tk
M S(I—;I—ﬁ) - 0
) 1=0,1%m (ﬂ n ) c(t—:m—ﬁ)
s{\—m——1
u
n T
A s("T—M>
_,_l,gu=os(1 l_l_ff)
u M u M

X W(Emi, Unis 1).

Therefore, from the formulae

H. Suciura and T. Toril
. n 1\
:13(; sin (x—71)=<—7) sinnx, n=1,
sin (x+am)=(—1)"sinx, me Z,
if follows that
Wi (8)= Wi (ut)(— D" w(Eps, Uma; 1),
Osm=M-—1, 1<sk=<k, (12)
where

x 2t— A
SATY ke (13)

Wi(t):= , 1<k<
«() =172k S(Tk— 1))

Finally, we get
LRu(THS ()

L3 M-1
=2 Wiut) 25 w(Empr Umis (=D (U 0).
k=1 m=0

14)

If the size x of T is odd, it follows immediately from
Eq. (14) that

L(RM(T»f(t)=k"§l WeuOLEn)f@).  (15)

If k is even, cos (ut—1./2)=(—1)" for every t=tmy,
0=m=<=M-—1, 1 <k=<k. Hence, it holds that

L(RM(T»f(t)=§] Wk(ut)L(EM‘k){cos(ut-%)f(z)}.

(16)
Let

u
L(Em,)f(t)=Re 3" C ", 1<k=<xk, amn
j=0

X

]
L(Ru(T)f(1)=Re >," c;e™. (18)
=0
Because M is a power of 2, the coefficients {Cy.;}/—o,
I<k=k, can be calculated by using the real FFT with
base 2. The total number of real multiplications for
FFTs is

merr=k (M log, M+ O(M))=Nlog, N+ O(N). (19)

In the next two subsections, we give algorithms for
calculating the coefficients ¢;, 0</<xu, of L(Ry(T))f
from {Cy ;}i=0, 1<k=k.

3.1 Synthesis Algorithm for Odd x

Since Wi (t), <k =<k, in Eq. (13) is the product of a
real value and an even number of the functions

e~z ginl2
ell_

2i 2i

sQt—1))= e 1sj<k, (20)

it can be expressed as follows:
*x=1)/2

Wi@®)=wio+ D, (Weie®+w e ™), 1<ks<k.
=1

@n
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Substituting Eqs. (17) and (21) into Eq. (15), we get

x

c21p+u:

CZJu+j=Z wk,,Ck,,-, OSjSﬂ—l, OSIS(K—I)/Z,
k=1
1
2

(Wi, 1 Crop+ Wi+t Ce),
1

|

0<l<s(x-3)/2,

Coj Wit Cejy 1<jsp—1, 1<i<(k—1)/2,

Wie-172 Croe 22)

Cxu

3.2 Synthesis Algorithm for Even x

Since Wi(t), 1 <k =<k, defined in Eq. (13) is the pro-
duct of a real value and an odd number of s2t—1),
1<j=<k, defined by Eq. (20), it can be expressed as
follows:

x/2—1
Wi(t)= Z (Wi e+ We e—|(21+1)t), l<k=k.
=0

(23)
We denote
ap:=e " r=q(Epi), 1 <k=<k. 24)

From the equalities
cos /,tt—3 =L e+t grem 1<k=k
2 2 k 2 k B =R =~n,

M F
M=af?, te emu,

e

it holds that

T\ .. - .
cos (,ut—;)e”ﬁ% o e"’*"”+—;- o e’vTm

=% o ei(j—u)!+% @ el
=g eV 0<j=<up,
for all te Eyy, 1=k=ck.
Taking the complex conjugate of the most left-hand
side and the most right-hand side of the above
equalities, we also obtain

T y o
cos (yt—;k)e"’%cxk e O0<j=<p.

From these equalities and the expression (17), it holds
that

Tk Tk
cos (,ut—?)f(t)=cos (#t‘?)L(EM,k)f(t)

L} —_— .
=Re Z” Ok Ck',,—_,' e”',

j=0
te EM.ka l<k=<k.

Since Ci o€ R, the coefficient a,Cyo of ™! of the most
right-hand side of the above equality belongs to axR.
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Hence, the series of the most right-hand side belongs to
ITI(Emy). From Theorem 1, we get

L(EM,k){cos (ut—%)f(r)}

# _— Iy
=Re Z” Q Ck_‘,-j e"', l<k=<k. (25)

j=0

Substituting Eqgs. (17) and (25) into Eq. (16), we get

M=

¢ =), Re(wiotk)Cio,

k

x

Cz[”+j=Z Wy, Ok CkJ', 15_[5[1, 0515’(/2“1,
k=1

x
Cﬂu—i=z Wk,lakt‘_k:,', OSjS[l—l, ISISK/Z,
=}

=

C = Wiy @+ W1 06)Cio, 1<K /21,
1

k

bge ol

Wi /21 0k Cro. (26)

Cxu
k

1

Let N=xM be the number of sample points. It takes
kN/24+0(1) complex multiplications to calculate the
right-hand sides of (22). It also takes kN/2+ O(1) com-
plex multiplications to calculate the right-hand sides of
(26), if we supply the values

W1 Ok wk,,&}, O<li=u, 15’(5](/2“1,

in advance. Therefore, the number of real multiplica-
tions ms,, needed to calculate ¢, O0</=<ku, from
{Crj}i=0, 1 =k =<k, is not affected by the parity of x and

Men=2kN+0(1). @n

From Egs. (27) and (19), the total number of real
multiplications 7o is

mmtal=mFFT+msyn=N]og2 N+ O(N). (28)

This is almost equal to the total number of real
multiplications for the real FFT on the usual equidis-
tant sample points.

Let us call the process for calculating the coefficients
of the trigonometric polynomial interpolation on N
sample points the ‘‘N-point transform.” In our
algorithm, the x2™-point transform for calculating the
coefficients of L(R+(T))f is reduced through synthesis
rule (22) or (26) to the x 2™-point transforms that
calculate the coefficients of L(E»+1./2")f, 1<k=k.
In the algorithm mentioned above, we use the ordinary
real FFT with base 2 for these 2™-point transforms.
From equality (2), it holds that

Ept—={Ept = |U[ Eynes =+ —
2" 2m_ i om 2mt om " gm=1

-we ({5 5+4}).

Thus, each 2”-point transform is also reduced to two
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2™~ l.point transforms through synthesis (26). By
repeated application of this reduction, the x2"-point
transform is finally reduced to x2™"' 2-point
transforms. In other words, the k2”-point transform is
synthesized from the k2™~ ! 2-point transforms in the op-
posite way to the above reduction process. When k=1
and T=1{0}, our algorithm agrees with the ordinary real
FFT with base 2 described, for example, by Swarz-
trauber [9].

4. Sequence of Reusable Sample Point Sets

In this section, we consider an infinite sequence of
sample point sets {U,},=0 on the interval [0, 27) and
trigonometric polynomial interpolation on these points.

If a sequence {U,} .= satisfies

,cl,c---cy,c---, (29)

all sample values can be reused without waste when we
increase the number of the sample points along this se-
quence. We say that a sequence of sample point sets
that satisfies condition (29) is reusable.

We can construct a reusable sequence in which all the
elements are equidistant point sets, as in sequence (1),
but the rate of increase in the number of sample points
must be greater than or equal to 2. This rate is especially
large when we apply sequence (1) to multi-dimensional
interpolation problems as a direct product.

By using quasi-equidistant point sets, it is possible to
construct a reusable series in which the rate of increase
in the number of sample points is arbitrarily close to 1.
Theorem 2

Let {7n}o<n<v—1 be a sequence of finite sets on the in-
terval [0, 27) that satisfies

ToCT\C- T, ,CRATy). 30)
Then, the sequence
Um+r: =R (Ty), 0sk=v—1,0=<m, 31

is reusable and the average rate of increase in the
number of sample points is ¥ 2 .
(proof)

From (3), for every point set A, B on [0, 27), it holds
that

ACB=Ry(A)CRu(B), M=1. (32)

The reusability of sequence (31) is trivial from this
statement. The average rate of increase in the number
of sample points is % 2 , because the number of sample
points of Uy, is twice the number of sample points of
U..

The algorithm in Section 3 can be applied to the inter-
polation on U,, n=0.

We can construct infinitely many sequences by using
Theorem 2. The sequence in Section 1 proposed by
Torii and his colleagues is a typical example.

Let T, be an equidistant set

H. Suciura and T. Toru

T,=E,, p=2; (33)

then ToCEy,=Ry(To) is satisfied and every sequence
E,=ToCT,C---T,_,CE,, can be used as a kernel of se-
quence (31). In practice, we must choose sequence (30)
while taking account of the stability and accuracy of
trigonometric interpolation on U,, n=0.

5. Numerical Experiments

Let p=3 in the expression (33) and let

2
7,=0, TzzTn, n:‘%{, T4=%, T5=ST7[, (34)
T.={t, -+, Tu+3}, 0sn=<2. (35)

Then T,, O=sn<v—1, v=3, satisfies condition (30).
Therefore, the sequence of sample point sets { U, } -0 de-
fined by sequence (31) has reusability, and the average
rate of increase in the number of sample points is ¥ 2.
We give explicit expressions of Wi (¢), l<k<k=n+3
for n=0, 1, 2, which are deduced by the product for-
mulae of sines and cosines.

XT=Tu={7, 1, 13}
Wi(t)=(1+2cos 2t)/3,

Wz(t)=(l+2 cos(ZI—%E))/B,
W;(t)=(l+2 cos(2z+33’—'))/3, 36)
OOT=T:={1, 12, T3, Ts}

W)= (2 cost+2 cos<3t+ ))/3

Wy(t)=|2 cos t—% +2cos(3t+2{>)/3,

Wi(t)=1{2cos t—ZT" +2cos 3t)/3,

W)= cos(3t—%> . 37

DT=Tr={1), 12, T3, T4, Ts}
Wi(t)=(1+2cos 4t)/3,

Wi(t)= (1 +v3 cos( t—%) +cos<4t+

o
B
)
|

n)+~/—cos(4t+ )/3

Wi(t)= l+ﬁcos(2t+%)+cos(4t—

u: w|N w|N

6

W4(t)=(s/Tcos( t——6-)+x/—cos(4t

Wst)=| 3 cos (2t+

(38)
When T=T,, T, the size k=3, 5 of Tis odd. We can
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Logl o {Error)

T T T T

T
0 512 1024 1536 2048 2560
Number of Sample Points

Fig. 1 Relative error of real discrete Fourier coefficients on quasi-
equidistant sample point sets for the function
14+2asint—a®

5, a=0.95.

=
S 1—2acost+a

calculate the coefficient wy,, 0</<(x—1)/2, 1 <k=<k,
from expressions (36) and (38) and the formula

eia eilll+e—ia e—ikl
2

When T=T, the size k=4 of T is even. We can
calculate the coefficient wy,, 0<l<k/2—1, 1<k=<k,
from expression (37), and oy, 1 <k <k, from Eq. (24).

The coefficients of L(Ry(T))f are synthesized from
L(Em«)f, 1 =k <k, by expression (22) or (26) according
to the parity of «.

The number of real multiplications for the synthesis
My, is less than that shown in expression (27), because
of the speciality of 7. Corresponding to the number of
sample points N, it becomes

cos (kt+a)=

%N+ o(l), T=T,,

M= % N+0(), T=T,,

7
N =T
5 +0(1), T=T 39)

In expression (39), we did not count multiplications by
2 and 0.5 because of the speciality of binary computers.
We show the numerical results of calculating the
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coefficient of L(Ru(T))f, T=To, T\, T, M=2",
4=<m=<9. We use the following test function:

1+2asin t—a*

f(t):—1—2acost+az
=1+Re Z (1-ia"e™, a=0.95. (40)

n=1

In Fig. 1, the horizontal axis represents the number
of sample points, and the vertical axis common
logarithms of the error &. The error ¢ is the relative er-
ror given by the absolute sum of errors of calculated
coefficients divided by 27.870... which is the absolute
sum of all coefficients of f.

When the number of sample points N=48, ...,
3x2™, ..., 1536, T=T, and R;-(T) is an equidistant
point set E;.». When N=64,..,4x2", .., 2048,
and N=80, . ., 5x2", .., 2560, T=T, and T; respec-
tively. In the latter two cases, R2»(T') is a quasi-equidis-
tant point set but not equidistant.

Figure 1 shows that the common logarithm of the er-
ror is decreasing linearly until it reaches the round-off er-
ror bound around 1073, In the non-equidistant cases in
which T=T, or T,, both accuracy and stability are
almost held.

The numerical experiment was done in FORTRAN77
with double precision on the FACOM M780 at Nagoya
University’s Computing Center.
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